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ABSTRACT With the speeding up of the fifth generation (5G) new radio (NR) worldwide commercializa-
tion, one of the paramount questions for operators and vendors is how to optimize the radio links, considering
the widely diverse scenarios envisioned. One of the key pillars of 5G has been an unprecedented flexibility
on the configuration of the radio access network (RAN) on scenarios that include cellular, vehicular, and
industrial networks among others. This flexibility has its main exponent on link adaptation (LA), which has
evolved into a multi-domain technique where a plethora of parameters, like numerology, bandwidth part,
radio frequency beam, power, modulation and coding scheme (MCS) or multiple antenna precoding can be
adapted to the instantaneous link conditions. Although such enhancements open the door to a significant
performance improvement, they also pose many challenges to LA optimization. In this article, we first
present the signaling aspects of NR technology for multi-domain LA and the challenges that need to be
faced. Then, we explore the latest advances on LA for wireless networks. We envision a combination of
machine learning (ML) tools with multi-domain LA as a key enabler for 5G and beyond networks. Finally,
we investigate emerging ML approaches for LA and present a promising application of ML for LA that
is assessed with simulations. With this scheme, the training is performed at the network side to relieve
the user equipment (UE) to do such a complex task. It is shown with simulations that our ML approach
outperforms the well-known outer loop link adaptation (OLLA) algorithm in terms of instantaneous block
error rate (BLER), while reaching the same average spectral efficiency (SE). Interestingly, it is shown that
the proposed scheme only requires 4 bits to represent the features used to train the model, which makes it
suitable for implementation in real systems with limited feedback.

INDEX TERMS 5G networks, link adaptation, machine learning, supervised learning.

I. INTRODUCTION
The main driving factor behind the fifth generation (5G) new
radio (NR) is to provide a single wireless technology for a
fully connected society. To this end, three extreme service
requirements were considered: enhanced mobile broadband
(eMBB), with target peak rates of 20 Gbps; ultra-reliable low-
latency communications (URLLC), with target block error
rate (BLER) of 10−5 and very low latency requirements; and
massive machine type communications (mMTC), catering to
1 million devices/km2 [1]. Combinations of these aforemen-
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tioned extreme requirements cover a plethora of use cases and
types of wireless networks, including cellular, vehicular, non-
terrestrial, smart cities and factories among others [2].

This diversity of services requires a physical (PHY) and
medium access control (MAC) layers with unprecedented
flexibility. The wide range of frequencies, including centime-
ter and millimeter waves (mmW), has required a redesign of
transceivers using a hybrid beam forming (HBF) approach,
where full-dimensional massive multiple input multiple out-
put (MIMO) can be used while limiting the complexity [3],
[4]. A flexible numerology design was also needed to combat
the impact of impairments like phase noise or IQ imbalance
and the non-linearity of high power amplifiers (HPAs), since
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their impact is more noticeable at higher frequency bands [1].
It is especially relevant the case of uplink (UL) where two
types of waveforms, cyclic prefix orthogonal frequency divi-
sion multiplexing (CP-OFDM) or transform precoding, can
be selected depending on the link conditions. To cope with
wide bandwidths, the active bandwidth part (BWP) of the car-
rier bandwidth can be dynamically selected [5]. The modula-
tion and coding scheme (MCS) selection also needed major
changes to cope with different waveforms and performance
targets, like maximum throughput or minimum BLER, thus
leading to a number of MCS tables depending of the working
conditions. Finally, power control on downlink (DL) and UL
has been improved by adding more degrees of freedom with
respect to previous standards [6].

The impact of these design decisions on link adaptation
(LA) is notorious, leading to an evolution towards a multi-
domain LA, where transmission configuration can be adapted
to maximize binary rate (BR) while guaranteeing a target
BLER. Hence, besides the traditional triplet of MCS, power
control, and digital MIMO precoding of previous standards,
5G NR allows selecting the numerology, BWP, waveform,
and RF beam to maximize the efficiency of radio links.

However, these new degrees of freedom increase the com-
plexity on LA since more parameter sets must be jointly
optimized. Additionally, propagation and channel conditions
expected for 5G and beyond pose many challenges to LA.
The channel at mmW band exhibits non-linear characteristics
that complicate an accurate channel state indicator (CSI)
acquisition [7]. The highmobility of some scenarios like V2X
(Vehicular to Everything) and railway communications or
the long delays expected on non-terrestrial networks (NTNs),
leads to outdated CSI that severely degrades LA performance.
The dynamics of interference are extremely complicated due
to the diverse nature of interfering nodes and transmission
schemes. There is inter-numerology interference due to the
use of mixed numerologies at the same time [1]. Furthermore,
dynamic time division duplexing (TDD), which adds the
concept of flexible slots, makes interference dynamics more
intricate by adding cross-link interference [8]. The complex-
ity is exacerbated with the existence of tropospheric ducting
that augment the distance between interfering and victim
nodes. In addition, the support of URLLC services involves
that non latency critical transmission can be punctured by
latency critical services which worsen LA. Due to all these
reasons, conventional mechanisms for LAmight be no longer
adequate on 5G and beyond networks.

One of the most promising approaches to overcome the
aforementioned challenges is to apply artificial intelligence
(AI), as it can solve the intractable problems involving
large amounts of data of this multi-domain LA [9]. On the
one hand, machine learning (ML) algorithms might allow
to model the highly non-linear nature of mmW channels,
RF components, and the complex dynamics of the interfer-
ence to estimate sub-optimal parameter sets for LA. On the
other hand, ML might discover behavioral patterns to react
against rapid network condition changes.

This article describes the multi-domain LA approach,
the signaling aspects, and available measurements of the
3GPP 5G NR standard. Then, the main challenges that need
to be faced are presented. Finally, a brief survey on ML
approaches for LA is discussed, and a promising application
of ML to LA is presented. The benefits of such a proposal are
illustrated with simulations.

II. OVERVIEW OF LINK ADAPTATION IN 5G NR
A. MULTI-DOMAIN LA IN 5G NR
Due to its unquestionable benefits to make efficient use of
the radio links, LA was considered for 5G since the early
discussions. LA aims at maximizing or minimizing a given
metric subject to a maximum BLER. Typically, the problem
has been formulated as the maximization of the binary rate
(BR), e.g., for eMBB services. Still, LA might also be posed
as the minimization of the transmitted power in other appli-
cations, e.g., mMTC.

Previous standards (like Long Term Evolution (LTE))
mainly rely on adaptive modulation and coding (AMC),
closed loop MIMO precoding and power control for LA.
However, 5GNR adds some innovative concepts asHBF [10],
scalable numerology, BWPs or waveform selection, leading
to a multi-domain LA approach with an unprecedented flexi-
bility. These domains are explained as follows.

1) BWP AND NUMEROLOGY
The BWP defines a portion of the bandwidth of each carrier.
Up to four BWPs can be defined per carrier and link direction,
but just one can be active at a time. BWPs aim at adapting
the bandwidth size to the traffic demands to save energy.
In addition, each BWP defines its own numerology (i.e., the
sub-carrier spacing (SCS)) [6], so a BWP switch is needed
to change the current numerology. This means that selecting
the active BWP allows adaptation to the RF and channel
conditions by selecting the most appropriate numerology.
As the carrier frequency increases, RF impairments like
phase noise or non-linear behavior of HPAs are exacerbated.
To combat these effects, a higher SCS is needed [1]. How-
ever, a higher SCS implies that the OFDM symbol duration
is reduced, which might lead to inter-symbol interference
(ISI) if the delay spread of the channel is longer than the
CP length.

2) WAVEFORM
While the DL waveform is fixed to CP-OFDM, the UL
may use CP-OFDM or transform precoding [5], which
is the name that 5G gives to discrete fourier transform
spread OFDM (DFT-s-OFDM). CP-OFDM leads to higher
spectral efficiency and better performance of MIMO tech-
niques. Nevertheless, the peak to average power ratio
(PAPR) of transform precoding is significantly smaller;
this means that transmitted signals are less degraded by
non-linear HPAs, thus leading to a lower BLER and
smaller out-of-band emissions (OBE) [1].
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TABLE 1. Summary of domains in 5G LA, potential benefits and trade-offs.

FIGURE 1. Multi-domain link adaptation on DL (a) and UL (b) of 5G NR.

3) RF BEAM
The principal RF beam is determined through initial access
using a beam sweep based on the synchronization signal
blocks (SSBs). This involves that the base station (BS)
transmits a different SSB in a different access beam [11].
user equipments (UEs) search the best beam in terms of
received power and transmit the preamble for initial access
on a preamble occasion associated with that beam [12]. The
mapping that exists between preamble occasions and DL
RF beams allows the BS to identify the best initial beam
for each UE after preamble reception [5], [6]. Afterwards,
RF beam adaptation is carried out through beam refinement
and beam tracking procedures [10]. Beam refinement aims
at improving the link performance by selecting a narrower
beam than the initial beam, whereas beam tracking aims at

adapting to channel variations. Thus, beam tracking selects
beams with a different steering angle that follows the UE
movement to minimize the beam misalignment. There is
a trafe-off between both procedures since narrower beams
have a higher beamforming gain, but they exhibit a higher
sensitivity to beammisalignment [13], [14]. Both procedures
rely on CSI-RS that are transmitted on different RF beams.
The UE measures the received power related to each chan-
nel state information reference signal (CSI-RS) and then
informs about the set of K best beams using a physical
layer reference signal received power (RSRP) report [12].
In addition, the best beam can be reported with the CSI-
RS resource indicator (CRI) linked to a CSI report. In this
case, the CSI is an index to the CSI-RS related to the
best beam [5].
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4) POWER
In the UL, a closed loop power control is applied. It means
that the UE estimates an open loop transmit power to achieve
a target nominal received power at the BS, P0, scaled by a
factor, α ∈ [0, 1], assuming the path loss estimated based
on DL reference signal (RS). This DL path loss is used to
compute an initial transmit power on the UL. Then, an offset,
δ, is added to compensate for the differences between DL
and UL paths. The BS transmits a transmit power control
(TPC) command (with each UL grant) to increase or reduce
such an offset, δ. Regarding the power used at DL, it is
selected by the BS based on CSI reports. Each CSI report
associated with a given UE assumes a physical downlink
shared channel (PDSCH) power level that is signaled by
higher layer configuration (i.e., radio resource configuration
(RRC)) [6]. Using CSI reports linked to different PDSCH
power levels, the BS can decide the most suitable transmit
power for each UE. There is an interplay between transmitted
power, coverage enhancement, and interference that must be
considered by the power control algorithms in the UL and DL
directions. On the one hand, increasing the transmit power
increases the received power and thus extends the coverage of
a given user. Nevertheless, this also increases the interference
level in neighboring cells. Besides, increasing the transmit
power might distort the transmitted signal and provoke OBE
if the power level approaches the saturation point of the power
amplifier.

5) RANK AND MIMO PRECODING
The rank, i.e., the number of layers, and the precoding matrix
is adapted to the small scale variations of the equivalent
MIMO channel. Rank adaptation is based on the actual
rank of the channel matrix which determines the maximum
number of independent streams that can be transmitted. The
BS decides the transmission rank based on link conditions,
selecting between spatial multiplexing or digital beamform-
ing. With the selected rank and estimated channel matrix,
the optimal precoding matrix is determined [10]. If channel
reciprocity can be assumed in TDD mode, the rank and
precoding matrix on the DL is based on the UL sounding
reference signal (SRS). Otherwise, the UE selects the pre-
coding matrix from the codebook and reports the related
rank indicator (RI), precoding matrix indicator (PMI) and
layer indicator (LI) metrics. This latter metric indicates the
strongest layer.

6) MCS
AMC is the main feature of LA and it aims at selecting the
highest MCS that fulfills a target BLER. On the UL, theMCS
selection can be made based on the estimated effective signal
to interference and noise ratio (SINR). The MCS selection
for the DL is based on the channel quality indicator (CQI),
which quantifies the effective SINR after MIMO detection
and it is fed back from the UE to the BS. 5GNR specifications
define 3 MCS tables listing all available MCSs for DL and

UL without transform precoding and 2 tables for the UL with
transform precoding. These tables differ on the maximum
modulation order (i.e., 64-QAM or 256-QAM) and target
BLER (i.e., 10−1 or 10−5).
A summary of the multi-domain LA in 5G that illustrates

the potential benefits and trade-offs is shown in Table 1.

B. SIGNALING ASPECTS OF LA IN 5G NR
The signaling procedures involved in this multi-domain LA
are illustrated in the examples of Fig. 1 (a) and (b), for DL
and UL, respectively. As it can be observed from Fig. 1 (a),
there is a slow adaptation to radio conditions and quality
of service (QoS) requirements that is achieved using RRC
(re-)configuration of radio bearers. This RRC configuration
sets the BWP parameters, which consists on BWP start and
size on the resource grid, numerology, power control, beam
management, CSI reports and CSI-RS related parameters
among others.

Once the configuration is established, measurements are
needed to perform LA for data transmission. Hence, dif-
ferent CSI-RSs are transmitted on different RF beams.
Based on these CSI-RSs, the UE computes the best RF
beam, and then it calculates the triplet of metrics related
to rank and MIMO precoding adaptation (RI, PMI and
LI) [5]. Finally, the UE performs AMC to select the highest
MCS that fulfills a target BLER. All these metrics com-
pose the CSI report. Afterwards, on the transmission phase,
the BS uses this CSI report to complete LA and selects
the RF beam, transmit power, precoding matrix, antenna
ports (APs) used for transmission and MCS. The transmit
power and precoding matrix do not need to be signaled;
however, the rest of the parameters are signaled on the
physical downlink control channel (PDCCH) [5].

The LA procedure for UL is illustrated on Fig. 1 (b).
This procedure is initiated with the transmission of SRS
on different beams. SRSs are linked to a particular usage,
which can be either beammanagement or codebook selection.
First, SRSs for beam management determine the set of K
best beams on the UL. Then, a pair of SRSs are used for
codebook selection. These SRSs allow determining the best
RF beam among the 2 best beams, and the rank and MIMO
precoding, which is identified by the related transmit pre-
coding matrix indication (TPMI). On the UL grant, the BS
signals the best beam with the PDCCH field SRS resource
indicator (SRI), which identifies the best beam among 2 RF
beams; the rank and TPMI are signaled with the precoding
information and number of layers (PINL) field, the antenna
ports with APs field, and the power control with the TPC
field [5].

Finally, the BS can decide to switch the active BWP to
change the numerology or waveform in order to react against
radio propagation changes. Nevertheless, the BWP switch
has a cost since there is a guard period during which no
transmission is allowed. This period is needed to prepare
receptions for the next BWP [5].
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III. CHALLENGES AND OPPORTUNITIES FOR LA ON 5G
AND BEYOND
A. CHANNEL ESTIMATION
Channel estimation is of paramount importance for LA, since
accurate and updated CSI information is needed to adapt the
transmission parameters to the instantaneous link conditions.
The wide range of frequencies supported by 5G implies that
the propagation mechanism and underlying channel model
greatly differ from high and low frequency bands. For high
frequency bands, channel estimation is especially challenging
due to the non-linear nature of the channel [7]. In addi-
tion, the adoption of HBF, where the number RF chains is
much smaller than the number of antennas, greatly increases
the channel dimension, which complicates channel estima-
tion [15]. To overcome such complexity and provide accurate
CSI, the hybrid approach and spatial structure of antenna
array must be considered. On [16], channel estimation for
uniform multi-panel antenna array is considered. This work
considers the fact that mmW channels have a sparsity feature
in the beamspace domain to propose an orthogonal projec-
tion method. It is used to detect the support of the channel
response vector. Then, least squares estimation is performed.
The authors of [15] show that the beamspace channel ele-
ments can be modeled according to a Gaussian mixture distri-
bution. They use thismodel to derive a new shrinking function
for an approximatedmessage passing algorithm implemented
with a deep neural network (DNN). The case of multi-user
MIMO with HBF is considered in [17]. The authors propose
a deep learning compressed sensing method for channel esti-
mation, which is trained offline using simulation results to
predict the beamspace channel amplitude. Then the channel
is reconstructed based on the obtained indices of dominant
beamspace channel entries.

B. RF IMPAIRMENTS
The use of mmW front-ends leads to significant hardware
non-idealities that compromise the transmitted signal quality.
The main RF impairments in 5G NR are herein described.

1) NON-LINEARITY OF HPAs
Due to the inherent high PAPR of OFDM, HPAs at the trans-
mitter work in its nonlinear region, leading to distortion and
undesired out-of-band emission (OBE). Therefore, alterna-
tive waveforms based on single-carrier with low PAPR (like
DFT-s-OFDM) has been typically used in the UL to enhance
the coverage probability. In the mmW band, HPA efficiency
is expected to be degraded, and hence, transform precoding
must be considered for coverage enhancement purposes [1].
In addition, windowing and filtering can be used to improve
spectral confinement, thus reducing OBE.

2) PHASE NOISE
Phase noise of local oscillators increases for higher carrier
frequencies, hence becoming a challenge for mmW bands
as it produces common phase error (CPE) and inter-carrier

interference (ICI). 5G NR has introduced phase tracking ref-
erence signals (PTRS) to estimate and compensate the CPE.
However, this procedure is not enough to compensate ICI,
especially when the phase variation error is faster concerning
the OFDM symbol duration. In this case, ICI may be mini-
mized by selecting higher SCS (e.g., 120 or 240 kHz) [1].

3) IQ IMBALANCE
The effect of IQ imbalance is more severe in the mmW
band than in the sub-6 GHz band, thus causing a significant
degradation in the SINR. Note that IQ imbalance is frequency
selective and the sources of IQ imbalance are located both in
the transmitter and receiver. Therefore, a good approach to
cope with IQ imbalance must consider frequency-dependent
estimation and compensation at both communication ends.

Due to the non-idealities previously described and inher-
ent variability in link conditions, LA mechanism requires a
closed loop to keep the target BLER. The well-known outer
loop link adaptation (OLLA) technique is able to minimize
previous impairments by adapting theAMC switching thresh-
olds instantaneously based on the reported ACK/NACK [18].

C. COMPLEX INTERFERENCE DYNAMICS
The dynamics of the interference significantly degrade LA
performance, since they affect the estimation of the effective
SINR, which is used for MCS selection. The main challenges
related to interference dynamics in 5GNR are described next.

1) INTER-NUMEROLOGY INTERFERENCE (INI)
Frequency domain multiplexing of different OFDM
numerologies leads to INI since only sub-carriers within
a numerology are orthogonal to each other. INI may be
reduced by inserting an additional guard band between
numerologies and/or by applying spectral emission confine-
ment techniques that limit the energy leaked towards other
numerologies. Additionally, the receiver may also include
filtering/windowing techniques so that the received INI is
minimized.

2) CROSS-LINK INTERFERENCE (CLI)
Spectrum utility in 5G NR can be increased through dynamic
TDD. However, this flexibility for selecting the transmis-
sion direction makes interference dynamics more intricate by
adding cross-link interference, i.e. BS-to-BS interference and
UE-to-UE interference. As the DL generally has much higher
transmit power than the UL, the impact of BS-to-BS inter-
ference is usually more adverse. Current research to mitigate
CLI is extensive, covering clustering schemes, scheduling,
and resource allocation techniques, advanced power control,
MIMO beamforming techniques or coordinated UL/DL con-
figuration, among others [8].

3) REMOTE INTERFERENCE
To protect the UL from DL CLI in dynamic TDD sys-
tems, a guard period is typically used when switching from
DL to UL. However, during certain atmospheric conditions,
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tropospheric ducting may transport the radio signals along
hundreds of kilometers with low propagation losses, causing
significant interference to remote cells. For this reason,
remote interference management (RIM) mechanisms have
been standardized in Release 16 to mitigate such interference.

4) IMPACT OF INTERFERENCE ON URLLC SERVICES
Fast varying CLI and switching time of configurations in
dynamic TDD systemsmay lead to additional HARQ retrans-
missions that complicate to satisfy the URLLC target. This
problem is more involved when multiplexing different types
of traffic with different priorities and transmission directions.
This challenge may be partially addressed by configuring
hybrid (static and dynamic) radio slot sets.

IV. ML-ENABLED LA FOR 5G AND BEYOND
A. CLASSIFICATION OF ML TECHNIQUES
ML is a key enabler for 5G and beyond networks since
it allows solving complex problems without explicit pro-
gramming and provide fast adaptation to dynamic environ-
ments [7]. ML techniques can be classified according to how
training data is used as: supervised learning, unsupervised
learning, and reinforcement learning.

Supervised learning aims to infer a function using inputs
with its desired labeled output. Depending on the output type,
supervised learning can be divided as classification (discrete
output) or regression (continuous output). K-nearest neigh-
bors (KNN), support vector machines (SVM) and logistic
regression (LR) are three of the most extended algorithms for
supervised learning [19]. In unsupervised learning, no labeled
data is provided and the aim of the learning agent is to
find hidden features or structure of the data. Examples of
this type include clustering analysis and dimensional analytic
reduction. With reinforcement learning, a learning agent tries
to maximize the cumulative weighted reward obtained from
interactions with the environment. This reward depends on
the action made by the agent and the state of the environment.
In addition, the environment evolves to a new state based on
the current state and the action made by the agent [20].

Deep learning is a subset of ML algorithms, where a
multi-layer network uses inter-connected nodes for feature
extraction and transformation. The output of a given layer
is used by the following layer as input. According to the
manner in which the training data is used, deep learning
algorithms can be classified also as supervised, unsupervised
or reinforcement deep learning [9].

Finally, according to the number of nodes involved in the
learning process, ML techniques can be classified as central-
ized, where a single node trains the model, or decentralized,
where several nodes participate in the learning process. Fed-
erated is one of the most promising decentralized approaches
since it leads to high privacy, it requires limited communica-
tion bandwidth between nodes, and it has smaller latency than
other decentralized approaches [21]. With federated learning,
a specific ML model is trained collaboratively by several

nodes, called clients, over many iterations. At one iteration,
each client computes a local model update, using its local
data, that is shared with a server that performs global model
update based on the local updates of all the clients. Since
the raw data is not exchanged between nodes, the privacy is
high whereas the communication requirement and latency are
limited.

B. EMERGING APPLICATIONS OF ML TO LA AND MAIN
CHALLENGES
The introduction of new extreme services like URLLC or
eMBB with different quality requirements together with the
use of disrupting features like HBF or scalable numerology
havemade conventional LA techniques to be outdated. On the
one hand, traditional LA based on rank adaptation and MCS
selection according to SINR thresholds does not capture the
complex nature of the channel nor interference. It leads to
either not fulfilling the target BLER or to a throughput reduc-
tion [22]. For these reasons, recent works present different LA
enhancements relying on different ML frameworks.

In [22], a multi-user HBF link adaptation method based
on supervised ML is proposed. The method first computes
the number of RF chains required for each user based on
its distance towards the serving BS. Then, a two-stage link
adaptation is performed. In a first stage, digital precoding is
switched off if there is a single dominant path. In a second
stage, the transmission scheme is selected, i.e., multiplexing
or diversity transmission mode and the MCS to fulfill a
target BLER while maximizing the throughput. This latter
stage is implemented via supervised learning invoking KNN
classification technique.

A deep learning framework based on convolutional neural
networks (CNN) for AMC on a MIMO-OFDM system with
spatial multiplexing is presented on [23]. AMC is treated here
as a multi-class classification problem where each class rep-
resents a specificMCS and the number of spatial streams. The
use of CNN allows using the estimated channel matrix and
the noise as features for this multi-class classification. This
avoids the need for preprocessing to reduce the dimension of
the features, which might lead to performance degradation.

In [24], two ML frameworks are proposed for link adapta-
tion with spatial modulation. Firstly, the problems of transmit
antenna selection and power allocations are treated from
a learning data driven perspective. Then, two frameworks,
one based on supervised learning with KNN and SVM, and
another based on DNN, are proposed using the modulus and
correlation of the channel matrix coefficients.

In [25], a learning algorithm using back propagation arti-
ficial neural network is proposed for AMC. In this latter case
the estimated channel, interference and noise are used as
features for the learning process. It is shown that the proposal
outperforms classical AMC in terms of throughput while
fulfilling a target BLER.

A recent approach is the application of reinforcement
learning for LA. This approach has been rigorously modeled
as a multi-armed bandit (MAB) problem in [26], where each
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candidate MCS is encoded as a discrete arm of a multi-
armed bandit. The MABmodel is optimized using an statisti-
cal technique named upper confidence bound (UCB). With
this scheme, the modeling complexity scales linearly with
the number of candidate MCSs. As a result, the model is
resource-intensive and inefficient to train in real time.

A novel work in this area is presented in [27], where
the reinforcement learning algorithm for LA is based in
latent Thompson sampling to overcome the limitations of
[26]. The proposed algorithm adopts a probabilistic model
of the channel SINR whose parameters are learned from
the ACK/NACK feedback related to previous transmissions.
Thanks to the use of latent Thompson sampling the algorithm
is able to quickly estimate the channel state from only a few
ACK/NACKs.

Nevertheless, the reinforcement learning approaches for
LA that are proposed in [26] and [27] do not consider a target
BLER. Instead, theymaximize the SE of correctly transmitted
bits per second and hertz. This is in sharp contrast with 4G
and 5G cellular networks where a maximum permissible (i.e.,
target) BLER of the first transmission attempt is defined. This
is of paramount importance because the target BLER is a key
metric that has to be guaranteed by PHY and MAC layers
for different services, e.g., eMMB services require a target
BLER of 10−1 whereas URLLC require 10−5. In addition,
the BLER has a strong impact on the delay, since a higher
BLER involves a higher delay due to the additional transmis-
sion attempts carried out by HARQ protocol until successful
transmission.

Despite of the potential of ML techniques to improve the
performance of LA in 5G and beyond networks, there are
a number of challenges and open issues that need to be
addressed. The main challenges are summarized as follows:
Black box nature: A major drawback of some ML algo-

rithms, e.g., DNN, is their black box nature. This means that
theML algorithm is treated as a black box that is trained using
a data set, and provide some desired outputs based on the
inputs. Nevertheless, we do not have a deep comprehension
about the behavior of the trained model, since we do not
know the reasons behind the decisions taken by the algorithm.
This makes difficult to tackle failures of the algorithm or to
predict the impact of changes on the environment in terms of
performance. Since LA on 5G aims at supporting a plethora
of different scenarios on different kind of networks, this issue
represents an on-going research challenge that needs to be
solved [28].
Availability of training data: Standardized and labeled

data sets for testing, validation and comparison of devel-
oped ML algorithms are extensively used in fields such as
speech processing, computer vision or health-care applica-
tions. Nevertheless, there are not standardized data sets for
wireless applications and operators and vendors have pre-
ferred traditionally to keep their data sets confidentially [29].
It is expected that this situation will change in the future as
ML techniques gain relevance for future wireless communi-
cation networks. Since the performance of LA highly depends

on the UE receiver capabilities and impairments, the required
standardized date set would be huge, covering differ-
ent UE implementations, interference patterns and channel
scenarios.
Limited computational and memory resources: The great

performance improvements that offer data-driven ML tech-
niques require powerful computing capabilities and huge
storage capabilities that are not possible with UE devices
limited by computation, memory, and energy resources [28].
To overcome these limitations, cloud or edge processing is
proposed as a promising solution where all the data col-
lected by the devices is transferred to central unit to be
processed. Nevertheless, this approach uses the wireless com-
munication medium, which is always an scarce resource, and
thus the data should be transmitted through a limited feed-
back channel. This is a paramount issue since the overhead
needed to perform the training should be kept as small as
possible, otherwise, the performance improvement of ML
techniques might be counteracted by the additional data
exchange. The fact that LA on 5G is a closed loop scheme
where the BSs already acquire CSI information from the
CSI reports for the DL and from the reference signals, e.g.,
SRS, for the UL, makes it suitable for a data-driven training
at the edge. This is because the training can be based on
the existing data exchange that is part of the LA scheme
on 5G.
Privacy and security: The exchange of information that is

needed for cloud or edge processing or even for decentral-
ized training poses important issues with respect to privacy
and security. This transfer of information increases the risk
of launching inference attacks that aim to infer sensitive
information from the users’ training data. ML approaches
should ensure that this sensitive information is safe and
confidential. Federated learning might be a potential solu-
tion for this issue since the training is done locally at each
node, and then it is combined at the cloud. This involves
that no raw data is exchanged, which increases privacy and
security.
Standardization and interoperability: A key factor in the

commercial success of wireless communications is the inter-
operability between modules of different vendors, since this
increases the competition and thus reduces the cost. This
interoperability is especially relevant and challenging when
ML techniques are applied to wireless networks. Here, any
inconsistency betweenML learningmodules of different ven-
dors can severely degrade the network performance [30].
Standardizing the interfaces between different modules is a
key enabler for the application of ML techniques to wireless
communications since it guarantees interoperability [20].
In this context, there is an initiative named open radio access
network (O-RAN), that aims at standardizing most of the
interfaces that have been kept as internal (i.e., vendor spe-
cific) in current 5G standard. O-RAN defines a RAN intel-
ligent controller (RIC) for both real-time and non-real-time
protocol stacks to ease interoperability between ML modules
of different vendors [30].
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FIGURE 2. Block diagram of AMC based on logistic regression ML.

C. SUPERVISED LEARNING BASED ON LOGISTIC
REGRESSION FOR AMC
As pointed out in our previous work [31], OLLA may not
work properly in 5G scenarios when considering scalable
numerology or distinct BLER targets per service, besides
non-convergence for optimum fading region design. In fact,
we showed that OLLA converges in average to a sub-optimal
solution, concluding that novel flexible link adaptation imple-
mentation techniques for 5G based on machine learning are
required.

In this section, a supervised learning framework based on
LR for AMC is presented and comparedwith OLLA.We have
focused on AMC to show the potential of the application of
ML techniques to LA, since the MCS is one of the domains
with higher impact on the BLER and throughput, which are
key metric in wireless communications. For this reason AMC
has received much attention in academia and industry to
perform LA. Nevertheless, a real LA implementation for 5G
must consider the other domains, and here ML techniques
can be of great help, as justified in previous sections. We
have selected supervised learning because AMC in 5G offers
labeled data automatically that can be efficiently used to
train the model. The BLER for a given MCS and transport
block (TB) size depends on the UE implementation and on
the channel state, which can be understood as the SINR per
sub-carrier and symbol. The ACK/NACK feedback that the
UE sends after PDSCH reception represents the labels of the
data, which are the usedMCS, TB size and channel state. The
usedMCS and TB size are known by the UE and the network,
whereas the channel state is estimated on the UE side, and
later processed and sent via a limited feedback channel to the
BS in the form of a CSI/CQI report.

Our AMC scheme is illustrated in Fig. 2, where two differ-
ent phases are described. Those blocks and metrics related to
the training phase are drawn in green whereas the elements
associated with the execution phase are marked in orange.

Blue color is reserved to those elements related to both
phases.

First, a vector of SINRs per resource block group in the
frequency domain is measured by a given user. Extending our
previous conference work [32], we have selected as features:
the average SINR, γ , the variance, σ , the MCS index and
the number of physical resource blocks (PRBs) related to
a TB transmission. We keep as low as possible the num-
ber of features since an extensive dimension of the feature
space leads to a much higher number of training samples for
correct decision-making [22]. Additionally, it requires more
information exchange. We estimate the SINR from realistic
measurements since the performance of the LA considerably
decreases when more realistic scenarios are considered [33],
[34]. The mismatch between the actual (i.e., perfect) SINR,
and the estimated SINR causes a degradation in terms of
performance since the decision about the selected MCS is
contaminated by the estimation error. Moreover, contrary
to [32], we present results after training and execution of
algorithms carried out with limited information. The impact
of quantifying the information used for training is a key issue
to perform an accurate evaluation of the framework, taking
into account that the training can be carried out on the network
side.

In this respect, machine training can be carried out on a real
live underlay network or over a sandbox so that their effects
on the network can be evaluated but preventing that the ML
application affects the network [35]. The sandbox might be a
real network but also emulated with the help of testing tools
or simulated by software. We have considered that the model
training is always carried out on the network side (mobile
edge computing (MEC) or cloud) to relieve the UE to do such
a complex task, although other possibilities, such as federated
learning might be also considered.

The CQI selection looks for the higher MCS that leads
to a BLER below the target. It is achieved using the BLER
prediction based on LR. There are other approaches (like
SVM) that might have followed, although we have chosen
an LR model as it has reduced complexity [36], [37] and it
is well known to work correctly for any physical scenario it
was trained [38]. Besides of this, LR performs regression of
the data to a sigmoid function, which is especially appealing
to model S-shaped functions such as the BLER versus SINR
curve associated to wireless communications systems [38].
In the present work, the model uses the mean and variance
of the SINR, the index of the MCS and the number of PRBs.
Hence, the BLER predicted at the UE side requires the fol-
lowing computation

iBL̂ER(9) =
1

1+ exp
(
−

nf∑
k=1

αk9k

) (1)

where iBL̂ER represents the predicted instantaneous BLER
according to a feature vector 9 = [γ, σ, iMCS, nPRB], with
nf = 4 and being 9k its k-th element. Here, iMCS repre-
sents the MCS index, whereas nPRB represents the number of
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PRBs. The vector α = [α1, . . . αnf ] represents the parameters
of the model that are obtained as a result of the training
performed at the MEC. Once these parameters are computed,
they are transmitted to the intended UEs to be used in BLER
prediction. It should be noticed that it is being used full
precision for themean and variance of the SINR in prediction.
This is due to the fact that the prediction is made at the
UE side as it is a non-complex task. The training, however,
is computationally more complex and thus the features are
quantized and sent through a limited feedback channel to
perform the learning process at the MEC.

According to the above formula, the computational com-
plexity is limited since it involves 4 summations, 4 multi-
plications, one inversion and one exponential. To select a
given MSC to perform LA, the UE checks the higher MCS
index whose predicted BLER is smaller than the target BLER
of 10−1. Since there are 28 MCS indexes, in the worst
case, the BLER prediction given by the above expression
is preformed 28 times for a given CQI report. The overall
overhead in terms of the information exchange needed to
perform the training at the MEC is 5 bits per data sam-
ple: 4 bits are required for the quantized mean and vari-
ance; and 1 for the ACK/NACK that represents the label of
the data.

The collector brings together data sets from different users
as far as they can be considered as equivalent: the perfor-
mance is highly dependent on the actual implementation (e.g.,
on the decoding algorithm), which is improved as manufac-
turers design new phones). Different BLER models can be
developed per constellation, coding rate, TB size, etc., but
we have obtained a single regression model by adding the
MCS and number of allocated PRB as features. As MCS and
number of PRBs are known at the network side, only mean
and variance metrics are quantized (γq, σq) and sent to the
BS via a limited feedback channel together with the related
hybrid automatic repeat request (HARQ) report, i.e., ACK or
NACK.Minor modifications on the 5GNR specs are required
since sending these metrics with a related HARQ report is
not allowed. Performing the training on the UE side would
be compliant with the 5G NR specifications; nevertheless,
this would involve higher computational capabilities at the
terminal side.

Once the model is trained, the network machine learning
function orchestrator (MLFO) is in charge of selecting which
ML intent to apply and placing and chaining the nodes to
form the ML pipeline. For example, our BLER prediction
model might be instantiated at the UE but also at MEC,
which brings the high computational capabilities of the cloud,
without increasing the latency nor network traffic. In the last
case, feature values should be quantized in order to be sent to
the MEC by the UE, while full precision values of γ and σ
might be used if the prediction is carried out at the device. The
prediction of the model is distributed to those nodes for which
it is of interest. In our example, the CQI function selects
the highest MCS that fulfills the target BLER for the grant
allocation.

In the training phase, the transmitted TBs might carry real
data; yet fulfilling the target BLER is not guaranteed at this
stage because the model is not trained. Nevertheless, once the
execution phase starts the target BLER is guaranteed and the
throughput is maximized. During this phase LA behaves as a
real-time function of the PHY & MAC protocol stack.

The proposed scheme of Fig. 2 has been simulated based
on the 5G NR standard under realistic channel conditions.
To this end, an ad-hoc simulator has been developed by
the authors. The simulator is written in MATLAB and uses
the 5G and the Statistics and Machine Learning toolboxes.
The simulator implements the physical and transport channel
processing of the PDSCH channel according to [39], [40]
and [5]. This includes among other features the transport
block size determination, rate matching, CRC attachment,
low density parity check (LDPC) encoding and decoding,
coded block segmentation and concatenation and the OFDM
modulation and demodulation following the frame and grid
structure of the 5G NR standard. The channel estimation is
based on the demodulation reference signal (DMRS) and the
channel estimates are used to perform minimummean square
error (MMSE) equalization. The implementation is limited
to a single carrier with a single BWP. The PDCCH channel
has not been implemented, and thus it is assumed that the
UE is aware of the PDSCH resource allocations. A TDL-
A channel model at 3.35 GHz has been considered, with a
maximum Doppler frequency of 50 Hz. A SCS of 30 kHz is
used and the channel estimation uses a DMRS configuration
involving 3 single symbol DMRSs. The PDSCH allocations
consist of 12 symbols with 6 PRBs. A maximum of 4 bits has
been assumed to quantize γ and σ . We have considered two
options to quantify the bits used for training: i) 3 bits for γ
and 1 bit for σ ; and ii) all 4 bits for γ (σ is not used).
CSI signals have not been implemented in this simulator,

but the SINR values are obtained through a realistic esti-
mation based on DMRS signals. Such an estimation under-
goes estimation errors and impairments due to the time and
frequency selectivity of the channel and the additive noise.
The time selectivity might cause ICI whereas the frequency
selectivity involves that the SINR is different for different
sub-carriers. The estimation of the SINR is performed at
two stages. Firstly, it is estimated the noise plus interference
power, Neq, as follows [32]

Neq =
1
N

N−1∑
n=0

∣∣∣yn − ĥnxn∣∣∣2 (2)

where N is the number of sub-carriers with DMRS pilots
within the PDSCH allocation in a given slot. yn stands for
the complex IQ received symbol after synchronization, cyclic
prefix extraction and the fast Fourier transform (FFT) for the
n-th sub-carrier. xn represents the transmitted DMRS pilot
(i.e., DMRS IQ complex symbol) at the n-th sub-carrier,
whose power is S = E[|xn|2], and ĥn is the estimated complex
channel gain at the n-th sub-carrier, which is also subject to
estimation errors. Afterwards, the SINR at sub-carrier n-th,
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FIGURE 3. Average SE for OLLA and LR approaches with 4 available bits
to feedback the features γq and σq.

FIGURE 4. Percentage of time of having an instantaneous BLER smaller
than the target BLER, 0.1, for OLLA and LR.

γn, is estimated as follows

γn =
S
Neq

∣∣∣ĥn∣∣∣2 (3)

The vector of estimated SINR values for theN sub-carriers
with DMRS pilots in the whole PDSCH allocation is used to
compute the mean and variance of the SINR, which are the
main features

γ =
1
N

N∑
n=1

γn; σ
2
=

1
N

N∑
n=1

(γn − γ )2. (4)

Nevertheless, as mentioned, due to the use of a limited
feedback channel, those metrics are quantized to get the final
features used for the training on the MEC (γq, σq).

Fig. 3, 4 and 5 illustrate a comparison between our pro-
posed AMC based on LR and OLLA algorithm in terms
of spectral efficiency (SE) and BLER. The average spectral
efficiency, E[SE], in Fig. 3 has been computed as the average

FIGURE 5. Average BLER for OLLA and LR schemes.

number of bits per second per hertz (bps/Hz) successfully
transmitted according to the selected MCS. Such metric has
been computed via Monte Carlo simulation, and it can be
expressed as follows

E[SE] =
1
nslot

nslot∑
islot=0

SEislot · ACKislot (5)

where nslot represents the number of slots to be simulated,
SEislot represents the spectral efficiency associated with the
MCS selected for the TB transmission in the islot -th slot.
ACKislot is an indicator function that is equal to 1 if the TB
transmitted in the islot -th slot is decoded correctly, whereas
it is equal to 0 otherwise. The MCS values are according to
table 5.1.3.1-1 of [5] and thus they range from MCS index
0, which has an SE of 0.2344 bps/Hz, up to MCS index 28,
whose SE is 5.5547 bps/Hz. OLLA algorithm considers an
SINR offset that is adjusted with each reception based on the
decoding results, i.e., ACK or NACK. This offset is added to
the estimated effective SINR. Hence, it aims at improving the
stored SINR thresholds of conventional AMC to the current
channel statistics and receiver impairments. Despite their
differences, it can be argued that OLLA follows a similar
approach to reinforcement learning in the sense that the state,
i.e., the offset, is modified based on the rewards given by
the environment, i.e., ACK or NACK. However, since the
offset is adjusted based on TB reception, this algorithm is not
suitable for low traffic demands or high user mobility since
the convergence speed of the offset might not be fast enough
to adapt to rapid channel fluctuations. In addition, URLLC
services with target BLER of 10−5 are not appropriate for
OLLA, which would need too long time to converge. The
simulation considers full buffer traffic, which is the case
where OLLA behaves better, since each time slot can be used
to update the SINR offset. HARQ retransmissions are not
considered and thus the BLER results represents the error rate
of the first transmission attempt.
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Fig. 3 shows that the proposed LR leads to a similar average
SE to OLLA even with full buffer traffic. In addition, results
show that the difference in terms of average SE between the
two options to quantize the features for LR is negligible.

Nevertheless, as it is observed from Fig. 4, the percentage
of time that the target BLER is fulfilled is superior in the
case of LR. This means that LR predicts the BLER better
than OLLA, thus providing a smaller instantaneous BLER
while offering the same average SE. The instantaneous BLER
represents the error rate that can be expected at a given time
slot, and thus it is a time-varying metric. Hence, Fig. 4 repre-
sents the percentage of time that the instantaneous BLER is
below the target BLER. In real systems, it is important keep
the percentage of time that the target BLER is fulfilled as high
as possible since the instantaneous BLER has a strong impact
on the QoS experienced by the users. Even in a scenario
where the target BLER is fulfilled in average terms, if the
target BLER is not fulfilled at some time instants, the users
will experience time periods with high packet losses. Besides,
if the instantaneous BLER increases at some time instants,
the packet delay will be also increased since a higher number
of retransmissions will be required.

Among the two options considered for LR, the quantization
scheme that includes the variance of the SINR, σq, with just
1 bit achieves a higher percentage of time fulfilling the target
BLER that the other option with 4 bits for the mean. This
justifies that the variance of the SINR has a valuable infor-
mation for BLER prediction, and thus it is more beneficial to
allocate 1 bit to include the variance, σq, rather than using that
bit to increase the precision of the mean (without including
the variance).

As it can be observed from Fig. 4, this target BLER is
not fulfilled in all the transmissions because of the outdated
CSI, since the prediction is made at some time slot, but used
later. Yet, it is important to remark that the average BLER is
smaller than the target BLER for the 3 considered approaches
as shown in Fig. 5. As it can be observed, OLLA achieves an
average BLER quite close to the target BLER of 0.1, which
is expected since OLLA aims at fulfilling the target BLER
in averaged terms. Nevertheless, as illustrated in Fig. 4 the
percentage of time that OLLA fulfills the target BLER is
quite small, which has implications on the QoS experienced
by the users and others metrics like packet delay. The LR
schemes on the other hand leads to a smaller average BLER
than OLLA, and the scheme with 1 bit for the variance leads
to a smaller average BLER than the scheme with 4 bits
for the mean. Nevertheless, having a smaller average BLER
than OLLA does not involve that the average SE of LR
approaches is smaller than the one obtained with OLLA as
it was confirmed with Fig. 3. This demonstrates that the
proposed scheme brings benefits in terms of BLER without
any penalty on the SE.

V. CONCLUSION
In this paper, the main aspects of the multi-domain link
adaptation in 5G NR have been presented, emphasizing the

signaling aspects and differences regarding previous stan-
dards. Then, the main challenges of this multi-domain LA on
the diverse set of scenarios envisioned for 5G are presented.
ML algorithms are introduced, followed by a small overview
of latest advances on ML frameworks for link adaptation.
Finally, a scheme of supervised learning based on logistic
regression is presented. With this scheme, the training is
performed at the network side to relieve the UE to do such a
complex task. Numerical results show that our ML approach
outperforms OLLA in terms of instantaneous BLER, while
reaching the same average SE. Interestingly, it has been
shown that the proposed scheme only requires 4 bits to
represent the features used to train the model, which makes
it suitable for implementation in real systems with limited
feedback.
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