
Received July 20, 2021, accepted August 17, 2021, date of publication September 10, 2021, date of current version September 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3111753

Variable Selection and Modeling of Drivers’
Decision in Overtaking Behavior Based on
Logistic Regression Model With
Gazing Information
JUDE C. NWADIUTO 1, SOICHI YOSHINO2, HIROYUKI OKUDA 1, (Member, IEEE),
AND TATSUYA SUZUKI 1, (Member, IEEE)
1Department of Mechanical Systems Engineering, Nagoya University, Nagoya 464-8601, Japan
2Toyota Research Institute-Advanced Development, Tokyo 103-0022, Japan

Corresponding author: Jude C. Nwadiuto (nwadiuto.jude.chibuike@b.mbox.nagoya-u.ac.jp)

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Ethical Committee of Graduate School of Engineering, Nagoya University under Application No. 18-6, and
performed in line with the Declaration of Helsinki.

ABSTRACT This paper investigates the decision-making characteristics of the driver in the overtaking
on the highway road. For the research purpose, a novel method was proposed by introducing a logistic
regression model accompanied by the statistical test technique, which does not require prior knowledge
about the explanatory variables. This study hypothesizes that the driver’s gazing behavior is crucial for
the decision-making process in driving and hence, the line-of-sight information was introduced to estimate
driver’s gazing behavior in the model of driver’s decision specifically for reproducing the overtaking driving
behavior accurately. Consequently, the proposed model realized a high describability on the decision of the
driver when performing the overtaking driving task, which is one of the significant advancements of the
present study with respect to the past similar studies. This study integrates the perspectives of intelligent
vehicle design and cognitive science by revealing which factor the driver pays attention to in a changeable
driving environment due to various observable factors. In experiments based on the driving simulator with
six human subjects, the overtaking behavior was successfully estimated by specifying a set of variables
to reconstruct the driver’s behavior and then the proposed model provided a minimum set of necessary
variables accompanied with key coefficients. In conclusion, the proposed approach based on a simple logistic
regressionmodel demonstrated driving behaviors with an accurate estimation of the driver’s intentionwithout
the need for prior knowledge, and it may contribute to higher describability for various driving actions in a
dynamic environment.

INDEX TERMS Overtaking behavior, decision-making, logistic regression, model selection, statistical test,
gazing behavior, line-of-sight information.

I. INTRODUCTION
The automotive industry is currently experiencing signifi-
cant advances in autonomous driving and advanced driving
assistance systems (ADAS) [1]. Autonomous driving have
not only advanced from a technological point of view but
also from a regulatory point of view [2]. These advances
have been spurred on by corresponding advances in sensor
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technology [3]. The fusion of sensors such as LiDAR (Light
Detection and Ranging), radar, camera, ultrasonic, GPS
(Global Positioning System), and IMU (Inertial Navigation
System) have made automated driving possible. According
to the US Society of Automotive Engineers, there are six
levels of automation in autonomous driving [4]. To the best
of our knowledge, as of 2019, level 3 automation has been
the maximum level of automation of commercially avail-
able vehicles. However, in places like the US, Netherlands,
Germany, and the UK, testing of level 6 (full) automation
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is allowed under certain conditions. The emergence of open-
source driving simulators that support flexible specification
of sensor suites and environmental conditions such as the
CARLA Simulator [5], and LGSVL Simulator [6] have also
contributed to the rapid development of autonomous driving.
These simulators give full control of the traffic actors, thus
making it possible for researchers to easily simulate different
traffic scenarios for testing automated solutions.

Based on these advances, the next step in the autonomous
driving technology will be the mixed autonomous driving
(i.e., a mixture of human-driven vehicles and automated vehi-
cles), as well as how to reflect personalized driver charac-
teristics and preferences in automated vehicles. Automated
vehicles and ADAS need to understand and predict the cog-
nitive and behavioral aspects of the human driver especially
for complex driving tasks. This means that driving behavior
for the complex driving task must be carefully analyzed and
modeled. In other words, developing driver models for the
difficult driving tasks, such as overtaking driving maneuver,
that are mathematically rigorous enough, and are capable
of expressing the dynamical characteristics of the driving
behavior will be the key to meeting this advancement.

From the viewpoint of control technology, numerous ideas
have been proposed to model the human driving behavior
[8]–[16]. In those works, to analyze the driving behavior,
the idea of regarding the driver as a sort of controller in com-
bination with linear control theory was adopted. However,
a linear controller could be limited in the cases that the
driver incorporates not only simple reflexive motion but also
decision-making in operating the car. Therefore, it is nec-
essary to introduce a new viewpoint, and a possible and
plausible factor to improve is the segmentation and the sym-
bolization of driving behavior by focusing on the concept of
‘chunk.’ This key idea gives the high-level understanding of
the human driving behavior. Examples of chunks considering
driving behavior are, ‘following the leading car,’ ‘overtaking,’
‘turning right,’ ‘changing the lane,’ ‘negotiating with vehicles
on other lanes,’ and ‘stopping at the traffic signal’. Many
studies have tried to construct a symbolicmodel of the driving
behavior from this point of view by segmenting the observed
driving data [17]–[20], [22]–[27]. In [17] a consolidated
fuzzy clustering technique was used to classify real-road car-
following driving data into different driving regimes. Refer-
ence [18] proposed a unified car-following model to simulate
different driving scenarios including traffic at intersections
and [19] applied Hidden Markov Model (HMM) to recognise
and generate driving patterns based on imitation learning of
time series driving data. In [20], driving data was segmented
into meaningful chunks of driving scenes using double articu-
lation analyzer and [23] proposed clustering of car-following
behavior into segments based on state-action variables. The
approach used [23] for mode segmentation is similar to the
idea used in this study where the physical meaning of each
mode is defined based on some state-action variables.

The typical approach to segment the data is to use the
data clustering technique, such as the HMM and its extension

methods [18]–[21]. In [21] the expectation-maximization
algorithm was used to identify a stochastic switched autore-
gressive exogenous (SS-ARX) model for the human driving
behavior. In the studies introduced so far, methods for auto-
matic segmentation of data were mostly emphasized, while
the interpretation of the state (mode) transition (switching
mechanism) did not attract much attention as an important
point.

Another approach to segmentation is to apply the hybrid
dynamical system (HDS) model to driving data [24], [25].
In these works, themode switching condition could be explic-
itly extracted from the observed data as the driver’s decision
making. In addition, the physical meaning of each mode
could be revealed as the primitive motion model of that mode.
Thus, the HDS model leads to the explicit understanding of
the driver’s decision making together with the driver’s motion
control.

Recent works have demonstrated the capabilities of the
mode segmentation technique for analyzing and modeling
the human driving behavior [24], [28]–[32]. A piecewise
autoregressive exogenous (PWARX) model was applied in
[24], [28]–[31] to model and understand driving behavior,
whereas, Okuda et al. [32] demonstrated the efficacy of a
probability-weighted ARX (PrARX) model in modeling and
analyzing driving behavior.

Such modeling techniques have suggested an importance
on paying attention to the information processing mecha-
nism when making a decision by the human driver. In prin-
ciple, various input variables can be considered to explain
the decision making process, and therefore the selection of
the proper set of input variables is crucial for designing an
appropriate driver model. To achieve high accuracy in model
estimation, one option is to use all the explanatory vari-
ables from one mode to another. However, this has a risk of
increasing the number of parameters extensively. On the other
hand, a radical simplification of explanatory variables harms
the flexibility of the model, as well as model performance.
Since the simplification of the model has a large benefit for
the reduction of computational costs and facilitation towards
online application, the treatment of explanatory variables is a
trade-off issue and requires a careful consideration when used
for switching from one mode to another.

Based on this background, the authors have proposed a
new approach to model the mode switching condition in
the driving behavior without any prior knowledge about the
selection of the input variables in [33]. According to the
result by Okuda et al. [33], a logistic regression model was
successfully demonstrated to reproduce the mode switching
in driving behaviors. The logistic regression model can rep-
resent a relationship between the continuous/discrete input
variables and the binary output variable. The mode switching
event is expressed as the binary output variable, and the prob-
ability of the occurrence is modeled by the logistic function
with the input (explanatory) variables. This mathematical
feature of the model fits well with the driver’s decision mak-
ing characteristics in a sense of having binary output with
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FIGURE 1. Modeling strategy proposed in this paper.

probabilistic uncertainty. In this sense, such a statistical
methodology for model selection is valid if the selection of
the input variables based on the statistical testing is done
properly.

Their results also revealed that the model selection with
a proper set of input variables might be incomplete without
the driver’s gazing behavior and its timing when making
a decision. Therefore, the new problem must be addressed
as how the driver’s gazing behavior can be included in the
model. In order to consider the driver’s gazing behavior,
this paper proposes an extended modeling strategy of [33]
as shown in Fig.1, which consist of the system identifica-
tion process and evaluation of the identified model, where
the line-of-sight information for estimating driver’s gazing
behavior is included in the modeling of driver’s decision
in the overtaking driving behavior. In order to include the
gazing behavior information, the variable selection procedure
was required to be reformulated formally and verified in
experiments with human subjects. To validate the proposed
model from a viewpoint of how well it demonstrates higher
describability, the overtaking driving behavior was selected
for the verification of the model in the sense of how much
driver’s decision was properly estimated. The combination
of methods presented in this study is suitable for multi-
disciplinary applications such as intelligent vehicle design,
cognitive science, and statistical analysis.

The rest of this paper is summarised as follows. Section II
introduces and discusses the proposed method of this study,
the experimental setup and the type of driving data collected
were discussed in Section III. Application of the proposed
model to overtaking driving data is carried out in Section IV,
and Section V presents the results. The verification of the
proposed model is performed in Section VI, Section VII
discussed some useful applications of the method proposed
method in this study. Finally, Section VIII concludes this
paper in light of the results and also discusses the limitations

of the present study as well as highlighting what could be
improved in the future.

II. METHODOLOGY
A. LOGISTIC REGRESSION MODEL
Many methods exist to express the human decision, which
can be applied to the human driving behavior. These meth-
ods include but not limited to, Linear Discriminant Analysis
(LDA), Support Vector Machine (SVM) [25], [36], Fuzzy
Logic (FL) [22], [34], [35], and Artificial Neural Network
(ANN) [37], [38]. In this paper, the Logistic Regression
Model (LRM) [39] is used to mathematically express the
driver’s decision in switching from one mode to another.
Logistic regression is themost suitable approach [40] because
the identified model coefficients can be used to judge the
impact of each explanatory variable which fits the goal of this
paper. In addition, using LRM not only provides a measure
of how appropriate a predictor (coefficient size) is, but also
its direction of association, thereby, making it suitable for
analysing the results of statistical variable selection adopted
in this study. The LRM is used as a probabilistic statisti-
cal classification model to express the relationship between
binary dependent variables, also known as the output vari-
ables, and the explanatory variables, also known as the input
variables. In other words, the output variables are expressed
as a function of input variables. This function is referred to as
the ‘logistic function’, and

p(y = y(k)|x = x(k)) =
exp(β0 + βx(k))

1+ exp(β0 + βx(k))
, (1)

is used to compute the posterior probability, p(y = y(k)|
x = x(k)). Here, β0 and β(= {β1, β2, . . . , βn}) represents
the parameters of the LRMwhereas, x(k) and y(k) are the kth
sample of the input variable x and binary or output variables
y respectively, where the binary variable y can take the value
0 or 1. k ∈ 1, 2, . . . ,K indexes the measurement.
If the variable ‘‘y(k)’’ is set to 0 for the data points observed

prior to switching, and to 1 for the data points observed after
switching, the condition for mode switching can be expressed
as a LRM. The switching can then be expected to happen
in the LRM model when the calculated output probability
is greater than 0.5. Furthermore, the estimated parameters β
specifies the correlation, put in another way, how sensitive the
condition is for the corresponding input variables.

Given that the likelihood function for the LRM is

L(β0, β) =
k∏
i=1

p(x(k))y(k)(1− p(x(k)))1−y(k), (2)

for the estimation of the parameters β0 and β, the log-
likelihood L_log(β0, β),

log{L(β0, β)} =
k∑
i=1

− log 1+ eβ0+x(k)·β

+

k∑
i=1

y(k)(β0 + x(k) · β) (3)

is maximized using a Newton-Raphson method.

127674 VOLUME 9, 2021



J. C. Nwadiuto et al.: Variable Selection and Modeling of Drivers’ Decision in Overtaking Behavior

The advantages of using the Newton-Raphson method are
fast convergence to the local minimum [41], and the easiness
to obtain theHessianmatrix, which can be calculated from the
square of the standard errors of the coefficients. Furthermore,
the Wald test, which is used in this paper, requires the Fisher
information matrix of the estimated parameters, which is in
fact the Hessian matrix around the maximum likelihood esti-
mation(MLE), and thus is readily available for the variable
selection without additional computation cost.

B. SELECTION OF INPUT VARIABLES
A critical but necessary problem usually faced when con-
structing a good regression model is selecting the appropriate
input variables x. Various methods exist for variable selection
in LRM. These methods are based on information criteria,
penalized likelihood, the change-in-estimate criterion, back-
ground knowledge, or combinations of the above mentioned
methods [43]. However, the combination of a Wald test and
bidirectional eliminationmethod is implemented in this work.
This methodwas chosen because computational cost could be
reduced since the Fisher information matrix obtained from
the LRM maximization using Newton-Raphson is available
and need not to be recalculated. By using this method online
application could be facilitated. In principle any method for
statistical variable selection could be used.

Bidirectional elimination method tests for variables to be
selected or removed using iteration by combining forward
selection and backward elimination. Given as follows is a
short description of the Bidirectional elimination flow used
in this paper.

1) FIRST STEP: INITIALIZATION
Initialize i an iteration step as 0. In this case, at first, the LRM
M0 is made only with a constant term (i.e. without any
input variables), where only β0 is the parameter of the model.
The remaining set of candidate input variables are denoted
by X i for the ith iteration. X1

= {x1, x2, . . . , xn} in the
first iteration, with n being the number of candidate input
variables. Next, proceed to second step.

2) SECOND STEP: VARIABLE ADDITION
In this second step, the iteration step i is incremented. Check
if X i is an empty set, which means there is no more variables
to be added, then proceed to third step. Otherwise, select the
variable xs from X i with the most significance in this fashion.
Compute a new model Mk

j where xj ∈ {X i} is added to the
current modelMi−1, and compare the index

χ2
β ij
=

(β ij)
2

Var(β ij )
≈

(β ij)
2

H−1(β ij )
. (4)

In this case, β is is the coefficients for xs inMk
j estimated by

MLE. The Wald statistic, χ2
β is
, is the ratio of the square of the

regression coefficient to the square of the standard error of
the coefficient.H, which is the computed Fisher information
matrix corresponds to the Hessianmatrix of the log likelihood

FIGURE 2. Driving simulator used for experiment.

around the MLE. The Wald statistic is commonly known
to be asymptotically distributed as a χ2 distribution. Hence,
by setting a suitable threshold α, it can be used as an index
to test if an input variable is statistically significant or not by
using the condition χ2

β is
> α. It should be noted that in this

paper, α was set to a value of 100 based on trial and error. The
variable xs which maximizes χ2

β ij
in Mi

j, (j = 1, 2, . . . , n) is

accepted as one of the input variables of the model. If the
condition, χ2

β is
> α, is satisfied, Mi

s is accepted as Mi and
the current model updated. Finally,

X i = X i−1\xs (5)

is used to update the set of candidate input variables. It should
be noted that the ‘\’ here represents a set subtraction. After-
wards, proceed to the third step, otherwise, no variable is
accepted, hence, terminate the procedure.

3) THIRD STEP: VARIABLE ELIMINATION
Here, the iteration step i is incremented again. If the current
model Mi−1 does not have any input variable, go back to
the second step. Else, test all the input variables in the current
model to verify that there is no variable without significance
in the model. To do this, for each input variable xj of the
modelMi−1, calculate the Wald statistics χ2

β ij
. Find the input

variable that has the minimal value of Wald statistics χ2
β is

in

all χ2
β ij
. If χ2

β is
> α is satisfied, proceed to the second step,

else, remove xs from the set of parameters of the model,
and add it back to the set of candidate input variables X i as
follows:

X i = X i−1 ∪ xs (6)

Then repeat the third step.

III. EXPERIMENT SETUP
A. TARGET TASK AND DEFINITION OF
SURROUNDING CARS
This paper focuses on analysing the overtaking driving
behavior on an infinite straight expressway with two lanes.
The driving experiment was carried out on a virtual driving
environment which was implemented in a driving simula-
tor (DS) as shown in Fig. 2. The angle of the front view of
the DS is 180 degrees. The DS has three screens with no
gaps in between, together with three mirrors, the rear mirror,
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FIGURE 3. Labels of cars and defined tasks considered in this work.

the right door mirror and the left door mirror. Additionally,
a real dashboard and HMI, such as the steering, gas/brake
pedal are installed.

The speed of the cars on the cruising lane (left-lane) ranges
between 70 [km/h] and 90 [km/h] with a distance of 175 [m]
between them.Whereas, the running speed of cars on passing
lane (right-lane) ranges between 110 [km/hr] and 130 [km/h]
at uniform random gap from 1 to 200 [m]. These cars always
keep their respective lanes, only the examinee’s car changes
its lane. During the experiment, the driver is instructed to keep
driving on the left-lane unless during the overtaking driving
maneuver.

The following describes the label of the surrounding cars
according to Fig. 3.
Car LF : Car LF is moving in front of the examinee’s car

on the left-lane.
Car LB: This is the car behind the examinee’s car on the

left-lane. The label of Car LF changes to Car LB when the
examinee’s car overtakes Car LF. This switching of labels
occurs in this experiment when the distance between the
examinee’s car and the overtaken car is 70 [m], thus, enabling
the continuity in behavior of the Car LF during the overtake
maneuver.
Car RF: Car RF is the carmoving in front of the examinee’s

car on the right-lane.
Car RB: This is the car behind the examinee’s car on the

right-lane. Unlike, the label switching from Car LF to LB,
Car RB switches immediately to Car RF after Car RB is
overtaken by the examinee’s car.

Shown in Fig. 4 is the sample profiles of the surrounding
cars. As can be seen from the Fig. 4, the label of Car RB
switches to Car LF when the Car RB passes the examinee’s
car at times A. Another switching of label takes place at
times B, when the examinee’s car attains 75 [m] ahead after
overtaking Car LF. This type of behavioral data is vital when
estimating the condition for mode switching of the primitive
driving skills.

It should be noted that the examinee is able to recognise all
four cars in the driving simulator, credit to the wide frontal
screens and the mirrors.

B. GAZE INFORMATION
In addition to the surrounding car’s information described
in section III-A, this research utilizes also, the driver’s line-
of-sight in analysing the overtaking driving behavior. The
driver’s line-of-sight is expected to estimate the driver’s
gazing behavior, therefore, the hypothesis follows that,

FIGURE 4. Sample profiles of driving data with switching of labels.

FIGURE 5. The definition of gaze clusters used for the driving experiment.

by including this type of information in the analysis, driver’s
decision can be more clearly identified. For convenience,
the various information obtained as a result of line-of-sight
measurement will be referred to as ‘‘gaze information’’. The
gaze information data is measured using FaceLab and the
feature quantity group. The gaze information here consists
of the x and y coordinates of intersection of the line-of-sight
and the screen on which the image of the driving simulator
is projected, as well as, line-of-sight cluster which is a value
derived based on the line-of-sight information by dividing the
screen of the driving simulator based on x and y coordinates
into four areas as in Fig. 5. Cluster1 shows the front of the
driver, Cluster2 shows the left side including the left mirror,
Cluster3 corresponds to the area when the driver visually
recognizes the rear view mirror, and Cluster4 shows the right
side including the right mirror. The coordinates of the screen
are (0, 0) at the center of the front screen of the driving
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FIGURE 6. The clusters used for the gaze information measurement.

TABLE 1. Profile of experiment participants.

simulator, with the x coordinate in the horizontal direction
and the y coordinate in the vertical direction.

Fig. 6 shows the color coded distribution of the line-of-
sight data obtained from the FaceLab during the experiment.
For the moving distance of the line-of-sight, the visual recog-
nition time of each line-of-sight cluster, and the saccade
movement time, the cumulative value for the past 3 seconds
from that time is used.

C. EXPERIMENTAL PROCEDURE
Total of six drivers with informed consent took part in the
driving experiment on the driving simulator. Practice sessions
were given to all drivers in advance to make sure that they
were skilled enough on virtual driving. The driving experi-
ment for each driver lasted for 2 days with a total of twelve
trials, divided into six trials a day, with enough rest between
trial intervals. The drivers were asked to drive on the virtual
expressway in a safe manner for 10 [min] while keeping
a speed of 100 [km/h] for each trial. Additionally, drivers
were instructed to keep driving on the left-lane except when
overtaking is necessary due to the slow car in front. On aver-
age, at least 150 overtaking behaviors in about 120 [min]
driving data for each driver was measured which gives on
average, 302,000 useful data points (samples) with a time step
of 0.02 second for each driver.

The profiles of participants that took part in this driving
experiment are given in Table 1, which shows the age range,
sex, and the driving frequency of the drivers. Finally, this
driving experiment was approved by the Nagoya Univer-
sity’s ethical committee and in compliance with the Helsinki
declaration.

IV. DEFINITION OF THE VARIABLES
A. DEFINITION OF INPUT VARIABLES
Generally, it is always complicated to decide or determine
from candidates of input variables extracted from measured
information which input variables are actually meaning-
ful. In the work presented here, first and foremost, several

variables are considered as candidates for the input variables
in order to model the decision making. Afterwards, the model
selection method presented in section II is applied in order to
accept some of candidate variables as input variables.

In this paper, two categories of information (the surround-
ing cars’ information and driver’s gaze information) are con-
sidered to model the overtaking driving behavior of a driver.
As part of the surrounding cars’ information, the following
basic physical information are considered first as the candi-
dates for the input variables:

Distance[m] DLF ,DRF ,DRB:
The longitudinal distances between examinee’s car
and surrounding cars,

relative speed[m/s] VrLF ,VrRB:
The range-rate between examinee’s car and sur-
rounding cars,

examinee’s car speed[m/s] V :
The driving speed of examinee’s car.

The frequency of measure for all the variables is 60 [Hz],
and the measured values are denoted as DLF (k) for
(k ∈ {1, . . . ,K }) where K is the number of measured data or
measured samples. Here, for simplicity, the variable DLF (k)
is represented by DLF . The variables of interest could be
measured easily on our driving simulator.

Secondly, variables relating to the ‘Risk feeling index’ of
the driver are considered as candidates for the input variables.
Numerous works have tried to quantify and propose the
risk feeling of drivers, however, in this work the following
variables were chosen as the typical cognitive information
relating to the driver’s risk feeling index:

Time to collision[s] TTC∗:
This risk evaluation index is calculated by TTCLF =
DLF/VrLF ,

time headway[s] THW∗:
THWLF = DLF/V computes this risk evaluation
index,

KdB[-] KdBLF :
KdB as a risk feeling index is the projection of
the back of the frontal car unto the retina of the
driver. Generally speaking, large values of KdB sig-
nifies high level of dangerous situation. KdB is com-
puted by KdBLF = 10 log{4.0× 107 × VrLF/DLF }.

Finally, the following variables (x21, . . . , x28) relating to
the driver’s gaze information are considered as candidates for
the input variables:

eye movement distance[m] Dgaze:
This is the distance measured from the driver’s eye
movement by observing the gaze movement on the
screen,

x coordinate on the screen [m] Xgaze:
The x coordinate on the screen of driver’s gaze,

y coordinate on the screen [m] Ygaze:
The y coordinate on the screen of driver’s gaze,
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TABLE 2. Candidates of input variables.

cluster viewing time [s] TFC ,TLC ,TRMC ,TRC :
The time taken by the driver to view front clus-
ter, left cluster, rear mirror cluster, and right cluster
respectively,

saccade movement time [m] TS :
Time taken by the driver for saccade movements.

These glance metrics were selected based on the pro-
posals of [44]–[46] for measuring driver’s gaze behavior.
Reference [44] proposed gaze-point-coordinates related met-
rics such as x and y coordinates on the screen, while
[45] and [46] proposed time related metrics (such as clus-
ter viewing time) and directional related metrics (such as
front cluster) respectively as relevant measures for eye glance
behavior. In addition, the selected surrounding cars’ infor-
mation was also based on [45] which gives a summary
of the necessary information surrounding the ego vehicle
for analysing driving behavior. All the candidates for input
variables, x(k) = {x1(k), x2(k), . . . , x28(k)}, where k ∈
{1, 2, . . . ,K }, used in this analysis are listed in Table 2.
Note that the square and the inverse of some of the above
mentioned variables are included as part of candidates for the
input variables with the intention of capturing the behavior of
these variables over time.

B. MODES DEFINITION IN THE OVERTAKING BEHAVIOR
In this analysis, the overtaking behavior is segmented into
fivemodes. The transformation or segmentation of the experi-
mental driving data is a critical task, thus, this process should
be considered deeply. There has been several techniques as

pointed out in Section I for solving this problem. Since the
main purpose of this paper is to identify the mode switching
condition after segmenting the data, manual segmentation of
the data to specify the number of modes is assumed. As such,
the modes in overtaking behavior as in Fig. 3 are defined as
follows:

mode 1: following the leading car
Approaching and following Car LF without lane
change,

mode 2: lane change
Changing driving lane to the right-lane,

mode 3: passing car
Passing car LF without lane change,

mode 4: return
Returning to the left-lane,

mode 5: free driving
Driving after returning to the left-lane until the next
leading Car LF is seen.

In this paper, mode 5 is excluded from the analysis because
it not a part of the overtaking behavior. The modes specified
above are obtained manually by considering some specific
dynamics of the of the examinee’s car as follows:

Mode 1

y > −2.0[m] (7)

Mode 2

θyaw < −0.017[rad] and θsteer > 1[deg] (8)

Mode 3

θyaw > −0.005[rad] (9)

Mode 4

θyaw > 0.017[rad] and θsteer < −1[deg] (10)

Here, y, θyaw, θsteer are the lateral position, yaw angle,
and steering angle of the examinee’s car respectively. These
conditions were set by taking into account the physical sig-
nificance of each mode. In addition, it should be noted that
these dynamics were not included as candidates for the input
variables to model the driver’s decisionmaking, but used only
to define the modes. These values of y, θyaw, θsteer used in
defining the modes were chosen after analysing the driving
experiment data, specifically, the values just before the ego
vehicle departs the left lane, the values after the vehicle
arrives at the destination (right) lane and the values just before
the car departs the right lane.

Using the predefined conditions, all data samples obtained
from the driving experiment are assigned to one of the modes.
Finally, all measurement data set D is divided into five data
sets, Di (i = 1, 2, . . . , 5).
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TABLE 3. LRM variable selection result for mode 1 → mode 2 switch.

C. DEFINITION OF OUTPUT VARIABLES
A binary variable specifying the switching of the mode is
used as the output variable of the LRM. To express the mode
switching from mode i to mode i + 1, four different models
Mi (i = 1,2,3,4) are identified using the data sets Di and
Di+1. yi(k) ∈ Yi is specified as follows:

yi(k) =

{
0 · · · if x(k) ∈ Di

1 · · · if x(k) ∈ Di+1
(11)

where yi(k) = 0 corresponds to the data x(k) measured
before mode switching from i to i + 1, whereas, yi(k) = 1
corresponds to the data x(k) measured after the mode is
switched from i to i + 1. The model Mi is identified by the
method described in section II usingDi andDi+1 as the input
variables and Yi as output variables. It should be noted that
the data used was normalized prior to model identification
and as such the magnitudes of the selected variables can be
used directly to interpret the importance of that variable.

V. MODEL IDENTIFICATION RESULTS AND ANALYSIS
OF OBTAINED MODELS
This section presents the analysis and discussion of the results
of the identified drivers’ mode switching condition.

A. DECISION MAKING FOR SWITCHING FROM MODE
1 TO 2 (LEFT-LANE DEPARTURE)
The decision for the driver departing from the left-lane to the
right-lane (i.e., switching from mode 1 to 2) is investigated
for drivers A to F. Table 3 shows the selected variables and
corresponding estimated parameters of the identified logistic

regression model. All the variables were normalized prior to
the model identification, hence, the magnitude of a parameter
can be taken to be a reflection of the significance of its
corresponding variable.

The risk feeling indexes relating to time headway
(THW : x9, x14) and time-to-collision (TTC : x20) were a
common selection among drivers. Time headway (THW) can
be seen as the spacing a driver tries to keep depending on
the current speed, whereas, the inverse of TTC expresses, and
is proportional to the driver’s collision risk to a surrounding
vehicle of interest. Therefore, it is natural that these risk
feeling indexes were selected commonly as variables a driver
consider for lane departure. Variables x20 (1/TTCRB) and
x9(THWLF ) were selected among five drivers when switching
from following the leading vehicle to left-lane departure.
The inverse of TTC and inverse of THW are risk feeling
indexes that increase as the driver’s vehicle approaches the
surrounding vehicles. The negative values of the parameters
of x20 (1/TTCRB) and x14 (1/THWRF ) indicates that the prob-
ability of mode transition decreases as the right front vehicle
and the right rear vehicle becomes closer. The parameter
value of variable x9 (THWLF ) outweighs that of variable
x3 (DLF ), this implies that a driver does not simply change
from the right-lane based on the distance to the leading
vehicle, but rather puts more consideration on the amount of
THW change. For drivers B and E, the variables x1 and x2
related to the vehicle speed are very large. Considering the
positive value of x1 parameter, it can be said that these drivers
accelerate significantly at a high frequency when changing
lanes.

For Driver A, most of the risk feeling index variables were
selected as important decision variables. In addition, distance
to the right-lane back car x15, right cluster (which includes the
right mirror) viewing time x27 and left cluster viewing time
x25 were also selected. These added selections implies that
this driver’s consideration is deeply affected by the vehicles
behind. The selection of both x27 and x25 at first glance might
seem contradictory, however, careful consideration shows
that this is a perfect demonstration of a driver (A) making
decision based on memory (in this case, the choice of x25).
Driver B from the choice of DLF , KdBLF and THWLF

seems to focus on keeping a safety distance while following.
This explains the rapid acceleration looking at coefficients of
x1 and x2 when changing lanes.

For Driver C, the variables x9, x14 and x24 were selected as
important decision variables. The selection here suggests that
this driver focuses more on what is happening in front. More
so, the driver makes lane change decision based on spacing-
distance versus speed relationship. Intuitively, this type of
driver will tend to negotiate more for lane change using the
turn signal rather than planning ahead of time.

Numerous variables relating to driving risk feeling index
and driver gaze information were chosen for driver D. From
the selection, it can be said that this driver considers carefully
all the surrounding cars during the lane change decision.
Driver D can be considered a conservative driver.
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TABLE 4. LRM variable selection result for mode 2 → mode 3 switch.

Driver E is the only driver where the relative speed to the
left-lane frontal vehicle x4 was selected. This insinuates that
the speed of the frontal vehicle is important for this driver
when deciding to change lanes. Additionally, the chosen risk
feeling index variables together with the selected gaze infor-
mation variables suggest that this driver appropriately checks
the surrounding vehicles for lane change decision.

For driver F, the distances, safety distance versus current
speed relationship, and collision to the surrounding cars are
important factors for mode 1 to 2 switching. This driver tends
to accelerate rapidly when changing lanes, this might explain
why only one gaze information variable was selected.

Generally speaking, from these results, the THW and TTC
risk feeling indexes have strong influence on the lane depar-
ture decision in the overtaking driving behavior. Furthermore,
depending on the driver, different additional variables are
considered when making lane departure decision. The vari-
able selection results here insinuates that, though there are
common characteristics between drivers, personalized pref-
erences are largely expressed in the lane departure decision
of the overtaking driving behavior.

B. DECISION MAKING FOR SWITCHING FROM
MODE 2 TO 3 (OVERTAKING)
Table 4 shows the selected variables for the LRM to express
the mode switching from mode 2 to 3.

When the driving taskwas switched from right-lane change
to overtaking, the variables x9 and x14 with large parameter
values were commonly selected among most of the drivers.
This result is similar to the case of switching from the

TABLE 5. LRM variable selection result for mode 3 → mode 4 switch.

left-lane to right-lane (i.e., mode 1 to mode 2). From this,
it can be said that the environmental information recognized
by the driver is similar between the task of switching to
overtaking and the task of switching to lane departure. The
difference is that the variable related to the vehicle speed is
no longer selected, but instead the variable x12 that represents
the range to the frontal vehicle is selected for drivers B, C,
E, and F. The negative values of the parameters of drivers
B, C, and E implies that for these drivers, the probability
of changing lanes increases as the distance from the vehicle
ahead increases, and vice-versa for driver F.

C. DECISION MAKING FOR SWITCHING FROM
MODE 3 TO 4 (LANE RETURN)
The selected variables and estimated parameters of the model
for mode switching from 3 to 4 (returning to the left-lane) are
shown in Table 5.
The first thing to recognize is that in this result, fewer

number of variables were selected. This indicates that left-
lane return maneuver requires less information compared to
the left-lane departure driving task. For drivers C, E, and F,
the variable x3 has a large negative parameter value, meaning
that they are more likely to switch to the left-lane as the
range to the left-lane frontal vehicle increases. For drivers A,
B, and D, the variable x25, which is the left-cluster viewing
time is a common selection. This selection implies that these
drivers are constantly checking visually, the situation of the
vehicle on the destination lane during the lane-return task.
The selected variables vary greatly among drivers, therefore,
it can be concluded that the lane return task is more of a
personalized preference driving maneuver.
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TABLE 6. Mode switching estimation result (mode 1 to mode 2).

TABLE 7. Mode switching estimation result (mode 2 to mode 3).

VI. MODEL VERIFICATION BASED ON
ESTIMATION PERFORMANCE
This section verifies the validity of the identified model by
mode switching estimation performance testing. To evaluate
the identified model, switching estimation using the model is
performed on a testing data set as shown in Fig.1.

Table 6, Table 7, and Table 8 show the result of the esti-
mated mode switching from mode 1 to 2, mode 2 to 3, and
mode 3 to 4 respectively. The result of each table shows the
matching rate of each mode in respective mode switching
estimation. In addition, the correct switching rate and the
switching delay time are shown. The correct switching rate
is the percentage the time instant of the calculated mode
switching belongs to the time interval of 3 seconds plus or
minus of the actual mode switching time. This means that
a sample is part of the correct sample when it is on the
same side of the algorithm fitting segmentation point and
the ground truth segmentation point. The 3 seconds time
interval here was chosen by trial and error by observing the
measured driving data and also by careful consideration of the
overtaking driving behavior. From the three tables, it could be
seen that good identification for each mode in each switching
task was achieved, furthermore, high correct switching rate
was achieved relatively for all the drivers.

In addition, the result of the correct switching rate in
percentage where only the surrounding environment was con-
sidered in the model without including the driving behavior
information in form of gaze information is shown in Table 9
for all the drivers. Comparing this to the results of Table 6 - 8,
it can be seen that the correct switching rate improved for all
the drivers in all the modes with the inclusion of the gaze
information.

The sample profiles for three overtaking trials of the four
modes defined to represent the overtaking driving behavior is
shown in Fig.7. The black solid line represents the true mode
transition from the data, whereas the dashed line represents
the mode switching estimated using the identified model.
It can be seen that the estimated mode switching agrees
relatively well with the true mode transition.

Finally, Table 10 shows the estimation result for the over-
taking trials for all the drivers. The result shows that for
drivers A to F there is an 80% chance or more of properly

TABLE 8. Mode switching estimation result (mode 3 to mode 4).

TABLE 9. Mode switching estimation result (correct switching rate [%])
without including driving gazing behavior information.

FIGURE 7. Sample profile of model estimating the overtaking decision.

estimating their overtaking driving behavior. For drivers D
and F, the estimation rate of mode 3 was lower than that
of the other modes. Since the logistic regression models are
connected linearly, there was a concern that if the estimation
rate of one mode is relatively bad, the estimation rate of the
next mode would also be affected. However, judging from
Driver D and Driver F where consecutive estimation rates are
0.60 to 0.88 and 0.74 to 0.96 respectively, which are relatively
quite low and high. This indicates that the proposed model
does not depend only on the accuracy of individual logistic
regression models.

Comparing the results (Table 6 - 8) of the work presented
here to the results (Table 9) of the previous work [33], where
the experiment setting and drivers were the same and only
the surrounding vehicles’ information was collected and used
to model the driver’s overtaking decision making. In this
study, by including the gazing behavior information, there
was improvement in the correct switching rate for all the
drivers in all the modes defined for the overtaking driving
task. Compared to the previous work, it can be said that
this study estimates the driver’s decision for the overtak-
ing driving task better. Thus highlighting one of the con-
tributions/improvements of this study. In [47], HMM was
proposed for detecting risky lane changes using integrated
modeling of driver gaze and vehicle operation behavior.
Although the modeling result was good, however, better
result that is explainable could be achieved with less com-
putational requirement if the idea of variable selection intro-
duced in this paper was used. For example, using variable
selection during the lane changing to reduce to the most
influential variables as input for the Hidden Markov Model.
In addition, most of the studies that have used gazing behavior
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TABLE 10. Estimation of the overtaking decision by the model.

to analyze driving behavior have not explored the use vari-
able selection to add additional meaning to modeling results,
therefore, the study presented here advances the knowledge
of using gazing information to model the human driving
behavior.

VII. DISCUSSION
The useful applications of the proposed model are summa-
rized as follows:

• In understanding the overtaking behavior especially
expressing individual driver characteristics, the method
presented here which is a combination of the logistic
regression model and statistical model selection, is well
suited. The methodology presented here is able to iden-
tify and differentiate the common characteristics and
personalities respectively among drivers in the deci-
sion making for overtaking driving. Therefore, the idea
in this study can be directly leveraged by controller
designs for implementing personalized automated driv-
ing. Additionally, by segmenting the overtaking driving
behavior into modes and using only the most influential
explanatory variables in each mode, computational cost
is reduced, facilitating online applications.

• The work presented here is suitable for application in
mixed traffic that comprises of human driven vehicles
and automated vehicles which is seen as the realistic
evolution of automated driving. By applying the scheme
developed here the overtaking intention of a human
driver can be predicted and communicated to the sur-
rounding automated vehicles, ensuring a safer traffic.

• In design of advanced driving assistance systems
(ADAS), by using the combination of the driver’s
gaze information and surrounding vehicles’ informa-
tion, a better and more reliable system could be devel-
oped. For example, in the overtaking driving maneuver,
by using the gaze information of the driver to identify the
driver’s intention to overtake or change lanes, and using
the information of the surrounding vehicles’ to judge if it
is safe or not to overtake, a warning or assistance system
could be developed.

VIII. CONCLUSION
This paper presented a new methodology for modeling the
driver’s decision making in the overtaking driving behav-
ior without prior knowledge of the explanatory variables.
The overtaking decision which includes switching of mul-
tiple driving modes was expressed mathematically by the

combination of a logistic regression model and a statistical
model selection method based on Wald statistics. By using
the line-of-sight information in particular, which can be
regarded as the driving gazing behavior, in combination with
the surrounding environment information, it was possible
to construct the overtaking decision making by estimating
switching of modes and its timing in an accurate manner
based on the proposed model. In addition, investigation was
carried out on the explanatory variables extracted by the
variable selection method to clarify the relationship between
the driver’s selected variables and mode switching, and also,
the individual differences and similarities of the models were
discussed.

For the overtaking driving behavior in the problem set-
ting as shown in Fig. 3, in the first step which is left-
lane departure, the risk feeling indexes relating to time
headway (THW : x9, x14) and time-to-collision (TTC : x20)
were a common selection among drivers, on the other hand,
the selected gaze information for each driver was different
highlighting personalized preferences in the lane-departure
task. In the decision making for overtaking (mode 2 to 3),
variables (THW : x9, x14) relating to the time headway were a
common selection among drivers. This is similar to the behav-
ior in the left-lane departure mode, however, the distance
to the frontal vehicle plays an important role in this mode
switching. Finally, for the decision to return to the left lane,
higher percentage of gaze features was selected (different for
each driver) when compared to the surrounding environment
features. This suggests that the drivers make decision based
on visual observations of the destination lane during the lane
return task. In summary, the variable selection results insin-
uate that, though there are common characteristics between
drivers, personalized preferences are mainly expressed in the
decision for the overtaking driving task.

The usefulness of the proposed modeling framework for
enabling autonomous driving and design of ADAS was pre-
sented in VII, and can be summarized in the following
way. The result can be directly used to design controllers
for autonomous lane-change/overtaking where reflecting
driver’s preferences is required. In addition, this work can
enable mixed (i.e., a mixture of human-driven vehicles and
automated vehicles) autonomous driving by predicting the
overtaking intention of the human driven vehicle and commu-
nicating this prediction where necessary. Finally, by using the
gazing behavior, particularly the variables that a driver uses
for decision making, the driver’s overtaking intention can be
estimated and then the surrounding environment can be used
to judge if it is safe or not to overtake, and thus a personalized
warning system can be developed.

In this study, individual differences and similarities
by comparing models of multiple drivers was analyzed.
However, it is considered that the driving behavior model
also differs depending on the driving skill of the driver. In the
future, it will be necessary to evaluate the differences in
obtained models due to driving skills by analyzing the data
of drivers with various driving skill tests. In addition, even
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though the focus of this study was not in generalising or
grouping drivers into classes, but rather identifying the dif-
ferences, thus explaining the decision to use only 6 (six)
subjects, further experiment should be conducted in the future
to increase the number of subjects. Furthermore, in the envi-
ronment assumed here, the driving behavior of other vehi-
cles was limited to straight forward driving, and the driving
behavior of the driver was limited to overtaking. A natural
extension of this work is to consider in the future, more
complicated driving situations for both the driving and the
surrounding vehicles, for example, a situation where another
vehicle merges or changes lanes. In addition, driving sim-
ulator data was used in this study, and such data may lack
the complexity of real-road driving, therefore, in the future,
a real-road overtaking driving experiment could be conducted
to further verify the real-world applicability of the proposed
model.
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