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ABSTRACT Oil and gas supply chain (SC) plays key role in the global economy. Gas and oil separation
plants (GOSP) belong to the upper stream of the oil and gas SC. In this article we study a GOSP that pumps
oil to a stabilizing plant through a 600 KM pipeline. The purpose of this research is to develop an integrated
mathematical model to support operational decision making regarding the optimal pumps scheduling and
the dosage level of a drag reduction chemical, which is injected in the oil pipeline to stabilize the pressure
and achieve higher oil flow rate. To the best of our knowledge, there is no MDP model in the literature that
jointly considers pumps scheduling and oil flow control. A novel Markov decision process (MDP) model
and two intuitive heuristic polices are proposed and simulated based on historical data. The heuristic policies
are to operate the oil pumps in a cyclic weekly or biweekly patterns and to use a maximum likelihood rule
to select the dosage level. Compared to the heuristic policies, our results demonstrated that MDP can lead
to a substantial amount of savings in terms of the total system operating and maintenance costs. It also
provides some practical insights on the interaction ways between the frequency of operating the pumps,
the maintenance costs and the costs of a chemical that is used to control the pressure and flow rate of oil in
a 600 KM oil pipeline.

INDEX TERMS Decision making under uncertainty, gas and oil separation plant (GOSP), Markov decision
Process (MDP), scheduling.

I. INTRODUCTION
Over the past several decades, optimal pump scheduling has
gained the interest of researchers. Many studies report sub-
stantial amount of savings due to optimal pump scheduling
in water distribution applications, where the main savings
is due to the reduction in the electricity and maintenance
costs.

In the oil and gas industry, the objective of minimizing
the deviation between the actual and target flow rates of
oil is important too. This article addresses a practical case
observed in the oil and gas industry, where a gas and oil
separation plant (GOSP) pumps oil to a stabilizing plant. The
problem addressed in this work is operational one, which
is controlling the flow of oil from a GOSP to a stabilizing
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plant, through a pipeline, by selecting the combination of
pumps in operation (among a group of available pumps) and
the required chemical dosage. The chemical dosage is a drag
reducing agent that is continuously injected in the oil pipeline
to stabilize the pressure of oil and achieve the appropriate oil
flow rate, without affecting its inherent properties.

The cost trade–offs in this work include: pumps main-
tenance cost, chemicals cost and the cost of the deviation
between the actual and target oil flow rates. The later cost
element is to add a penalty on any gap between the actual and
target/demand oil flow rates. The weekly target oil flow rate
is based on a quarterly plan that is set by the stabilizing plant.
This can be viewed as an integrated production and inventory
planning problem [1], where a balance is needed between the
production costs (maintenance and chemical dosage), and the
inventory costs (the costs of not meeting the exact demand i.e.
the holding and shortage costs).
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The current practice in the plant under study is based on
human interventions to schedule the pumps and decide on
the required dosage level. This is usually done by the process
engineer. In this work we propose a novel replacement of the
old process by introducing a new pump scheduling and flow
rate control model.

The GOSP under consideration has four pumps that pump
the crude oil through a 600KMpipeline, and due to the length
of the pipeline, the effect of the chemical dosage appears
after a few days. Furthermore, there are some operational
restrictions, namely:

• Operate two pumps at a time, to ensure operational
continuity and prolonged life of the pump.

• If a pump exceeds two weeks in operation or one week
offline, then maintenance will be needed.

The rest of this article is structured as follows: Section II
presents the literature review, Section III provides the pro-
posed mathematical model, Section IV demonstrates the pro-
posed mathematical model with numerical examples and
Section V presents the concluding remarks of this research
work.

II. LITERATURE REVIEW
Since the 70s, pump scheduling have gained a special interest
of the researchers and practitioners [2]. The majority of the
pump scheduling literature addresses water pumps that are
used in water distribution through water networks [2]–[8].
Other applications of pump scheduling include water treat-
ment [9] and oil transportation [8].

A significant part of the expenditures in the pump-
ing stations is related to the consumption of energy [4],
[10]–[12] and the most common objective function in
the pump scheduling literature is the minimization of the
energy/electricity cost [2], [10], [13], [14]. On the other hand,
some researchers addressed the problem of minimizing pump
maintenance related costs [15], [16], where the maintenance
cost is minimized by limiting the number of pump switches.
In a liquefied natural gas plant, reference [17] considered the
two conflicting objectives of minimizing cost and improving
reliability.

The literature spans plethora of techniques that are used
for optimal pump scheduling. This includes linear program-
ming [18]–[20], nonlinear programming [21], deterministic
dynamic programming (DP) [7], [22], stochastic dynamic
programming using Markov decision process (MDP) [2], [5],
[9], [10], artificial intelligence (AI) [9], hybrid techniques
such asMDP–based AI techniques [6], [9], and discrete event
simulation [23].

MDP is a stochastic dynamic programming technique,
which is used for decision making under uncertainty [24]
with very wide range of real-life applications and efficient
solution techniques [24], [25]. The main advantages of MDP
include: 1) its ability to obtain optimal policies over finite and
infinite planning horizons, where the latter is used to model
stationary systems, 2) MDP can have different cost criteria

that can depend on the initial system state, the next system
state or both [24], 3) MDP is used in real–life for decision
making under uncertainty [25], [26]. The main disadvantages
of MDP are: 1) the difficulty to obtain their state transition
probabilities [27], [28], because they require large number of
statistical data [29], 2) establishing the cost/reward criteria
and 3) the lack of standard software packages to explicitly
solve for individual modeling problems (i.e. a programming
effort is mostly needed) [30].

An MDP model consists of system states, a set of
actions, transition probabilities between system states, and
reward/cost functions that, in their basic form, depend on
system state and the action taken [24] and can be constant or
time–varying [24], [31]. InMDP, the decisionmaker observes
the state of the system at discrete points in time, then he takes
actions that alter the system state probabilistically (otherwise
the model becomes deterministic dynamic program), which
then leads to reward/loss modeling scenario. The objective is
to maximize/minimize the reward/loss over a finite or infinite
planning horizon [24].

Reference [7] used DP to solve the problem of pump
operation scheduling in a water distribution system. Using
historical data, the objective was to determine the water pump
combination and the amount of water to be pumped to dis-
tribute water to all specified demand points under the pump
and water supply capacity constraints to minimize pumping
costs, which mainly includes electricity costs. Reference
[11] used deterministic dynamic programming to obtain the
optimal strategy to operate a set of pumps in a water supply
system. The model included a complicated energy tariff, size
and configuration differences among water distribution sys-
tems and limitations on the number of times pumps are turned
on and off. Long and short term models were developed by
the authors to obtain monthly and daily operating polices.
DP was also used by [32], where operating conditions, vari-
ations in water demand, and energy costs were included
in their model; the study reported energy cost savings of
up to 20.9%.

Many studies reported the usefulness of MDP in operating
water pumping stations. Reference [22] developed an MDP
model to schedule the operation of water pumps in a water
distribution system, which consisted of one water tower and
a boosting station. The model included system characteristics
such as the efficiency of pumps vs. the number of operating
pumps and the pumping rate as a function of water tank levels.
An MDP–based framework to optimize the consumption of
electricity for water utility companies has been proposed by
[2], [33]. The framework was based on detailed information
about tank level, pressure measures in some of the network
points, power consumption of pumps, energy price schema
and water demand by the final consumers. The authors
reported the advantages of minimizing the cost of electricity
by 39.3% and minimizing supply outage. Later on, reference
[10] discussed the advantage of the MDP model by [2] in
terms of the solution quality. As compared to other tools
like genetic algorithms and pollutant emission pump station
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optimization (PEPSO) [34], MDP had the minimum energy
consumption, while PEPSO took the least computation time.
Computation costs of MDPs in pump scheduling applications
was also reported by [13]. To overcome the long computation
time of the MDP, reference [5] proposed a distributed MDP
modelling, however, this leads to degradation of the solution
quality, according to the authors.

In other applications, reference [8] studied the operations
and maintenance scheduling of pumps used in a wastewater
treatment process. The objective was to minimize the pumps’
energy consumption and maintenance costs, while maintain-
ing the desired hydraulic workload of the pumps. A neural
network algorithm was used to model the performance of
pumps and MDP was used to obtain the maintenance sched-
ule. Reference [35] developed a model for the optimal repair
of a motor driven sea water centrifugal pump, the author
determined an optimal maintenance level of the addressed
system.

As for the oil and gas industry, energy and chemical con-
sumption are among the major contributors in the operating
costs of a GOSP. For large scale companies, a saving of 1%
in energy costs can reflect as a 7–digits figure cost–wise [36].
On the other hand, maintaining operational efficiency and
planning production is important as well [37].

The oil supply chain literature spans a large number of
publications on planning and managing the supply of oil
[37]; decisions include strategic, tactical and operational
levels. At the tactical level, Reference [36] developed an
integer programming model for optimal operation of a net-
work of GOSPs. At the operational level, Reference [9]
presented a multi–agent approach for the dynamic main-
tenance task scheduling for a petroleum industry produc-
tion system. A reinforcement learning technique is used
to generate optimal maintenance and production schedules.
At the operational–tactical levels reference [38] used mixed
integer programming to plan upper stream logistics of an
oil SC.

Based on our literature review it was observed that the
majority of the pump scheduling models are related to water
distribution systems. Furthermore, it was found that MDP
is an efficient tool for decision making under uncertainty
for the addressed problem. To the best of our knowledge,
there is no MDP model in the literature that jointly considers
pumps scheduling and oil flow control. Therefore, in this
article, we have addressed both decisions in a GOSP and
demonstrated our proposed model using historical data. The
closest research works to our study were introduced in [2],
[33] and [22]. The novel contributions of our work are:

1) To the best of our knowledge, this work is among the
first to jointly address pump scheduling and incorpo-
rate the drag reduction agent. In this article, we have
addressed both decisions in a GOSP and demonstrated
our proposed MDP model using historical data.

2) Maintenance–requirement is included in the proposed
model.

3) The optimal MDP–based solution is compared to two
intuitive heuristics (i.e., weekly and biweekly alternat-
ing operation of pumps).

Due to the absence of appropriate data in our case study,
we did not consider the pressure of oil in the oil pipeline. Fur-
thermore, in this study the cost of electricity is not addressed
because the pumps operate continuously at a constant speed.

III. MATHEMATICAL MODEL
This section presents an MDP model to minimize the overall
costs of operating and maintaining the pumps and the cost of
chemical consumption in a GOSP. Furthermore, we demon-
strate the model elements by using the case presented in
Section I. The main notations used in this paper are given
in Table 1.

TABLE 1. Notations.

The MDP model is formulated as follows:

1) Decision/Time Epochs (t ∈ T ):Decision points in time
where actions are applied to the system. We assume a
finite horizon of T time epochs. In this model, without
loss of generality, one week is the time epoch.

2) State Space (St = bt , ft , iLt ): At each decision epoch,
the system is fully described by its state, S, the state of
the system is comprised of three elements:

• The combination of pumps in operation at the
beginning of a given week t is bt , where bt ∈
{1, 2, . . . 6}. Since there are four pumps and two of
them must be selected every week, then there are
six possible pump combinations.

• The oil flow rate at the beginning of the week t is
ft , where ft ∈ {1, 2, 3, 4} is defined as follows:

– 1: the oil flow rate in the pipeline is less than
470 thousand barrels of oil per day (MBOD)
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TABLE 2. Demonstrative example on idleness history calculation.

– 2: the oil flow rate in the pipeline is ranging
between 471 – 520 MBOD

– 3: the oil flow rate in the pipeline is ranging
between 521 – 570 MBOD

– 4: the oil flow rate in the pipeline is more than
571 MBOD

These flow rate intervals are defined after con-
sulting with the process engineer. Furthermore,
the developed MDP model applies to any number
of flow rate intervals.

• The idleness history of pump l at the beginning of
a given week t is ilt . The subscript l indicates the
pump number and i indicates the idleness history
and can take a value between [−2, 3] in our case.
The negative value of i means working since i
weeks, and the positive value of imeans idle since i
weeks. If a pump is turned on or idled, the idleness
history will be reset to zero. To demonstrate how
the idleness history of a pump is updated, assume
an example in which pumps 1 and 2 have been
in operation since the last two weeks until the
beginning of week t . Also, assume that the remain-
ing pumps have been idle. If a decision is made,
at the beginning of t , to use the pump combination
1 and 3, then Table 2 demonstrates updating the
idleness history of each pump right after taking
this decision.

At each time epoch, the process engineer has all the
information regarding the system state (bt , ft , ilt ); this
information is utilized to decide on the appropriate
actions (decisions). The model has a finite state space;
because there are finite number of pumps, finite num-
ber of possible discretized flow rates, and the finite
range of ilt .

3) Action space (A): At every time epoch, the process
engineer observes the system state and select an action,
a ∈ A, that takes the system to a new state given
the associated costs for that action. At the beginning
of the week t ∈ T , the process engineer selects a
pump combination (abt ) and a chemical dosage level
(adt ). The chemical dosage should be applied uniformly
to ensure no upset to the process as well as to facil-
itate the planning for chemical inventory. The chemi-
cal dosage is normally done in multiples of 5 gallons
per hour (GPH), which is the size of the container.

As part of the process guidelines, the maximum chem-
ical dosage allowed is 25 GPH. Since its effect on the
oil flow rate starts to appear after few days along the
600 KM pipeline, the required dosage (adt ) is continu-
ously applied to the oil pipeline. From operational per-
spective, the chemical dosage level is usually adjusted
on weekly basis. In our example, the possible chemi-
cal dosage actions are: {1, 2, . . . , 5}, which represents
{5, 10, . . . , 25} GPH respectively.

4) Cost Criteria, Rt (St , St+1, abt , a
d
t ): At each decision

epoch (t), when the actions are taken, the system incurs
costs that depend on the current and future system
states and the actions taken by the decision maker
(St , St+1, abt , a

d
t ) = (bt , ft , iLt , bt+1, ft+1, i

L
t+1, a

b
t , a

d
t ).

System costs can be fixed or time–varying [31]. The
cost structure of our proposed model is calculated as
follows:

• The cost of operating a pump for one week cop(abt )
• The cost of the chemical dosage that is consumed
during week t = dt × cg

• The cost of performing maintenance for pump l,
which has been operating since more than two
weeks: α × cma × H [ilt+1], where H [ilt+1] = 1,
if ilt+1 < −2 and zero otherwise.

• The cost of performing maintenance for pump l,
which has been offline since more than one week:
α×cma×G[ilt+1]; whereG[i

l
t+1] = 1, if (ilt+1) > 1

and zero otherwise.
• The cost of deviating from the target flow rate
α × cdev(+) × (ft+1 − f Tt+1)

+
+ α × cdev(−) ×

(f Tt+1−ft+1)
+

The value of the term (a−b)+ should be equal to a−b
only if a > b and it is equal to zero otherwise. Note
that the last three cost items have the time subscript
t + 1; this is to indicate that these costs are realized
at the end of time t . Or in other words the beginning of
time t + 1 according to the notations we defined in this
article. The value of the target oil flow rate is updated
on quarterly basis by the stabilizing plant. The current
plan for the next quarter is shown in Table 3. Each
time epoch any deviation (positive or negative) from the
target is penalized with the respective cost. The costs of
positive and negative deviations are mainly calculated
based on the holding and shortage costs per 50 thousand
barrels per week respectively. These costs are estimated
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TABLE 3. Target oil flow rates over the planning horizon of 12 weeks.

based on the average oil price. In Section IV, we use
scaled values of these costs.
Adding up these cost elements gives the overall weekly
system cost as follows

Rt [bt , ft , ilt , bt+1, ft+1, i
l
t+1, a

b
t , a

d
t ]

= cop(abt )+ dtc
g
+ α ×

{
cma

∑
l

(H [ilt+1]+ G[i
l
t+1])

+ cdev(+) × (ft+1 − f Tt+1)
+

+ cdev(−) × (f Tt+1−ft+1)
+

}
, (1)

To illustrate how the cost for performing maintenance
can be calculated, Table 4 will be used as a quick
reference to determine the maintenance cost. From
Table 4, an expression can be developed to describe the
cost structure of performing maintenance based on two
conditional scenarios:
If a pump is selected to be included in the operating set
(denoted as bt+1) then

ilt+1 =


−1 if ilt = −3
it − 1 if −2 ≤ ilt ≤ 0
−1 if ilt > 0

(2)

If a pump is selected to be included in the offline set
(denoted as bt ) then

ilt+1 =


1 if ilt ≥ 2
it + 1 if 0 ≤ ilt ≤ 1
1 if ilt < 0

(3)

5) State Transition Probability P[St+1|St , a]: This is
defined as the probability that a system will go to
a posterior state St+1 = bt+1, ft+1, iLt+1), given its
current state and the chosen actions. Assuming that the
pump combination and dosage selection are indepen-
dent, then:

P[bt+1, ft+1, ilt+1|bt , ft , i
l
t , a

b
t , a

d
t ]

= P(ft+1|ft , abt , a
d
t )× P(i

l
t+1|i

l
t , a

b
t )

×5lP(bt+1|ilt , a
b
t ) (4)

where P(bt+1|ilt , a
b
t ) equals 1 if bt+1 includes the

pumps selected by the action abt and 0 otherwise,
P(ft+1|ft , abt , a

d
t ) is given in the appendix and estimated

based on historical data, and P(ilt+1|i
l
t , a

b
t ) equal 1 if

the scenarios in (2) and (3) apply for the selected and
non–selected pumps and 0 otherwise. The transition
probability matrices in the appendix depend on the
pump selection and dosage level actions. Therefore,

there will be 5 matrices (5 different dosage levels)
for each pump combination (a total of 6 pump com-
binations), which results in 30 matrices. The matrices
for each pump combination are given in the appendix
(Tables 11 to 40).

The expected minimum overall cost over a finite planning
horizon T can be expressed by Equation 5.

Vt (bt , ft , ilt )

= minabt ,adt

{∑
bt+1

∑
ft+1

∑
ilt+1
{Rt

× [bt , ft , ilt , bt+1, ft+1, i
l
t+1, a

b
t , a

d
t ]

+αVt+1(bt+1, ft+1, ilt+1)}

×P[bt+1, ft+1, ilt+1|bt , ft , i
l
t , a

b
t , a

d
t ]
}

t ∈ {1, . . . ,T },

(5)

where Rt [bt , ft , ilt , bt+1, ft+1, i
l
t+1, a

b
t , a

d
t ] and P[bt+1, ft+1,

ilt+1|bt , ft , i
l
t , a

b
t , a

d
t ] are given by (1) and (4) respectively.

Equation 5 is based on Bellman’s optimality principle [24].
The equation gives the minimum expected system cost as a
function of the system state (bt , ft , ilt ) at t ∈ T . The first
term,

∑
bt+1

∑
ft+1

∑
ilt+1

Rt [bt , ft , ilt , bt+1, ft+1, i
l
t+1, a

b
t , a

d
t ]

× P[bt+1, ft+1, ilt+1|bt , ft , i
l
t , a

b
t , a

d
t ]; represents the initial

expected system costs due to selecting the actions abt , a
d
t

at t ∈ T . The second term of (5) is the minimum sys-
tem expected costs at t + 1 ∈ T , where the decision
maker is assumed to follow an optimal policy starting
from t + 1 i.e.

∑
bt+1

∑
ft+1

∑
ilt+1

αVt+1(bt+1, ft+1, ilt+1) ×

P[bt+1, ft+1, ilt+1|bt , ft , i
l
t , a

b
t , a

d
t ]).

The optimal actions are obtained using the following
expression based on (5) as follows

ab∗t , a
d∗
t = argminabt ,adt

{
Vt (bt , ft , ilt )

}
Fig. 1 demonstrates the dynamics of our proposed pump

combination and dosage selection model using MDP. The
figure shows the state, actions, reward criterion and the state
transitions of the on–hand system in a typical time period.
The proposed dynamic programming model starts with an
initial system state at time t , followed by two actions by the
decision maker i.e., selecting the pump combination and the
chemical dosage level; based on the initial system state and
the set of actions that were taken, the system moves to a new
state, incurs costs and a new time period (t + 1) starts.

IV. NUMERICAL ILLUSTRATION
This section presents examples on the integrated model,
which is given in Section III. The system state transition
probabilities are based on historical data and given in the
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TABLE 4. Cost of performing maintenance.

FIGURE 1. Markov decision process (MDP) for integrated operational
decision making.

Appendix A (Tables 11 to 40). Financial data are scaled by
a factor and provided in Table 5. In Section IV(A), we solve
the MDP model with no restriction on the duration that
a pump can operate, and then we add the constraint that
a pump can’t operate continuously for more than 1 and
2 weeks respectively. These constraints are added to allow for
switching the pumps and perform preventive maintenance. In
Section IV(B). We examine two intuitive heuristic polices:
I) to operate two pumps for 2 weeks then the other two
pumps for the next 2 weeks and so on II) to switch the
pumps in operation every 1 week. The results of the MDP
and heuristic policies are compared in terms of cost, mean
absolute deviation from the target oil flow rate and the number
of maintenance instances. In Section IV (C), we perform
sensitivity analysis on some of the cost parameters, this is to
study their impact on the optimal policy and its correspond-
ing cost. Finally, to demonstrate the ability of the MDP in
achieving the target oil flow rates, Section IV(D) presents the
solutions for an unconstrained MDP with neglecting the cost
of chemical (i.e. chemical cost trade–off is not incorporated
in the model).

A. RESULTS OF THE MDP–BASED POLICY
The MDP model was solved for the optimal decision pol-
icy, using the backward value iteration Algorithm [24]. The

TABLE 5. Cost parameters of the proposed model.

FIGURE 2. Diagram of the steps involved in the trajectory generation for
the different polices.

resulting optimal control policy provided the optimal decision
rule for each state at each of the twelve time epochs.

To simulate the MDP and heuristic polices, a maximum
likelihood trajectory of the state variables has been gener-
ated. The steps of generating the trajectory are summarized
in Fig. 2. A trajectory is generated for both, the MDP and
heuristic policies, and then during each decision epoch, deci-
sions will be taken and the states will be updated. In case of
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MDP, the decision regarding the dosage level and the pump
configuration is obtained from the optimal policy. Then,
the values of the pump configuration and the idleness history
are updated deterministically (depending on the decision rule
that is obtained from the optimal policy). Next, the value of
the flow rate is realized based on the maximum likelihood of
that flow rate, given the current state and the optimal decision
rule, which is obtained using the transition matrices given
in Appendix A. Finally, the resulting next state is used to
obtain the decision rule at the next decision epoch and so on.
Note that through applying this process we are generating
the most probable trajectories for a given initial state and a
pre-calculated optimal policy.

Regarding the heuristic policies (for comparison with the
MDP policies), the heuristic policy based trajectories are
generated using the same method as in Fig. 2. The only
difference is that the determination of the dosage and the
pump configuration is done using the heuristic policy instead
of the MDP based optimal policy. The details of the heuristic
policy are discussed in Subsection IV(B).

The trajectories due to the MDP optimal policy are shown
in Fig. 3 and Fig. 4. As can be seen in Fig. 3, the optimal
policy opted for various pump combinations between 1 and
6, while the desirable flow rate has been tracked successfully
at eight out of 12 instances (66.66% success). The percentage
value of the mean absolute deviation between the optimal and
target flow rate levels is given in Table 6 (11.11% in this case),
which is calculated as a percentage of the maximum possi-
ble total absolute deviation, i.e., maximum possible absolute
deviation is 36 units (3 × 12). Utilization of the pumps is
demonstrated by Fig. 4, which indicates one instance (t = 8)
where a pump (pump 1) is utilized for more than two weeks.

To perform preventive maintenance, we also added the
constraint that no pump can continuously operate for more
than twoweeks and recomputed the optimalMDP policy. The
results are demonstrated by Figs. 5 and 6. It is evident from
Fig. 5 that the added constraint causes imperfect tracking of
the flow rate at seven instances (58.33% success and themean
absolute deviations is 16.66%). However, no pump is utilized
formore than twoweeks as shown in Fig. 6. Similarly, another
MDP–based optimal policy was computed after replacing the
two–weeks constraint by a one–week constraint, the results
are demonstrated by Figs. 7 and 8. Note that the flow rate
tracking has worsened (41.66% success and mean of abso-
lute deviations is 27.77%). Next we compare the results of
the MDP with some heuristic policies. The summary of the
comparison results is presented in Table 6. It is evident that
the MDP outperforms the heuristic policies in terms of the
total cost (with nominal value of the cost of deviation in the
flow rate). The details regarding the heuristic policies are
presented in Subsection IV(B).

B. HEURISTIC POLICIES
This section presents the results from two heuristic policies.
The first one is to use pump combinations (1, 2) and (3, 4) in
a weekly alternation and the dosage is set based on the level

FIGURE 3. Pump configuration and flow rate, an optimal unconstrained
MDP policy.

FIGURE 4. Pump utilization, an optimal unconstrained MDP policy.

that yields the maximum likelihood of achieving the target
flow rate. The second policy is similar to the first one but the
pumps are operated in a biweekly alternation. The resulting
state trajectories of the first policy are shown in Figs. 9 and 10.
Based on Fig. 9 it is evident that the desirable flow rate
is reasonably well tracked (the mean absolute deviation is
13.88%). Based on the values provided in Table 6, the dosage
level is too high and hence the overall cost is higher compared
to the MDP–based policies. The results of the second policy
are presented in Figs. 11 and 12. The flow rate in Fig. 11
indicates that the tracking of the desirable flow rate is almost
perfect. Note that this is at the cost of high dosage and hence
higher cost as compared to the MDP–based policies (see
Table 6).
A more detailed comparison between the heuristic and

the MDP policies is provided in Table 6. It is evident
that the expected cost incurred by optimal policy due to
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TABLE 6. Comparison between various decision policies with nominal cost of deviation in the flow rate.

TABLE 7. Comparison between various decision policies with cost of deviation in the flow rate scaled by 0.5.

TABLE 8. Comparison between various decision policies with cost of deviation in the flow rate scaled by 1.5.

TABLE 9. Comparison between various decision policies with cost of deviation in the flow rate scaled by 2.

TABLE 10. Comparison between various decision policies with cost of deviation in the flow rate scaled by 2.5.

simple MDP (238,726 USD) is the lowest whereas the
expected cost incurred by the weekly heuristic policy is
the highest (620,480 USD). In terms of total chemical

dosage, the two–week constrained and one–week constrained
MDPs resulted in a slightly higher value (12). Obviously,
the expected cost due to the two–week constrained MDP
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FIGURE 5. Pump configuration and flow rate with optimal (finite horizon)
constrained (two–week operation) MDP policy.

FIGURE 6. Pump utilization with optimal (finite horizon) constrained
(two–week operation) MDP policy.

(277,712 USD) is less than that of one–week constrained
MDP (308,732 USD). The two–week MDP policy incurs
the cost of pump maintenance due to more than one week
of idleness (note that the idleness history of the pumps
in Fig. 6 reaching the value 2 at multiple occasions for differ-
ent pumps). The third row of Table 6 presents the comparison
ofmaintenance incidents, where the biweekly heuristic policy
has the highest number of maintenance incidents. Note that
the costs due to the heuristic policies has been calculated
for a particular trajectory that was generated using the max-
imum likely state transitions (Fig. 2), whereas the MDP pol-
icy takes into account all possible transitions. For example,
the one–week constrained MDP policy chooses the dosage
level 2 (1680 gallons per week) at t = 6 (Fig. 13) because it
has 20% chance of achieving the desirable flow rate, i.e., 2
(Table 37, last row). Since that transition is ruled out in
the trajectory generation (the trajectory selects the maximum

FIGURE 7. Pump configuration and flow rate with optimal (finite horizon)
constrained (one–week operation) MDP policy.

FIGURE 8. Pump utilization with optimal (finite horizon) constrained
(one–week operation) MDP policy.

likely transition, which results in the flow rate remains equal
to 4), the dosage cost due toMDP policy appears to bewasted.
Fig. 13 depicts the comparison of step by step dosage rate due
to biweekly heuristic policy and the constrained (one–week)
MDP policy. We can conclude (based on Table 6) that the
MDP–based policies outperform heuristic/intuitive policies
in terms of cost.

C. THE EFFECT OF SCALING THE FLOW RATE DEVIATION
COSTS
The deviation costs used in our model are function of the oil
price, which is variable. Therefore, this section describes how
does the change in the deviation costs (i.e., the cost parame-
ters cdev(+) and cdev(−)) affect the optimal solution. We have
scaled the cost of deviation using a range of scale values to
study their impact on the obtained solutions. These values of
scale were in the range of [0.5 to 2.5] with and increment of
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FIGURE 9. Pump configuration and flow rate with weekly shift heuristic
policy.

FIGURE 10. Pumps utilization with weekly shift heuristic policy.

0.5 between each value. Tables 7 to 10 provide the results
along with the values of scale. The results presented here are
for a single sample trajectory (Fig. 2). Observing the behavior
of the unconstrained MDP policy, the increase in the cost
of deviation results in the improvement in the accuracy of
flow rate tracking but the mean absolute deviation does not
go below 5.55 % in the presented results. Note that it does
not mean that perfect tracking is impossible. In fact, perfect
tracking is achieved if the cost is high enough. Similar trend
can be observed in the other MDP policies, i.e., improvement
in tracking accuracy as the cost of deviation is increased.
However, the impact of the change in cost is not visible in
the heuristic policies since the heuristics do not depend on
the deviation costs. The dosage and the maintenance inci-
dents in general increase with the cost. However, for the
two–week (constrained) MDP policy, there is a nonlinear
trend in the maintenance incidents with respect to the cost of
deviation, or in other words, the maintenance incidents first

FIGURE 11. Pump configuration and flow rate with biweekly shift
heuristic policy.

FIGURE 12. Pumps utilization with biweekly shift heuristic policy.

increase with the cost and then decrease as the cost is further
increased.

D. THE EFFECT OF NEGLECTING THE DOSAGE COST
In this subsection, we study the effect of neglecting the
dosage cost on the performance of the MDP policy. We have
already seen in the previous sections that the flow rate
tracking is not perfect by the MDP and heuristic policies.
This is mainly due to the inherent trade–off between the
flow rate deviation cost and the cost of chemical dosage
that controls the flow rate. If the chemical is cheap (or
free), then higher dosage can be used. For demonstration,
we solved our proposed MDP model with zero dosage cost.
The resulting trajectory is shown in Fig. 14. It is evident
that the flow rate is tracked perfectly. However, the total
amount of dosage used by the policy is 25 units as compared
to that of 11 units used by the MDP based policy from
Section IV(A).
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FIGURE 13. Comparison between chemical dosage due to weekly
switching heuristic and the one–week constrained MDP policy.

FIGURE 14. Flow rate tracking and pump combinations due MDP policy
with zero cost of the chemical dosage.

TABLE 11. Flow rate transition probabilities, when pumps 1&2 are
working and the dosage rate is 5 GPH.

V. CONCLUSION
We proposed a novel dynamic pump scheduling and flow rate
control model, formulated as an MDP. Compared to previous
research work, we considered a GOSP and developed an
integrated model that accounts for pump scheduling and flow
rate control of oil from a GOSP to a stabilizing plant. The
proposed model accounts for preventive maintenance costs
that depend on the scheduling of pumps. Using historical data
and scaled cost data, several illustrative examples were solved

TABLE 12. Flow rate transition probabilities, when pumps 1&2 are
working and the dosage rate is 10 GPH.

TABLE 13. Flow rate transition probabilities, when pumps 1&2 are
working and the dosage rate is 15 GPH.

TABLE 14. Flow rate transition probabilities, when pumps 1&2 are
working and the dosage rate is 20 GPH.

TABLE 15. Flow rate transition probabilities, when pumps 1&2 are
working and the dosage rate is 25 GPH.

TABLE 16. Flow rate transition probabilities, when pumps 1&3 are
working and the dosage rate is 5 GPH.

using the proposed model. This included constrained MDP,
unconstrained MDP and heuristic policies (i.e. weekly and
biweekly alternating operation of pumps). It was observed
that MDP–based polices outperformed the intuitive heuristic
policies in terms of cost. Furthermore, the deviations from
the target flow rate that resulted from the MDP–based policy
were due to the chemical cost trade–off in the model, this
was verified by solving anMDPwith zero chemical cost. The
results due to zero dosage cost indicated perfect tracking of
the target oil flow rate.

Numerical illustrations were provided based on realistic
state transition data and scaled cost data. Our results demon-
strated that MDP can lead to a substantial amount of savings
in terms of the total system operating and maintenance costs.

The proposed model has the advantage of enabling inte-
grated decision making under uncertainty in GOSPs. It also
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TABLE 17. Flow rate transition probabilities, when pumps 1&3 are
working and the dosage rate is 10 GPH.

TABLE 18. Flow rate transition probabilities, when pumps 1&3 are
working and the dosage rate is 15 GPH.

TABLE 19. Flow rate transition probabilities, when pumps 1&3 are
working and the dosage rate is 20 GPH.

TABLE 20. Flow rate transition probabilities, when pumps 1&3 are
working and the dosage rate is 25 GPH.

TABLE 21. Flow rate transition probabilities, when pumps 1&4 are
working and the dosage rate is 5 GPH.

TABLE 22. Flow rate transition probabilities, when pumps 1&4 are
working and the dosage rate is 10 GPH.

provides some practical insights on the interaction ways
between the frequency of operating the pumps, the mainte-
nance costs and the costs of a chemical that is used to control
the pressure and flow rate of oil in a 600 KM oil pipeline.

The limitations of the proposed model are: it takes
the expected cost as the decision making criterion, while
in real–life risk–related measures are important too.
In the demonstrative example, the flow rate intervals were

TABLE 23. Flow rate transition probabilities, when pumps 1&4 are
working and the dosage rate is 15 GPH.

TABLE 24. Flow rate transition probabilities, when pumps 1&4 are
working and the dosage rate is 20 GPH.

TABLE 25. Flow rate transition probabilities, when pumps 1&4 are
working and the dosage rate is 25 GPH.

TABLE 26. Flow rate transition probabilities, when pumps 2&3 are
working and the dosage rate is 5 GPH.

TABLE 27. Flow rate transition probabilities, when pumps 2&3 are
working and the dosage rate is 10 GPH.

TABLE 28. Flow rate transition probabilities, when pumps 2&3 are
working and the dosage rate is 15 GPH.

considered to be four with a window of 50 MBDs, this
range was selected due to size of the available data set.
Yet, the developed model is generic and it can be applied
on systems that has hundreds of state variables. For larger
systems, it becomes computationally difficult to optimally
solve the model, which is often referred to as the ‘‘curse of
dimensionality.’’ This limitation can be overcome by using
approximate algorithms. Finally, future work will require
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TABLE 29. Flow rate transition probabilities, when pumps 2&3 are
working and the dosage rate is 20 GPH.

TABLE 30. Flow rate transition probabilities, when pumps 2&3 are
working and the dosage rate is 25 GPH.

TABLE 31. Flow rate transition probabilities, when pumps 2&4 are
working and the dosage rate is 5 GPH.

TABLE 32. Flow rate transition probabilities, when pumps 2&4 are
working and the dosage rate is 10 GPH.

TABLE 33. Flow rate transition probabilities, when pumps 2&4 are
working and the dosage rate is 15 GPH.

TABLE 34. Flow rate transition probabilities, when pumps 2&4 are
working and the dosage rate is 20 GPH.

more data to take into consideration other possible system
states, such as the pressure of oil at different points along the
oil pipeline and its relation with the flow rate of oil, which can
be an interesting future extension. Overall, future research
will focus on enlarged state and action spaces, accounting
for pumps failures, and including the oil pressure at discrete
locations of the oil pipeline in the state space of the model.

TABLE 35. Flow rate transition probabilities, when pumps 2&4 are
working and the dosage rate is 25 GPH.

TABLE 36. Flow rate transition probabilities, when pumps 3&4 are
working and the dosage rate is 5 GPH.

TABLE 37. Flow rate transition probabilities, when pumps 3&4 are
working and the dosage rate is 10 GPH.

TABLE 38. Flow rate transition probabilities, when pumps 3&4 are
working and the dosage rate is 15 GPH.

TABLE 39. Flow rate transition probabilities, when pumps 3&4 are
working and the dosage rate is 20 GPH.

TABLE 40. Flow rate transition probabilities, when pumps 3&4 are
working and the dosage rate is 25 GPH.

APPENDIX A
This appendix provides the state transition probabilities for
all possible pump combinations, based on historical data.
Transition probabilities are computed for each pump combi-
nation and dosage level (e.g. Table 11, pumps 1 and 2 with
dosage of 5 GPH). From the records, we have weekly data on
the oil flow rate, the dosage level and the pumps that were
operated. For each dosage level and pumps combination,
we counted the number of times the oil flow rate has tran-
sitioned between the four oil flow rate intervals, which were
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defined in Section III (e.g., F1–F1, F1–F2, F1–F3, F1–F4,
F2–F1 . . .F4–F4). This resulted in a 4 by 4 matrix for each
possible pumps combination and dosage level (6 possible
pump combinations and 5 different dosage levels), then the
row entries of each matrix were normalized using the total
of each row to obtain the following Markovian transition
matrices.
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