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ABSTRACT Min-Max algorithm was widely used as a simple received signal strength (RSS-) based
algorithm for indoor localization due to its easy implementation. However, the original Min-Max algorithm
only achieves coarse estimation in which the target node (TN) is regarded as the geometric centroid of the
area of interest determined by measured RSS values. Although extended Min-Max (E-Min-Max) methods
using weighted centroid instead of geometric centroid were recently proposed to cope with this problem,
the improvement in the localization accuracy is still limited. In this paper, an improved Min-Max algorithm
with area partition strategy (Min-Max-APS) is proposed to achieve better localization performance. In the
proposed algorithm, the area of interest is first partitioned into four subareas, each of which contains a vertex
of the original area of interest. Moreover, a minimum range difference criterion is designed to determine
the target affiliated subarea whose vertex is ‘‘closest’’ to the target node. Then the target node’s location
is estimated as the weighted centroid of the target affiliated subarea. Since the target affiliated subarea is
smaller than the original area of interest, the weighted centroid of the target affiliated subarea will be more
accurate than that of the original area of interest. Simulation results show that the localization error (LE)
of the proposed Min-Max-APS algorithm can drop below 0.16 meters, which is less than one-half of that
of the E-Min-Max algorithm, and is also less than one-seventh of that of the original Min-Max algorithm.
Moreover, for the proposed Min-Max-APS, 90% of the LE are smaller than 0.38 meters, while the same
percentage of the LE are as high as 0.49meters for the E-Min-Max and 1.12meters for the originalMin-Max,
respectively.

INDEX TERMS Min-Max algorithm, received signal strength (RSS), area partition, indoor localization,
target node (TN).

I. INTRODUCTION
Indoor localization means the process of obtaining locations
of one or more indoor devices to determine the position of
device users, and therefore indoor localization based ser-
vices have become an important extension of Global Posi-
tioning System (GPS) [1]. Localization accuracy is usually
considered as one of the key performances for an indoor
localization system. In the past decade, diverse indoor local-
ization techniques were proposed to obtain high localiza-
tion accuracy [2], [3]. Among them, the received signal
strength (RSS-) based localization technique can provide an
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effective means due to its characteristics of low power and
low complexity [4].

The existing RSS-based localization technique can be
arguably classified into two types: 1) range-free localization
methods and 2) range-based localization methods [5]. In the
range-based cases, it is usually assumed that the measured
RSS values are available to estimate the distance between the
target node (TN) and the anchor nodes (ANs), which can be
used to determine the target node’s location. As an effective
ranging algorithm based on simple geometric considerations,
Min-Max algorithm is regarded as one of the most used for
RSS-Based localization due to its easy implementation [6].

However, the original Min-Max algorithm only achieves
coarse estimation, where the target node’s location is
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estimated as the geometric centroid of the area of inter-
est determined by measured RSS values [6]–[10]. Although
extended Min-Max (E-Min-Max) algorithm [11] and its
improved version, referred to as improved E-Min-Max [12],
both using weighted centroid instead of geometric centroid,
were recently proposed to address this problem, the improve-
ment in the localization accuracy is limited.

In this paper, an improved Min-Max algorithm with area
partition strategy (Min-Max-APS) is proposed to achieve
better localization performance. In the proposed algorithm,
the area of interest is first partitioned into four subareas, each
of which contains a vertex of the original area of interest.
Moreover, a minimum range difference criterion is designed
to determine the target affiliated subarea whose vertex is
‘‘closest’’ to the target node. Then the target node’s location
is estimated as the weighted centroid of the target affiliated
subarea. Because the target affiliated subarea is smaller than
the original area of interest, it is expected that the weighted
centroid of the target affiliated subarea will be more accurate
than that of the original area of interest.

The rest of this paper is organized as follows. In Section II
we review the related work including the RSS-based indoor
raging model, details about original Min-Max and E-Min-
Max algorithms. Then we present the proposed Min-Max-
APS algorithm in Section III. Furthermore, simulation results
are shown in Section IV, followed by the conclusion in
Section V.

II. RELATED WORK
A. RSS-BASED RANGING MODEL
For RSS-based indoor localization, the relationship between
distance and path loss can be described as log-normal shad-
owing model (LNSM) [13], [14]:

PL (d) = PL (d0)+ 10η · log10

(
d
d0

)
+ Xσ , (1)

wherePL(d) represents the path-loss at a distance d measured
in dBm and PL(d0) is the path-loss at reference distance d0
(in this paper we assume d0 = 1 meter). η is the path-loss
exponent ranging from 2 to 6 in indoor scenarios [15], Xσ
denotes the shadow fading which follows zero mean Gaus-
sian distribution with standard deviation σ . The relationship
between the RSS and the path-loss at a distance d as:

RSS = Pt − PL (d) , (2)

where Pt is the received signal power in dBm. Substituting
(1) into (2), we have:

RSS = A− 10η · log10

(
d
d0

)
− Xσ , (3)

where RSS represents the received signal strength in dBm,
A = Pt − PL (d0) indicates the RSS value measured at the
reference distance d0.

FIGURE 1. Original Min-Max algorithm with three anchor nodes.

B. MIN-MAX ALGORITHM
The originalMin-Max algorithm is illustrated in Fig. 1, where
N anchor nodes are placed at known locations (xi, yi), for
i = 1, 2,· · · ,N , and a target is located at position (xt , yt )
which needs to be determined1. The RSS values from theANs
are measured by the target node to get relevant distances di.
Correspondingly, a square (referred to as bounding box in
this paper) can be obtained around each AN. Each side of
the bounding box is two times the measured distance di.
These bounding-boxes are used to delimit a region where the
position of the TN will be estimated. This region referred to
as ‘‘area of interest’’ is a square whose vertices (i.e., V1, V2,
V3, V4) can be obtained as follows [6]:

V1 =

max (xi − di)︸ ︷︷ ︸
,xv1

,max (yi − di)︸ ︷︷ ︸
,yv1

 ,

V2 =

max (xi − di)︸ ︷︷ ︸
,xv2

,min (yi + di)︸ ︷︷ ︸
,yv2

 ,

V3 =

min (xi + di)︸ ︷︷ ︸
,xv3

,min (yi + di)︸ ︷︷ ︸
,yv3

 ,

V4 =

min (xi + di)︸ ︷︷ ︸
,xv4

,max (yi − di)︸ ︷︷ ︸
,yv4

 , (4)

1For simplicity, only three anchor nodes are shown in Fig. 1. However,
the number of anchor nodes N can be greater than three in practice. For
example, in Section IV we let N = 4.
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where i = 1, 2,· · · ,N , and max(·) and min(·) represent the
maximum and minimum functions, respectively. In the orig-
inal Min-Max algorithm, the position of the TN is estimated
by calculating the geometric average of the vertices of area
of interest as follows [6]:

xt =
min (xi + di)+max (xi − di)

2
,

yt =
min (yi + di)+max (yi − di)

2
. (5)

The originalMin-Max localization algorithm is straightfor-
ward and easy to implement. In the positioning phase, it only
needs a few arithmetic operations, and-that greatly reduce
energy consumption and hardware cost. However, due to the
impact of multipath fading and noise on the measured RSS
values, the original Min-Max algorithm only achieves coarse
estimation in which the TN is regarded as the geometric
centroid of the area of interest determined by measured noisy
RSS values.

C. E-MIN-MAX AND IMPROVED E-MIN-MAX
ALGORITHMS
E-Min-Max and improved E-Min-Max algorithms are
improved versions of the original Min-Max algorithm,
in which a weighted solution instead of the geometric cen-
troid of the original area of interest is used as the target
estimation [11], [12]. Four weightsW1,W2,W3, andW4 were
first proposed in [11], and two more weightsW5 andW6 were
recently presented in [12]. Since the overall performance of
W4 is the best among the six weights and due to the limited
space, in this paper onlyW4 is given as follows [11], [12]:

W4 (j) =
1∑N

i=1

∣∣∣D2
i,j − d

2
i

∣∣∣ , (6)

where Di,j represents the Euclidean distance between the
anchor node ANi and the vertex Vj for j = 1, 2, 3, 4,
as follows:

Di,j =
√(

xi − xvj
)2
+
(
yi − yvj

)2
, (7)

where
(
xvj, yvj

)
denotes the location of the vertex Vj for

j = 1, 2, 3, 4, which can be obtained using eq. (4).
The final estimated position is obtained by calculating the

weighted centroid as follows [11], [12]:

[xt , yt ] =

[∑4
j=1W4 (j) · xj∑4
j=1W4 (j)

,

∑4
j=1W4 (j) · yj∑4
j=1W4 (j)

]
. (8)

E-Min-Max and improved E-Min-Max algorithms deter-
mine the area of interest in the same way as the original
Min-Max algorithm does. However, in order to improve the
localization performance, the position of the TN is estimated
as the weighted centroid instead of the geometric centroid of
the original area of interest. Although the localization accu-
racy can be enhanced by using the two improved versions of
the original E-Min-Max algorithm, the benefit is still limited.

FIGURE 2. Illustration of area partition.

Therefore, in this paper, we try to find a reasonable and
efficient way to handle the original area of interest to achieve
a better localization performance.

III. PROPOSED MIN-MAX-APS ALGORITHM
The proposed Min-Max-APS algorithm can be implemented
via three steps: area partition, determination of target affili-
ated subarea, and calculation of weighted centroid.

A. AREA PARTITION
As shown in Fig. 2, the original square (area of interest)
is divided into four equally sized subareas by the two mid-
perpendicular lines. Each subarea contains a vertex of the
original square. For simplicity and clarity, the subscript of
each vertex is used to indicate the subarea it belongs to.
Hence, the four subareas can be represented as subarea#1,
subarea#2, subarea#3 and subarea#4, respectively. Without
loss of generality, we assume the TN is located in subarea#2
and the estimated area of interest is reduced to a quarter of
the original, the vertices of subarea also changed to V1_2,
V2, V2_3 and centroid C . Via area partition, we reduced the
final localization area of interest to one-fourth of the original
size. Thus, we have eliminated three-quarters of the potential
positioning errors points when compared with positioning
using the original area of interest.

B. DETERMINATION OF TARGET AFFILIATED SUBAREA
In this subsection, a minimum range difference criterion is
designed to determine the target affiliated subarea whose
vertex is ‘‘closest’’ to the target node. In order to determine
the target affiliated subarea, we just need to find which vertex
of the original square is ‘‘closest’’ to the target node by using
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Algorithm 1 Proposed Min-Max-APS Algorithm
Initialization:
1. Locations of anchor nodes ANi (i = 1, 2,· · · ,N ).
Procedure:
1: Calculate the distances di (i = 1, 2,· · · ,N ) using RSS
measurements.
2: Calculate the coordinates of vertices Vj (j = 1,2, 3, 4) and
centroid C using (4) and (5) respectively.
3: for i = 1 to N , j = 1 to 4 do
4: Estimate the subscript of the target affiliated subarea ĵ
using (9) and determine the newly defined area of interest;
5: end for
6: if ĵ=1 then
7: new vertices={V1, (V1 + V2)/2, C , (V1 + V4)/2};
8: elseif ĵ=2 then
9: new vertices={(V1 + V2)/2, V2, (V2 + V3)/2, C};
10: elseif ĵ=3 then
11: new vertices={C , (V2 + V3)/2, V3, (V3 + V4)/2};
12: else ĵ=4 then
13: new vertices={(V1 + V4)/2, C , (V3 + V4)/2, V4};
14: end if
15: for j = 1 to 4 do
16: Calculate the weights (6) using the new vertices for the
newly defined area of interest;
17: end for
18: Calculate the estimated location (xt ,yt ) by substituting the
weights (6) into (8).

the following criterion:

index ĵ = arg
j
min

∣∣di − Di,j∣∣
i=1,2,··· ,N
j=1,2,3,4

, (9)

where ĵ ∈ {1, 2, 3, 4} denotes the estimated identity of the
vertex of the original area of interest which is ‘‘closest’’ to the
target node, and |·| represents the absolute value of a scalar
parameter. Using geometrical relationship we see that the
criterion (9) is based on the fact that the closer the target node
is to a vertex Vj, the smaller the range difference

∣∣di − Di,j∣∣
will be, and at the same time, the more likely the target
node is located at the subarea which the vertex Vj belongs
to. Therefore, the target affiliated subarea can be effectively
estimated using (9).

C. CALCULATION OF WEIGHTED CENTROID
After the target affiliated subarea is determined, it can be
regarded as the newly defined area of interest whose vertices
will be used to calculate the weighted centroid according
to (6)-(8). It is noted that the coordinates of four vertices of the
target affiliated subarea are known, or can be easily calculated
using geometrical relationship. For example, if subarea#2
is determined as the newly defined area of interest whose
vertices are V1_2, V2, V2_3, and C , firstly the coordinates of
vertexV2 are known because vertexV2 is one of vertices of the

TABLE 1. Important simulation parameters.

original area of interest. Moreover, the coordinates of vertices
C , V1_2, and V2_3 can be calculated using (4).
Based on the above discussions, the entire procedure of the

proposed Min-Max-APS algorithm is given in Algorithm 1.

IV. SIMULATIONS RESULTS
An indoor localization scenario based on MATALB simu-
lation platform is designed to evaluate the performance of
the proposed Min-Max-APS algorithm. In the simulation,
themeasured area is regarded as a 20m×20m square grid with
441 uniformly distributed sampling locations ranging from
(0, 0) to (20, 20). For an indoor positioning system, the local-
ization accuracy is usually enhancedwhenmore anchor nodes
are utilized in the measured area. Nevertheless, if more actual
anchor nodes are deployed, the hardware cost and localiza-
tion system complexity will be increased [1]. In addition,
the placement of four anchor nodes at the four corners of a
square area has been widely implemented and tested [12],
[16], [17] and it shows good estimation performance of the
distance between target and anchor nodes [18]. Therefore,
in this paper we only consider the case with N = 4, where
four ANs are placed at the corners of the measured area,
i.e., AN1(0, 0), AN2(0, 20), AN3(20, 20), AN4(20, 0).
For each signal-to-noise ratio (SNR) value, 200 Monte

Carlo trials are conducted to obtain an averaged localization
performance. In each trial, a sampling point is selected at
random from the measured area as the target location. The
localization error (LE) and its cumulative distribution func-
tions (CDFs) are evaluated for the proposed Min-Max-APS
algorithm, where the LE is defined as

LE =
1
M

M∑
m=1

‖x̂m − xm‖2, (10)

where M = 200 is the number of Monte Carlo trials, x̂m and
xm denote the estimated and exact positions of the target node
in the m-th Monte Carlo trial, respectively. ‖x̂m − xm‖2 is the
Euclidean distance between x̂m and xm. Parameters η and A
are set as ‘‘3’’ and ‘‘−35dBm’’ which are typical values for
indoor positioning scenarios reported in [15]. Some important
simulation parameters are given in Table 1.

First, in Fig. 3 we illustrate the probability distribution of
incorrect partitioning at all sampling grids of target locations
in the measured area when SNR=15 dB. Moreover, Fig. 4
presents an example of the incorrect partitioning distribution
when SNR=15 dB. From Figs. 3 and 4, we see that for our
proposed algorithm, there are three potential cases whichmay
result in incorrect partitioning due to the measurement errors
in di with high probability as follows:
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TABLE 2. Comparison of localization error for correct and incorrect partitioning cases at eleven sampled target locations (SNR = 15 dB).

FIGURE 3. Probability distribution of incorrect partitioning at all sampling
grids of target locations in the measured area when SNR = 15 dB.

FIGURE 4. An example of incorrect partitioning distribution when
SNR = 15 dB.

i) When the target node is close to the horizontal
mid-perpendicular line of the measured area, it is most likely
that there will be two pairwise di measurements with similar
value. For example, we have d1 ≈ d2, and the values of
D11 and D22 are also similar. In this case, according to the
partitioning criterion (see eq. (9), page 4), it is very likely

FIGURE 5. Frequency distribution of the difference between the identity
of an exact target affiliated subarea j and its estimated index ĵ , namely
|j − ĵ | for j , ĵ ∈

{
1, 2, 3, 4

}
, when SNR = 15 dB.

that an incorrect partitioning will occur between subarea#1
and subarea#2 due to the measurement errors in di. At the
same time, we also have d3 ≈ d4, and the values of D33 and
D44 are also similar, and therefore it is highly possible that
an incorrect partitioning will happen between subarea#3 and
subarea#4.

ii) Similar to the case of horizontal mid-perpendicular line,
when the target node is near the vertical mid-perpendicular
line, incorrect partitioning results may be observed between
subarea#1 and subarea#4, and between subarea#2 and
subarea#3, respectively.

iii) Particularly, incorrect partitioning results may be found
among the four subareas namely subarea#1, subarea#2,
subarea#3, and subarea#4, when the target node is adjacent
to the centroid of the measured area (intersection of hor-
izontal and vertical mid-perpendicular lines), or the target
node is near one of the four corners of the measured area.
It is worth mentioning that, when the target node is near
any one of the four corners of the measured area, where
four anchor nodes ANi (i = 1, 2, 3, 4) are placed respec-
tively, the measured distance between the target node and
the nearest anchor node will be very small, and so will the
resulting original area of interest be. Without loss of gener-
ality, we assume that the target node is located near the AN2,
we have d1 ≈ D11, d2 ≈ D22, d3 ≈ D33, d4 ≈ D44, and
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FIGURE 6. Localization error versus signal-to-noise-ratio.

FIGURE 7. Cumulative distribution functions (CDFs) of LE.

d1 ≈ d3. In this case, according to the partitioning crite-
rion (9), it is very likely that incorrect partitioning will occur
among subarea#1, subarea#2, subarea#3 and subarea#4.
Fortunately, by observing Fig. 1 it can be seen that since d2 is
very small, the resulting original area of interest is also very
small. That means the difference of the localization accuracy
between correct partitioning and incorrect partitioning will be
very small (this can be demonstrated by the results presented
in Table 2).

Fig. 5 shows the frequency distribution of the difference
between the identity of an exact target affiliated subarea j and
its estimated index ĵ, namely |j− ĵ| for j, ĵ ∈ {1, 2, 3, 4}, when
SNR = 15 dB. According to Fig. 2, we see that |j − ĵ|=0
means the correct partitioning cases, |j − ĵ|=1 and |j − ĵ|=3
indicate the incorrect partitioning cases between adjacent
subareas (between subarea#1 and subarea#2, subarea#2 and
subarea#3, subarea#3 and subarea#4, or between subarea#1
and subarea#4), and |j − ĵ|=2 represents the incorrect parti-
tioning cases between diagonal subareas (between subarea#1
and subarea#3, or between subarea#2 and subarea#4). From
Fig. 5, we see that incorrect partitioning between adjacent
subareas acts as a dominant pattern of the partitioning errors.

FIGURE 8. Accuracy comparison of the original Min-Max [6],
the E-Min-Max [11], and the proposed Min-Max-APS, at a sampling target
location (5,6) when SNR = 30 dB.

FIGURE 9. Twelve sampled target locations for the case that the target
node locates outside the internal zone.

Table 2 presents the comparison of localization perfor-
mance for correct and incorrect partitioning cases at eleven
sampled target locations when SNR = 15 dB. The eleven
target locations are sampled at the horizontal and vertical
mid-perpendicular lines and two corners of the measured
area, where incorrect partitioning will occur frequently. From
Table 2 we see that the difference of the localization accuracy
between correct partitioning and incorrect partitioning cases
is less than 2.22 cm. Therefore, our proposed algorithm is
robust to partitioning errors.

In Fig. 6, the LE performance is presented for the
original Min-Max [6], E-Min-Max [11], and the proposed
Min-Max-APS algorithms. We see that when the SNR is
greater than 15 dB, the LE value of the proposed Min-Max-
APS drops below 0.16 meters, which is less than one-half of
that of the E-Min-Max [11], and is also less than one-seventh
of that of the original Min-Max [6].

Moreover, Fig. 7 shows the CDF profiles of the LE
values with SNR ranging from 0 to 30 dB, for the
original Min-Max [6], E-Min-Max [11], and the proposed
Min-Max-APS algorithms, respectively. We see that for the
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TABLE 3. Comparison of localization accuracy for the three investigated algorithms when the target node locates outside the internal
area and SNR = 30 dB.

proposed Min-Max-APS, 90% of the LE values are smaller
than 0.38 meters. However, for the E-Min-Max [11] and the
original Min-Max [6], the same percentage of the LE values
are as high as 0.49 meters and 1.12 meters, respectively.

Finally, in Fig. 8, an accuracy comparison at a sampling
target location (5, 6) when SNR= 30 dB is illustrated for the
three investigated algorithms to demonstrate the effectiveness
of the proposed Min-Max-APS algorithm. It is seen that the
target position of the proposed Min-Max-APS algorithm is
closest to the real target compared to the originalMin-Max [6]
and E-Min-Max [11] algorithms.

In this paper, we assume that the anchor nodes are deployed
at the four corners of the measured square area and therefore
the target node is always inside the internal zone among
anchor nodes. This is because for a given localization algo-
rithm, the localization accuracy for the case that the target
node locates in the internal zone is usually better than that
for the case that the target node locates outside the internal
zone. Moreover, we expect that our proposed algorithm will
also achieve similar performance gains for the case that the
target node locates outside the internal zone. In order to verify
our analysis, we evaluated the localization accuracy of the
three investigated algorithms for the case that for the case that
the target node locates in the internal zone. Fig. 9 shows the
twelve sampled target locations for the case that the target
node locates outside the internal zone in our simulations.
Moreover, Table 3 presents the comparison of localization
accuracy for the three investigated algorithms when the target
node locates outside the internal area and SNR = 30 dB.
We see that at all the twelve sampled target locations, our pro-
posed algorithm still outperforms the original Min-Max [6]
and E-Min-Max algorithms [11].

V. CONCLUSION
In this paper, an improved Min-Max algorithm with area
partition strategy has been proposed to achieve high-precision
localization performance. In the proposed Min-Max-APS
algorithm, the original area of interest is first divided into
four subareas each of which contains a vertex of the origi-
nal area of interest. Moreover, a minimum range difference
criterion is designed to determine the newly defined area

of interest, which can be used to calculate a more accurate
weighted centroid. Simulation results show that compared to
the original Min-Max [6] and E-Min-Max [11] algorithms,
the proposed Min-Max-APS algorithm possesses much more
accurate localization performance, and it is the most robust in
the whole measured area. Our future research will focus on
refining the localization accuracy by iterative implementation
of the proposedMin-Max-APS algorithm and optimization of
the deployment of anchor nodes.
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