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ABSTRACT The Sawada-Kotera equations illustrate the non-linear wave phenomena in shallow water,
ion-acoustic waves in plasmas, fluid dynamics, etc. In this article, the two-mode Sawada-Kotera equation
(tmSKE) occurring in fluid dynamics is considered which is important model equations for shallow water
waves, the capillary waves, the waves of foam density, the electro-hydro-dynamical model. The improved
F-expansion and generalized exp(−φ(ζ ))-expansion methods are utilized in this model and abundant of
solitary wave solutions of different kinds such as bright and dark solitons, multi-peak soliton, breather
type waves, periodic solutions, and other wave results are obtained. These achieved novel solitary and
other wave results have significant applications in fluid dynamics, applied sciences and engineering.
By granting appropriate values to parameters, the structures of few results are presented in which many struc-
tures are novel. The graphical moments of the results are provided to signify the impact of the parameters.
To explain the novelty between the present results and the previously attained results, a comparative study has
been carried out. The restricted conditions are also added on solutions to avoid singularities. Furthermore,
the executed techniques can be employed for further studies to explain the realistic phenomena arising in
fluid dynamics correlated with any physical and engineering problems.

INDEX TERMS Improve F-expansion method, generalized exp(−φ(ζ ))-expansion method, two-mode
Sawada-Kotera equation, traveling and dual wave solutions, breather waves, periodic solitons.

I. INTRODUCTION
The dynamic complexity of physical phenomena in the real
world can be expressed by the changes in temporal and
spatial events. The temporal and spatial changes of physi-
cal phenomena are greatest articulated by partial differen-
tial equations (PDEs). The nonlinear PDEs are utilized for
expressing various physical phenomena in the real world
to get an insight through qualitative and quantitative fea-
tures of many models that arise in diverse fields. Nonlinear
wave phenomena emerge in plasma physics, fluid mechanics,
solid-state physics, dynamics of chemical, non-linear optics,
population model and other fields of science and engineer-
ing [1]–[19]. The analytical solutions of non-linear PDEs
play a decisive part in non-linear science as they inform
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us deep imminent into the physical characteristics of the
model and can provide further physical information to help
in other applications. In recent years, the approximate and
exact solutions of non-linear PDEs have attracted more and
more attention, as they are utilized to illustrate the nonlinear
complex phenomena in dissimilar scientific areas. Numer-
ous real-world problems are altered into equations mathe-
matically by differential equations. Thus, the finding wave
results of all kinds of PDEs are a major problem, such as the
present direction of non-linear science, which originated from
the research of chemistry, physics, material science, biology,
and many more, and has a burly practical backdrop. They
have significant realistic applications and theoretical study in
mathematics.

Lately, a novel family of nonlinear PDEs have been rec-
ognized in the name of ‘‘dual-mode’’ or ‘‘two-mode’’ about
temporal and spatial derivatives. With regard to this curiosity,
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researchers have established some dual-mode nonlinear
PDEs, namely two-mode (tm) mKdV equation [20], [21],
tm KdV equation [10], [22], tm Sharma-Tasso-Olver equa-
tion [15], tm fifth order KdV (tmfKdV) equation [5], [23],
two-mode Burger equation (tmBE) [24], tm Ostrovsky equa-
tion [25], tm perturbed Burger (tmPB) equation [25], tm KdV
Burgers (tmKdVB) equation [26], tmKadomtsev Petviashvili
(tmKP) equation [27], [28], two-mode dispersive Fisher
(tmdF) equation [29], tm Kuramoto-Sivashinsky (tmKS)
equation [30], tm Boussinesq Burgers (tmBB) equation [31],
two-mode coupled KdV and mKdV [32], [33], two-mode
non-linear Schrödinger (tmNLS) [34], and tmHirota Satsuma
coupled KdV (tmHSKdV) [35] equations and the related
dual-wave solutions are analyzed by different methods,
such as Tanh expansion technique, (G′/G)-expansion tech-
nique, rational sine-cosine technique, Kudryshov technique,
simplified Hirota technique, tanh-coth tachnque, sech-csch
technique, Fourier spectral technique, Bäcklund transforma-
tion scheme and trigonometric function technique [20]–[35].
As results, few solitons results in the form Kink, Kinks type
of multiple soliton, periodic wave of singular kind, dark
and bright solitons solutions have been conceded out for the
aforementioned models.

The researcher Wazwaz [5] developed the tmSKE from
the tmfKdV equation, and few multiple solitons results were
determined by the simplified Hirota technique. Later on,
the researchers in [23] investigated the tmfKdV model and
established someKink, bright and periodic solutions in singu-
lar form by using sine-cosine function and Kudryashov tech-
niques. The authors in [18] were used modified Kudryashov
and auxiliary equation methods, and dual wave solutions
were constructed. It should be pointed out that the tmSKE is
a special case of the tmfKdV equation. As far as the author is
aware, although some two-mode PDEs have been extensively
studied, the contributions to the above tmSKE are limited.
It can be seen from the literature that there is room for further
study of the tmSKE through the improved F-expansion and
generalized exp(−φ(ζ ))-expansion methods, as well as the
illustrating their physical explanations. The results executed
by the projected methods are to be novel in the sense of
methods application.

Several powerful and systematic methods (analytic, semi-
analytic, and numerical methods) have been developed for
studying non-linear PDEs [29]–[62], such as modified direct
algebraic technique, Hirota bilinear technique, modified sim-
ple equation technique, Bäcklund transformation scheme,
F-expansionmethod,modifiedKudryashovmethod, Darboux
transform technique, (G′/G)-expansion technique, rational
sine-cosine technique, inverse scattering scheme, auxiliary
equation method, painlevé analysis method, trigonometric
function technique, tanh/coth method, sine and sinh Gordon
equation expansion methods, general symmetry technique,
variational iteration technique, reduced differential trans-
form method, Fourier spectral technique, finite difference
technique, Adomian decomposition technique, finite element
technique, the wavelet technique and other techniques.

This work aims to obtain solitons and other wave results
of tmSKE. It is of interest to note here that the gener-
alized exp(−φ(ζ ))-expansion method is an extended form
of the exp(−φ(ζ ))-expansion method, and the improved
F-expansion method is also an extended form of F-expansion
method. Thus, motivated by the existing literature, a modest
effort has been made in this study to construct some new
dual-wave solutions to the TmSK equation via the project
methods. The solutions attained by the improved F-expansion
and generalized exp(−φ(ζ ))-expansion methods are to be
new in the sense of methods application. The constructed
results are novel and more general. To our best knowledge,
these approaches are not utilized to address the early work on
this equation.

This paper is structured as follows. In Section 1, specifies
the introduction. In Section 2, a summary of the general
form of tm standard and tm SK equations are summarized.
In Section 3, the review of the improved F-expansion and
generalized exp(−φ(ζ ))-expansion techniques are depicted.
The constructed results from the investigation are given in
Section 4. In Section 5, a general discussion and graphical
illustrations of some acquired solutions are presented. Finally,
the conclusion and future recommendations of the article are
illustrated in Section 6.

II. FORMULATION OF MATHEMATICAL MODELS
A. GENERAL TYPE OF DUAL-MODE STANDARD MODEL

The general type of the two-mode or dual-mode model
proposed by Korsonski [10] is as

∂2u
∂t2
− ν

∂2u
∂x2
+

(
∂

∂t
− βν

∂

∂x

)
G
(
u, u

∂u
∂x
, . . .

)
+

(
∂

∂t
− γ ν

∂

∂x

)
N
(
∂2u
∂r∂x

, r ≥ 2
)
= 0, (1)

the above equation (1) is recognized from the equation of
standard mode:

∂u
∂t
+ N

(
u, u

∂u
∂x
, . . .

)
+ L

(
∂2 u
∂r∂x

, r ≥ 2
)
= 0.

In equation (1), the function u(x, t) is an unknown with
(t, x) ∈ (−∞,∞), and ν > 0 is velocity of the phase,
β ≤ 1, γ ≤ 1, β and γ symbolize nonlinearityjand dis-
persion parameters respectively. The terms L

(
∂2 u
∂r∂x , r ≥ 2

)
and N

(
u, u ∂u

∂x , . . .
)
signify the terms of linear and nonlinear

respectively.

B. DUAL-MODE SAWADA-KOTERA MODEL
The SKE in standard form having two non-linear terms [5]
has as

∂u
∂t
+ 5

∂

∂x

(
u3

3
+ u

∂2u
∂x2

)
+
∂5u
∂x5
= 0, (2)

in above equation, the terms ∂5 u
∂x5

and ∂
∂x

(
u3
3 + u

∂2 u
∂x2

)
are

linear and nonlinear respectively.
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Merging the sense of Korsunsky [10], and follow
Wazwaz [5], the tmSKE of the standard SKE precises by
equation (2) is presented as

∂2u
∂t2
− ν

∂2u
∂x2
+

(
∂

∂t
− βν

∂

∂x

)
∂

∂x

(
5u3

3
+ 5u

∂2u
∂x2

)
+

(
∂

∂t
− γ ν

∂

∂x

)
∂5u
∂x5
= 0. (3)

Obviously, for ν = 0, the tmSKE specified through equa-
tion (3) after integrating the relevant time t has been simpli-
fied to the standard mode SKE given through equation (2).

The equation (3) illustrates the proliferation of two moving
waves under the persuade of phase velocity ν, dispersion (γ ),
and non-linearity (β) factors.

III. PORTRAYAL OF PROPOSED METHODS
Here, we reveal the algorithms of suggested tech-
niques namely as improved F-expansion and generalized
exp(−φ(ζ ))-expansion methods for constructing the wave
results of two-mode Sawada-Kotera model. The general non-
linear PDE has as

G (v, vx , vvx , vt , vxx , vvxx ,wtt , . . . . . . . . .) = 0, (4)

where the polynomial function G having unknown function
v(x, t) with respect to a few specific independent variables
x and t , that also having derivative terms of linear and non-
linear. Assuming the transformation for changing indepen-
dent variables into sole variable has as

v(x, t) = U (ζ ), ζ = kx − ωt + θ, (5)

where the constant k and ω are wave length and frequency.
Utilizing (5), the equation (4) is converting into ODE as

F
(
U ,U ′,U ′′,UU ′′, . . . . . .

)
= 0, (6)

where U ′ = dU
dζ and F is a polynomial of U and its

derivatives.

A. IMPROVED F-EXPANTION METHOD
The main steps are as
1st Step: Consider the solution of Eq.(6) has as

U (ζ ) =
N∑
i=0

Ai (µ+ F(ζ ))i +
−N∑
j=−1

B−j (µ+ F(ζ ))j , (7)

where the constants Ai,B−j, µ are real and the function F(ζ )
in equation (7) pledges the below ODE

F ′(ζ ) = δ0 + δ1F(ζ )+ δ2F2(ζ )+ δ3F3(ζ ), (8)

where δ0, δ1, δ2 and δ3 are real constants.
2nd Step: By utilizing homogeneous balance principle on

Eq.(6), the positive integer N is obtained.
3rd Step: Deputizing Eq.(7) into Eq.(6) and taking the

various coefficients of F i(ζ )
(µ+F(ζ ))j to zero, capitulate a system

of equation. By using Mathematica, this system is solved and
constant values can be achieved. After substituting constant
values and solutions of Eq.(6), the wave solutions of Eq.(7)
are constructed.

B. GENERALIZED EXP(−φ(ζ ))-EXPANSION METHOD
The main steps are as
1st Step: Assume the solution of Eq.(6) has the form as

U (ζ ) =
N∑
i=0

Ai (exp(−φ(ζ )))i , (9)

where Ai (0 ≤ i ≤ N ) are real constants such that AN 6= 0
and φ = φ(ζ ) pledges the ODE as

φ′(ζ ) = a exp(−φ(ζ ))+ b exp(φ(ζ ))+ c, (10)

where a, b, c are real constants.
2nd Step: Utilizing homogeneous balance principle on

Eq.(6), the positive integer N is obtained.
3rd Step: By Deputizing equation (9) into (6) and poly-

nomial obtained in e(−φ(ζ )), and taking diverse powers of
(e(−φ(ζ )))i to zero, capitulate a system of equation. By resolv-
ing this system and reverse substitution, we construct many
exact solutions for Eq.(4).

IV. APPLICATIONS
In this part, we construct the solitons and other waves
solutions of two-mode Sawada-Kotera equation by employ-
ing described methods. By employing the transformation
described in Eq.(5), the Eq.(3) is converted into ODE as(
ω2
− k2ν2

)
U ′′ − 5k (ω + βkν)

(
k2UU (iv)

+ 2k2U ′U ′′′ + k2
(
U ′′
)2
+ U2U ′′ + 2U

(
U ′
)2)

− k5 (ω + γ kν)U (vi)
= 0. (11)

A. APPLICATION OF IMPROVED F-EXPANSION METHOD
Employing balancing principle on Eq.(11) and solution

of equation (11) assumed as

U (ζ ) = A0 + A1 (µ+ F(ζ ))+ A2 (µ+ F(ζ ))2

+
B1

µ+ F(ζ )
+

B2
(µ+ F (ζ ))2

. (12)

By substituting Eq.(12) into Eq.(11) and deputing the
coefficients of F i(ζ )

(µ+F(ζ ))j to zero, we attained a equations

system A0,A1,A2,B1,B2, δ0, δ1, δ2, δ3, β, γ, k, ν, ω and θ .
Mathematica 9 was utilized for solving this equation system.
We attain the families of wave results as:
1st Family: Here assume δ0 = δ3 = 0,
Set 1:

A0 = −

√
3
(
γ 2 − 1

)
ν
(
12δ22µ

2
− 12δ2δ1µ+ δ21

)
δ21
√
5(β − γ )

,

A1 = −
12δ2

√
3
(
γ 2 − 1

)
ν (δ1 − 2δ2µ)

δ21
√
5(β − γ )

,

A2 = −
12δ22

√
3
(
γ 2 − 1

)
ν

δ21
√
5(β − γ )

,
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B1 = B2 = 0, k = ∓
4
√
4
(
γ 2 − 1

)
ν

δ1
4
√
15(β − γ )

,

ω = ±
γ ν 4
√
4
(
γ 2 − 1

)
ν

δ1
4
√
15(β − γ )

. (13)

Set 2:

A0 = −
3k2

(
12δ22µ

2
− 12δ2δ1µ+ δ21

)
2

,

A1 = 18δ2k2 (2δ2µ− δ1) ,

A2 = −18δ22k
2,B1 = 0,

B2 = 0, ν =
15δ41k

4(β − γ )

4
(
γ 2 − 1

) , ω =
15γ δ41k

5(γ − β)

4
(
γ 2 − 1

) .

(14)

Set 3:

A0 =

√
3
(
γ 2 − 1

)
ν
(
12δ22µ

2
− 12δ2δ1µ+ δ21

)
δ21
√
5(β − γ )

,

A1 =
12δ2

√
3
(
γ 2 − 1

)
ν (δ1 − 2δ2µ)

δ21
√
5(β − γ )

,

B1 = 0, B2 = 0, A2 =
12δ22

√
3
(
γ 2 − 1

)
ν

δ21
√
5(β − γ )

,

k = ±
4
√
4
(
1− γ 2

)
ν

δ1
4
√
15(β − γ )

, ω = ∓
γ ν 4
√
4
(
1− γ 2

)
ν

δ1
4
√
15(β − γ )

. (15)

The soliton results of Eq.(3) from sets 1 and 2 are con-
structed in the form as

u1,2(x, t)

= −

√
3
(
γ 2 − 1

)
ν
(
δ2eδ1(ζ+ζ0)

(
δ2eδ1(ζ+ζ0) + 10

)
+ 1

)
√
5(β − γ )

(
δ2eδ1(ζ+ζ0) − 1

)2 ,

δ1 > 0. (16)

u3,4(x, t)

= −

√
3
(
γ 2 − 1

)
ν
(
δ2eδ1(ζ+ζ0)

(
δ2eδ1(ζ+ζ0) − 10

)
+ 1

)
√
5(β − γ )

(
δ2eδ1(ζ+ζ0) + 1

)2 ,

δ1 < 0. (17)

u5(x, t)

= −
3δ21k

2
(
δ2eδ1(ζ+ζ0)

(
δ2eδ1(ζ+ζ0) + 10

)
+ 1

)
2
(
δ2eδ1(ζ+ζ0) − 1

)2 ,

δ1 > 0. (18)

u6(x, t)

= −
3δ21k

2
(
δ2eδ1(ζ+ζ0)

(
δ2eδ1(ζ+ζ0) − 10

)
+ 1

)
2
(
δ2eδ1(ζ+ζ0) + 1

)2 ,

δ1 < 0. (19)

Similar-way, one can construct more wave results of Eq.(3)
from set 3.

In solution (16), the restricted conditions to evade sin-
gularities are β 6= γ and δ 6= 1

eδ1(ζ+ζ0)
. In solution (17),

the restricted conditions to evade singularities are β 6= γ and
δ 6= − 1

eδ1(ζ+ζ0)
.

In solutions (18) and (19), the restricted conditions to evade
singularities are δ 6= 1

eδ1(ζ+ζ0)
and δ 6= − 1

eδ1(ζ+ζ0)
.

2nd Family: In this family, we assume as δ1 = δ3 = 0,
Set 1:

A0 = −

√
3
(
1− γ 2

)
ν
(
3δ2µ2

+ 2δ0
)

δ0
√
5(γ − β)

,

A1 =
6µδ2

√
3
(
1− γ 2

)
ν

δ0
√
5(γ − β)

, A2 = −
3δ2
√
3
(
1− γ 2

)
ν

δ0
√
5(γ − β)

B1 = 0, B2 = 0, k = ∓
4
√(

1− γ 2
)
ν

4
√
60δ20δ

2
2(γ − β)

,

ω = ±
γ ν 4
√(

1− γ 2
)
ν

4
√
60δ20δ

2
2(γ − β)

. (20)

Set 2:

A0 =

√
3
(
1− γ 2

)
ν
(
3δ2µ2

+ 2δ0
)

δ0
√
5(γ − β)

,

A1 = −
6µδ2

√
3
(
1− γ 2

)
ν

δ0
√
5(γ − β)

, A2 =
3δ2
√
3
(
1− γ 2

)
ν

δ0
√
5(γ − β)

B1 = 0, B2 = 0, k = ±
(−1)3/4 4

√
γ 2 − 1 4

√
ν

√
2 4
√
15 4
√
δ20δ

2
2(γ − β)

,

ω = ∓
(−1)3/4γ 4

√
γ 2 − 1ν5/4

√
2 4
√
15 4
√
δ20δ

2
2(γ − β)

. (21)

The wave solutions of Eq.(3) are constructed from solution
sets 1 and 2 as

u7,8(x, t)

= −

√
3
(
1− γ 2

)
ν
(
3 tan2

(√
δ0δ2(ζ + ζ0)

)
+ 2

)
√
5(γ − β)

,

δ0δ2 > 0. (22)

u9,10(x, t)

=

√
3
(
1− γ 2

)
ν
(
3 tanh2

(√
−δ0δ2(ζ + ζ0)

)
− 2

)
√
5(γ − β)

,

δ0δ2 < 0. (23)

u11,12(x, t)

=

√
3
(
1− γ 2

)
ν
(
3 tan2

(√
δ0δ2(ζ + ζ0)

)
+ 2

)
√
5(γ − β)

,

δ0δ2 > 0. (24)
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FIGURE 1. By granting appropriate values to parameters, the formation of solutions (16) and (17) are revealed as: Fig(1-A) Dark solitary wave and its
2-dimensional (2D) in Fig(1-B), Fig(1-C) bright soliton and its 2D in Fig(1-D).

u13,14(x, t)

=

√
3
(
1− γ 2

)
ν
(
2− 3 tanh2

(√
−δ0δ2(ζ + ζ0)

))
√
5(γ − β)

,

δ0δ2 < 0. (25)

In solutions (22) and (23), the restricted condition to evade
singularity is γ 6= β.

3rd Family: In this family, we assume as δ3 = 0,
Set 1: See (26), as shown at the bottom of the page.
Set 2:

A0 = −

√
3
(
γ 2 − 1

)
ν
(
12δ22µ

2
+ 4δ2 (2δ0 − 3δ1µ)+ δ21

)(
δ21 − 4δ0δ2

)√
5(β − γ )

,

A1 = −
12δ2

√
3
(
γ 2 − 1

)
ν (δ1 − 2δ2µ)(

δ21 − 4δ0δ2
)√

5(β − γ )
,

A0 = −
3k2

2

(
12δ22µ

2
+ 4δ2 (2δ0 − 3δ1µ)+ δ21

)
, A1 = −18δ2k2 (δ1 − 2δ2µ) , A2 = −18δ22k

2, B1 = 0,

B2 = 0, ω =
15k5

(
δ21 − 4δ0δ2

)2
∓

√
225

(
δ21 − 4δ0δ2

)
4k10 + 16k2ν

(
15β

(
δ21 − 4δ0δ2

)
2k4 + 4ν

)
8

,

γ = −
15k5

(
δ21 − 4δ0δ2

)2
∓

√
225

(
δ21 − 4δ0δ2

)
4k10 + 16k2ν

(
15β

(
δ21 − 4δ0δ2

)
2k4 + 4ν

)
8kν

. (26)
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FIGURE 2. By granting appropriate values to parameters, the formation of solutions (18) and (19) are revealed as: Fig(2-A) is Multi-peak solitons and
its 2D in Fig(2-B), Fig(2-C) is solitary wave of anti-Kink type and its 2D in Fig(2-D).

A2 = −
12δ22

√
3
(
γ 2 − 1

)
ν(

δ21 − 4δ0δ2
)√

5(β − γ )
, B1 = 0, B2 = 0,

k = ∓

√
2 4
√(
γ 2 − 1

)
ν

4
√
15
(
δ21 − 4δ0δ2

)2
(β − γ )

,

ω = ±
γ ν 4
√
4
(
γ 2 − 1

)
ν

4
√
15
(
δ21 − 4δ0δ2

)2
(β − γ )

. (27)

Thewave results of Eq.(3) from sets 1 and 2 are constructed
as follows

u15,16(x, t)

=
3k2

2

δ21
3 tan2


√
4δ0δ2 − δ21

2
(ζ + ζ0)

− 10



− 4δ0δ2

3 tan2


√
4δ0δ2 − δ21

2
(ζ + ζ0)


+ 2)+ 12

√
4δ0δ2−δ21δ1 tan


√
4δ0δ2 − δ21

2
(ζ+ζ0)

 ,
4δ0δ2 > δ21; (28)

u17,18(x, t)

=

√
3
(
γ 2 − 1

)
ν(

δ21 − 4δ0δ2
)√

5(β − γ )

×

δ21
3 tan2


√
4δ0δ2 − δ21

2
(ζ + ζ0)

− 10
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FIGURE 3. By granting appropriate values to parameters, the shape of solutions (22) and (23) are shown as: Fig(3-A) dark periodic solitary wave and
its 2D in Fig(3-B), Fig(3-C) is dark soliton and its 2D in Fig(3-D).

+ 12
√
4δ0δ2 − δ21δ1 tan


√
4δ0δ2 − δ21

2
(ζ + ζ0)


− 4δ0δ2

3 tan2


√
4δ0δ2 − δ21

2
(ζ + ζ0)

+ 2

 ,
4δ0δ2 > δ21; (29)

where ζ0 is constant.
In solutions (24) and (29), the restricted conditions to evade

singularities are β 6= γ and γ 6= β & δ21 6= 4δ0δ2.

B. APPLICATION OF GENERALIZED
EXP(−φ(ζ ))-EXPANSION METHOD
In this part, we employ generalized exp(−φ(ζ ))-expansion
method on two-mode Sawada-Kotera for constructing the

solitons and more waves solutions. Employing balancing
principle of homogeneous on Eq.(11) and assume the wave
solution as

U (ζ ) = A0 + A1 exp(−φ(ζ ))+ A2 (exp(−φ(ζ )))2 . (30)

By substituting Eq.(30) into Eq.(11) and deputing the coef-

ficients of
(
e(−φ(ζ ))

)i
to zero, we achieved a equations system

A0,A1,A2, a, b, c, k, ν, ω, η, β. Mathematica 9 was utilized
to resolve the equations set. We attained below families as:
1st Family:

A0 = −
2
(
8abk2 + c2k2

)
3

, A1 = −8ack2,

A2 = −8a2k2, ω = ∓kν, γ =
(10β ∓ 1)

9
. (31)

2nd Family:

A2 = 0, ω = ∓kν, γ = ±1, β = ±1. (32)
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FIGURE 4. By granting appropriate values to parameters, the shape of solutions (24) and (29) are shown as: Fig(4-A) Multi peak soliton of different
amplitude and its 2D in Fig(4-B), Fig(4-C) periodic solitary wave and its 2D in Fig(4-D).

3rd Family: See (33), as shown at the bottom of the page.
4th Family:

A1 = −8ack2, A2 = −8a2k2, ω = ±kν, β = ∓1,

γ = ∓1. (34)

From 1st family, the different forms of solitons and other
solutions of Eq.(3) are obtained as
Type I: For a = 1, b 6= 0, c2 − 4b > 0, (35), as shown at

the bottom of the next page.

Type II: For a = 1, b 6= 0, c2 − 4b < 0, (36), as shown
at the bottom of the next page.
Type III: For a = 1, b = 0, c 6= 0, c2 − 4b > 0,

u5,6(ζ )

= −
2k2

3

(
c2 + 8ab+

12ac2

ec(ζ+ζ0) − 1
+

12a2c2(
ec(ζ+ζ0) − 1

)2
)
.

(37)

A0 = −
(√

5k(βkν + ω)
(
16a2b2k5(βkν + ω)− 8abc2k5(βkν + ω)+ c4k5(βkν + ω)− 4k2ν2 + 4ω2

)
+ 40abk3(βkν + ω)+ 5βc2k4ν + 5c2k3ω

)
/ (10k(βkν + ω)) , A1 = −6ack2, A2 = −6a2k2, γ = β. (33)
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FIGURE 5. By granting appropriate values to parameters, the shape of solutions (35) and (37) are shown as: Fig(5-A) is bright soliton wave and its 2D
in Fig(5-B), Fig(5-C) is dark solitary wave and its 2D in Fig(5-D).

Type IV: For a = 1, b 6= 0, c 6= 0, c2 − 4b = 0,

u7,8(ζ ) =
2k2

3

×

(
6ac3(ζ + ζ0)
c(ζ + ζ0)+ 1

−
3a2c4(ζ + ζ0)2

(c(ζ + ζ0)+ 1)2
− 8ab− c2

)
. (38)

Type V: For c = 0, a > 0, b > 0,

u9,10(ζ ) = −
2k2

3

(
12b cot

(√
ab(ζ + ζ0)

)
×

(
c

√
a
b
+ a cot

(√
ab(ζ + ζ0)

))
+ 8ab+ c2

)
. (39)

u1,2(ζ ) =
2k2

3

8ab


3
(
c2 − 2ab+ c

√
c2 − 4b tanh

(√
c2−4b
2 (ζ + ζ0)

))
(
√
c2 − 4b tanh

(√
c2−4b
2 (ζ + ζ0)

)
+ c

)2 − 1

− c2
 . (35)

u3,4(ζ ) =
2k2

3

8ab


3
(
c2 − 2ab− c

√
4b− c2 tan

(√
4b−c2
2 (ζ + ζ0)

))
(
c−
√
4b− c2 tan

(√
4b−c2
2 (ζ + ζ0)

))2 − 1

− c2
 . (36)
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FIGURE 6. By granting appropriate values to parameters, the shape of solutions (44) and (45) are shown as: Fig(6-A) is Kink soliton wave and its 2D
in Fig(6-B), Fig(6-C) is Breather wave of strange shape and its 2D in Fig(6-D).

Type VI: For c = 0, a < 0, b < 0,

u11,12(ζ )

= −
2k2

3

(
8ab+ c2 − 12bc

√
a
b
cot

(√
ab(ζ − ζ0)

)
+ 12ab cot2

(√
ab(ζ − ζ0)

))
. (40)

Type VII: For c = 0, a > 0, b < 0,

u13,14(ζ )

=
2k2

3

(
12bc

√
−
a
b
coth

(√
−ab(ζ − ζ0)

)
+ 12ab coth2

(√
−ab(ζ − ζ0)

)
− 8ab− c2

)
. (41)

Type VIII: For c = 0, a < 0, b > 0,

u15,16(ζ )

=
2k2

3

(
12ab coth2

(√
−ab(ζ + ζ0)

)
− 12bc

√
−
a
b
coth

(√
−ab(ζ + ζ0)

)
− 8ab− c2

)
.

(42)

Type IX: For b = 0, c = 0,

u17,18(ζ ) = −
2k2

3

(
8ab+ c2 +

12c
ζ + ζ0

+
12

(ζ + ζ0)2

)
.

(43)

In solutions (35) and (37), the restricted conditions to evade

singularities are
√
c2 − 4 b tanh

(√
c2−4 b
2 (ζ + ζ0)

)
6= −c

and 1 6= ec(ζ+ζ0).
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From 2nd family, the more solitons and other wave
solutions of Eq.(3) are obtained as
Type I: For a = 1, b 6= 0, c2 − 4b > 0,

u19,20(ζ ) = A0 −
2A1b

√
c2 − 4b tanh

(√
c2−4b
2 (ζ + ζ0)

)
+ c

.

(44)

Type II: For a = 1, b 6= 0, c2 − 4b < 0,

u21,22(ζ ) = A0 −
2A1b

c−
√
4b− c2 tan

(√
4b−c2
2 (ζ + ζ0)

) .
(45)

Type III: For a = 1, b = 0, c 6= 0, c2 − 4b > 0,

u23,24(ζ ) = A0 −
A1c

1− ec(ζ+ζ )
. (46)

Type IV: For a = 1, b 6= 0, c 6= 0, c2 − 4b = 0,

u25,26(ζ ) = A0 −
A1c2(ζ + ζ0)
2c(ζ + ζ0)+ 2

. (47)

Type V: For c = 0, a > 0, b > 0,

u27,28(ζ ) = A0 +
A1
√
b cot

(√
ab(ζ + ζ0)

)
√
a

. (48)

Type VI: For c = 0, a < 0, b < 0,

u29,30(ζ ) = A0 −
A1
√
b cot

(√
ab(ζ − ζ0)

)
√
a

. (49)

Type VII: For c = 0, a > 0, b < 0,

u31,32(ζ ) = A0 + A1

√
−
b
a
coth

(√
−ab(ζ − ζ0)

)
. (50)

Type VIII: For c = 0, a < 0, b > 0,

u33,34(ζ ) = A0 − A1

√
−
b
a
coth

(√
−ab(ζ + ζ0)

)
. (51)

Type IX: For b = 0, c = 0,

u35,36(ζ ) = A0 +
A1

a(ζ + ζ0)
. (52)

Similarly, more general soliton results can construct of
equation (3) from families 3rd and 4th.

In solutions (44) and (45), the restricted conditions to evade

singularities are c 6= −
√
c2 − 4 b tanh

(√
c2−4 b
2 (ζ + ζ0)

)
and c 6= −

√
4 b− c2 tan

(√
4b−c2
2 (ζ + ζ0)

)
.

TABLE 1. Comparisons between the outcomes of reported work and our
work.

V. DISCUSSION OF RESULTS AND GRAPHICAL
REPRESENTATION
The accomplished solutions are dissimilar from the results
obtained by other researchers in the previous methods. The
equations (8) and (10) present numerous dissimilar kinds of
solutions by giving different values of parameters. It was
announced earlier that the tmSKE was studied by some
authors is given in Table 1.

Pedestal on the applications of these methods, the authors
report some bright, dark, multi-solitons, singular periodic
and kink structured results with the restricted conditions
β = γ = 1. However in this article, eighteen wave solutions
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are constructed through the improved F-expansion method
and thirty-six wave solutions are constructed through the
generalized exp(−φ(ζ ))-expansion technique. The explored
solutions demonstrate the dual-mode bright, dark, periodic,
Kink, multi soliton and singular wave behaviors that are
being classified as waves of right/left mode. Evaluated with
published results [5], [18], [23], it is worth revealed that the
constructed dual-wave solutions are new for the interests of
applied methods. As a result, we have constructed several
original results, which have not been explained before.

The Figures 1 to 4 indicate the solitons and other waves in
dissimilar structures are described. In the Figure 1, by grant-
ing appropriate values to parameters, the formation of solu-
tions (16) and (17) are revealed as: Fig(1-A) Dark solitary
wave and its 2-dimensional (2D) in Fig(1-B), Fig(1-C) bright
soliton and its 2D in Fig(1-D). By granting appropriate values
to parameters, the formation of solutions (18) and (19) in
Figure 2 are revealed as: Fig(2-A) is Multi-peak solitons and
its 2D in Fig(2-B), Fig(2-C) is solitary wave of anti-Kink type
and its 2D in Fig(2-D). In Figure 3, by granting appropriate
values to parameters, the shape of solutions (22) and (23) are
shown as: Fig(3-A) dark periodic solitary wave and its 2D in
Fig(3-B), Fig(3-C) is dark soliton and its 2D in Fig(3-D).
By granting appropriate values to parameters, the shape of
solutions (24) and (29) in Figure 4 are shown as: Fig(4-A)
Multi peak soliton of different amplitude and its 2D in
Fig(4-B), Fig(4-C) periodic solitary wave and its 2D
in Fig(4-D).

The Figures 5 and 6 illustrate the solitary waves in dis-
similar structures are described. In the Figure 5, By grant-
ing appropriate values to parameters, the shape of solutions
(35) and (37) are shown as: Fig(5-A) is bright soliton wave
and its 2D in Fig(5-B), Fig(5-C) is dark solitary wave and its
2D in Fig(5-D). By granting appropriate values to parameters,
the shape of solutions (44) and (45) in Figure 6 are shown
as: Fig(6-A) is Kink soliton wave and its 2D in Fig(6-B),
Fig(6-C) is Breather wave of strange shape and its 2D
in Fig(6-D).

VI. CONCLUSION
The described methods namely, the improved F-expansion
method and generalized exp(−φ(ζ ))-expansion method have
been effectively employed on the tmSKE and as conse-
quences, abundant of different kinds of solitons and other
waves solutions such as bright and dark solitons, multi-peak
soliton, breather type waves, periodic solutions are obtained.
The two-mode equation describes the spread of moving
two-waves under the influence of dispersion, nonlinearity,
and phase velocity factors. The obtained novel solitons and
other wave results have significant applications in fluid
dynamics, applied sciences and engineering. The Sawada-
Kotera equations illustrating the non-linear wave phenom-
ena in shallow water, ion-acoustic waves in plasmas, fluid
dynamics, etc., and tmSKE also arising in fluid dynamics is
addressed in this article. We may say that these two-waves
solutions could be useful in many physical and engineering

applications, for example, they can be used as barrier waves
to strengthen the transmission of different signals data. Also,
if a huge amount of data is complicated to pass on to
a single router, it can be dispersed on two routers. The
graphical moments of few solutions are depicted that helps
the engineers and scientists for understanding the physi-
cal phenomena of this model. The restricted conditions are
also added on solutions to avoid singularities. To explain
the novelty between the present results and the previously
attained results, a comparative study has been presented.
The computational work and constructed results approve the
effectiveness, simplicity, and impact of described techniques.
Furthermore, the described techniques can be employed to
any two-mode nonlinear PDEs and other models arising in
fluid dynamics correlated with any physical and engineer-
ing problems to explore novel dual-wave and other wave
solutions. The fractional derivative of this two-model will
also consider to obtain such types of results by utilizing
the described techniques. Our future work would be intense
towards investigating the new dual-wave solutions by using
different analytical, semi-analytical, and numerical methods
to the tmSKE and fractional tmSKE.
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