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ABSTRACT The artificial neural network (ANN) has been applied to the various fields due to its capability to
process complicated nonlinear functions involving a large amount of data. A pseudorandom binary sequence
(PRBS) is commonly used to train the ANN since the PRBS is easily generated by using a linear feedback
shift register and has a correlation function which is peaked at zero delay but is almost zero at other delays.
However, when the PRBS length is not sufficiently long (compared to the input size of the ANN), the ANN
trained by the PRBS could suffer from the overfitting where the ANN describes the behavior of the training
sequence very well, but does poorly on new data inputs. In this paper, we provide a minimum length of the
PRBS required by the ANN to avoid the overfitting for a given input size of the ANN. For this purpose,
we analyze the minimum length of the input sequence required to estimate the PRBS pattern through
theoretical study. These analyses are confirmed by numerical simulation. The findings of this paper would
be used to select the PRBS length for training the ANN.

INDEX TERMS Pseudorandom binary sequence, artificial neural network, equalizer, overfitting.

I. INTRODUCTION
Fueled by enormous computing power of digital processors,
an artificial neural network (ANN) has gained a great deal of
attention as a nonlinear computing system handling a large
amount of data. The ANN is capable of processing compli-
cated nonlinear functions even if it is difficult to describe
them analytically [1]. Also, once the ANN is trained by a
certain input sequence, it represents its own feature by itself,
and thus can predict the output values based on the representa-
tion even when arbitrary inputs are fed to the ANN [2]. Thus,
the ANNs are used widely in various fields, such as image
classification [3], speech recognition [4], language transla-
tion [5], [6], face recognition [7], and fault diagnosis [8].

The ANNs are also applied to diverse areas of optical
communications, including the identification of modulation
formats [9]–[11], optical performance monitoring [12], [13],
anomaly detection in optical networks [14], and the com-
pensation of waveform distortions [15]–[18]. In particular,
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the ANN-based nonlinear equalizer (ANN-NLE) at the
receiver has demonstrated its capability of correcting
the waveform distortions induced by nonlinear interac-
tion between numerous symbols [15]–[18]. For example,
the ANN-NLE was shown to be effective in compensating
for the waveform distortions arising from fiber nonlinear-
ities in an 80-Gb/s coherent optical orthogonal frequency-
division multiplexing system, outperforming the Volterra
nonlinear equalizer (VNLE) by a couple of decibels in terms
of Q-factor after 1000-km transmission [15], [16]. Perfor-
mance improvement brought by the neural network was
also reported for intensity-modulation/direct-detection sys-
tems [17], [18]. For example, neural network-based nonlinear
equalizers exhibit the sensitivity improvement in comparison
with the VNLE for 4 × 50-Gb/s and 56-Gb/s 4-ary pulse
amplitude modulation signals when they are transported over
a dispersion-compensated link [17] and the transceivers are
band-limited [18], respectively.

For proper operation of the ANN-NLE, it is utmost impor-
tant to train the equalizer using a set of sequences whichmim-
ics the real data to be equalized. A popular training sequence

125358 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-2623-7105
https://orcid.org/0000-0001-7395-3695
https://orcid.org/0000-0003-2541-6283


J. Kim, H. Kim: Length of PRBS Required to Train ANN Without Overfitting

is a pseudorandom binary sequence (PRBS). This sequence is
easy to generate using a linear feedback shift register (LFSR)
and an exclusive-OR (XOR) operation [19], and exhibits sim-
ilar statistical features to a truly random sequence. However,
one problem associated with the use of the PRBS as a training
sequence for the ANN-NLE is the overfitting, where theANN
describes the behavior of the training sequence very well
by estimating the entire PRBS from a part of the PRBS,
but does poorly on new data inputs. This happens when the
length of the PRBS (alternatively expressed as the order of the
PRBS) is not sufficiently long since theXORoperation can be
readily modeled by the simplest 3-layer ANN (composed of
input, one hidden, and output layers) [20]. Several previous
studies clearly showed the impact of the overfitting on the
performance of optical transmission systems [21]–[24]. For
example, an ANN-NLE trained by a specific length of PRBS
exhibits low bit-error ratio (BER) performance when it is
tested with the same length of the PRBS. However, there is
a considerable performance degradation when PRBSs longer
than the trained PRBS are fed to the ANN-NLE [21]–[24].

To avoid the overfitting, random data sequences could be
used to train the neural networks [21], [22]. However, truly
random sequences are not suitable for training the ANN
for optical transmission systems. The receiver is away from
the transmitter by a few tens to several thousand kilome-
ters. Thus, it is highly desirable to utilize a pre-determined,
deterministic sequence for training so that the ANN-NLE
located at the receiver is able to recover the pre-determined
sequence from the input sequence whose waveforms are dis-
torted severely by the channel. For the synchronization of the
training sequence, it is also desirable for the training sequence
to have a unique autocorrelation characteristics.

A Mersenne Twister random sequence (MTRS) [23] gen-
erated by using the Mersenne Twister algorithm [25] satisfies
these requirements of the training sequence. The most com-
monly used MTRS has a length of 219937-1. However, this
MTRS is too long to be used for training the ANN-NLE for
optical communication systems. Not only does this MTRS
incur a latency for achieving the sequence synchronization,
but it also needs a large amount of shift registers and memory
to generate and store the training sequence at the transmitter
and receiver, respectively.

Recently, a pseudo-random binary generation method
based on the combination of three different PRBSs has been
proposed to train the ANN without the overfitting [24]. Here,
one of the PRBSs is employed as a selection index from
the other two PRBSs. However, the autocorrelation function
of the pseudo-random sequence generated by this method
is quite different from that of truly random data. Also, this
sequence is very long since its length is determined by
the least common multiple of the three PRBSs. Thus, it is
expected that it takes quite long to achieve the sequence
synchronization.

A PRBS generated by using an LFSR satisfies the require-
ments of the training sequence without posing the overfitting
problem when the PRBS length is sufficiently long. Hence,

in this paper, we provide a design guideline on the PRBS
length required for training an ANN. We provide the mini-
mum length of the PRBS to avoid the overfitting when the
input size of the ANN is given. For this purpose, we analyze
the pivotal tap indexes which govern the PRBS pattern having
a length of 2N -1, where N is the order of the PRBS. From
those indexes, we derive an expression about the minimum
input size required by the ANN to estimate the PRBS pat-
tern. We confirm our theoretical analyses through computer
simulation. For example, we find out the minimum input size
required by an ANN to suffer from the overfitting for a given
length of PRBS. The importance distribution of input data is
also investigated to confirm the overwhelming importance of
pivotal tap indexes when the overfitting occurs.

The rest of this paper is organized as follows. We analyze
the PRBS generation implemented by using an LFSR and
an XOR operation, and then provide a minimum length of
an ANN input size required to estimate the PRBS pattern
in Section II. Section III describes the simulation setup to
verify our theoretical analysis. The comparison between the
simulation results and the theoretical analyses together with
the discussion about the simulation results is provided in
Section IV. Finally, the conclusions of the paper are given in
Section V.

II. THEORETICAL ANALYSIS ON THE MINIMUM
SEQUENCE LENGTH REQUIRED TO ESTIMATE
THE PRBS PATTERN
In this section, we analyze the minimum length of sequence
required to estimate the PRBS pattern. For this purpose,
we express the PRBS generation rule as a couple different
forms of connection representation.

A. CONNECTION REPRESENTATION OF PRBS
A PRBS having a length of 2N - 1 (hereinafter referred to
as PRBS-N ) can be generated by using and an LFSR and an
XOR operation, as shown in Fig. 1. Commonly, a two-input
or four-input XOR operation is used to provide a feedback
loop. Fig. 1(a) shows the PRBS generator implemented by
using the two-input XOR operation. In this LFSR-2 scheme,

FIGURE 1. The PRBS-N generator implemented by using (a) LFSR-2 and
(b) LFSR-4 schemes.
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two binary bits are tapped and send to the first input bit of
the LFSR after the XOR operation. Fig. 1(b) shows the PRBS
generator where four bits are tapped for constructing the feed-
back loop. This scheme is referred to as LFSR-4. It should be
noted that the tap positions are uniquely determined by the
order of the PRBS, N , as tabulated in Table 1 [26]. Empty
spaces in Table 1 imply that there is no solution for the
corresponding PRBS-N .

TABLE 1. The tap positions of the LFSR-2 and LFSR-4 for PRBS-N [26].

The LFSR-2 and LFSR-4 schemes can be expressed by
using the connection representation as

x(n) = x (n− l1)⊕ x (n− l2) , (1)

and

x(n)=x (n−m1)⊕ x (n−m2)⊕ x (n− m3)⊕ x (n− m4) ,

(2)

respectively.
Here, x(n) refers to nth bit of the PRBS-N , ⊕ is the XOR

operation, l1 and l2 are the tap positions of the LFSR-2
scheme, and m1, m2, m3, and m4 are those of the
LFSR-4 scheme. The tap positions are all positive integers.
We assume that l1 is greater than l2. We also assume that
m1 > m2 > m3 > m4.

B. MINIMUM LENGTH OF INPUT SEQUENCE REQUIRED
BY ANN TO ESTIMATE PRBS-N GENERATED BY THE
LFSR-2 SCHEME
Equation (1) shows the connection representation of the
PRBS-N implemented by using the LFSR-2 scheme. This
equation shows that there are two pivotal tap indexes which

determine the LFSR-2-based PRBS-N ,−l1 and−l2. They are
pivotal numbers to be used to construct the PRBS pattern. The
negative sign implies that those tap indexes are preceding bits.

Due to the circular shift register architecture of the PRBS
generator, equation (1) can also be expressed by using differ-
ent tap indexes. Firstly, we can replace n with n + l1 in (1)
and we have

x (n+ l1) = x(n)⊕ x (n+ l1 − l2) . (3)

By applying the self-inverse property (i.e., A⊕A= 0) and
the identity property (i.e., A⊕ 0= A) of the XOR operation,
we obtain

x(n) = x (n+ l1)⊕ x (n+ l1 − l2) . (4)

Similarly, n can be replaced with n+l2 in (1). Then, we also
rewrite (1) as

x(n) = x (n+ l2)⊕ x (n+ l2 − l1) . (5)

We have three equations for the PRBS-N generated by
using the LFSR-2 scheme: (1), (4), and (5). We identify
the pivotal tap indexes for each equation. They are plotted
in Fig. 2. In the LFSR-2 scheme, we can estimate x(n) when
two input bits at the pivotal tap indexes are given. This implies
that the ANN would suffer from the overfitting when the
input sequence includes the two bits at the pivotal tap indexes.
It should be noted that the three equations have different
pivotal tap indexes, but they generate the same PRBS-N
pattern. Thus, if the input sequence includes the two pivotal
taps for one of the three equations, theANN is able to estimate
the PRBS pattern.

FIGURE 2. The pivotal tap indexes for equations, (1), (4), and (5). Also,
shown at the bottom is the range of the input sequence of the ANN. The
hollow circle implies that it is not included in the input sequence.

In optical communications where the fiber chromatic dis-
persion makes an optical pulse spread symmetrically at
around its center, the ANN-NLE is typically fed by a sym-
metric input sequence [27]–[29]. This means that the input
layer of the ANN receives a sequence ranging from x(n− k)
to x(n+ k), where k is the size of the input layer. Here, x(n)
should be excluded from the input sequence since it is the
bit to be estimated by the equalizer. In this case, the mini-
mum length of the input sequence required by the ANN to
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estimate the PRBS pattern would be determined by (5). This
is because the maximum absolute values between the two
pivotal tap indexes for (5) are smaller than those of the other
two equations. This is illustrated in Fig. 2. For the two pivotal
tap indexes of (5) to be included in the range of the input
sequence of the ANN, the input size of the ANN should be

k ≥ LLFSR2 = max (l2, l1 − l2) . (6)

Here, the minimum input size required by the ANN to
estimate the PRBS pattern is denoted by LLFSR2. For the tap
positions of the LFSR-2 scheme listed in Table 1, l2 is always
greater than l1 − l2. Thus, LLFSR2 is equal to l2.
It should be noted that if the ANN is designed to receive

either the preceding [i.e., x(n− k), . . . , x(n− 1)] or following
bits [i.e., x(n+ 1), . . . , x(n + k)] with respect to the current
time index n, the minimum length of the input sequence to
estimate the PRBS is determined by (1) or (4). In this case,
therefore, the minimum input size of the ANN to suffer from
the overfitting should be l1.

C. MINIMUM LENGTH OF INPUT SEQUENCE REQUIRED
BY ANN TO ESTIMATE PRBS-N GENERATED BY THE
LFSR-4 SCHEME
In this subsection, we derive an analytical expression about
the minimum input size required by the ANN to estimate
the PRBS generated by the LFSR-4 scheme, LLFSR4. The
connection representation of the PRBS-N implemented by
using the LFSR-4 scheme is expressed as (2). Similar to the
previous subsection, we can rewrite (2) in terms of different
pivotal tap indexes by the properties of the XOR operation.

By substituting n with n+ m1, we have

x (n+ m1) = x(n)⊕ x (n+ m1 − m2)

⊕x (n+ m1 − m3)⊕ x (n+ m1 − m4) . (7)

Then, this equation can be rewritten by using the self-
inverse property and the identity property of the XOR opera-
tion as

x(n) = x (n+ m1)⊕ x (n+ m1 − m2)

⊕x (n+ m1 − m3)⊕ x (n+ m1 − m4) . (8)

Additional three equations are also obtained by substitut-
ing n with n + m2, n + m3, or n + m4. They are

x(n) = x (n+ m2)⊕ x (n+ m2 − m1)

⊕x (n+ m2 − m3)⊕ x (n+ m2 − m4) , (9)

x(n) = x (n+ m3)⊕ x (n+ m3 − m1)

⊕x (n+ m3 − m2)⊕ x (n+ m3 − m4) , (10)

and

x(n) = x (n+ m4)⊕ x (n+ m4 − m1)

⊕x (n+ m4 − m2)⊕ x (n+ m4 − m3) . (11)

The LFSR-4-based PRBS pattern can be expressed by five
different forms of the connection representation: (2), (8), (9),
(10) and (11). Fig. 3 shows the four pivotal tap indexes for

FIGURE 3. The pivotal tap indexes for equations (2), (8), (9), (10), and (11).

each equation. Similar to the discussion in the previous sub-
section, the ANN will be able to estimate the PRBS pattern
generated by the LFSR-4 scheme when the four bits at the
pivotal tap indexes are all included in the input sequence.

For the ANN-NLE having a symmetrical input sequence
[i.e., from x(n−k) to x(n+k), excluding x(n)], the minimum
length of the input sequence required by the ANN to estimate
the PRBS pattern would be determined by (9), (10), and (11).

For the four pivotal tap indexes of these three equations to
be included in the range of the input sequence of the ANN,
the minimum input size of the ANN should be

k ≥ LLFSR4 = min

max (m2,m1 − m2)

max (m3,m1 − m3)

max (m4,m1 − m4)

 . (12)

For the tap positions of the LFSR-4 scheme listed
in Table 1, m2, m3, and m4 are always greater than m1 − m2,
m1− m3, and m1 − m4, respectively, except for PRBS-5 and
PRBS-6. Thus, LLFSR4 becomes m4 when N is larger than or
equal to 7. For PRBS-5 and PRBS-6, LLFSR4 become m3.
If the ANN receives an asymmetrical input sequence

[i.e., either the preceding bit sequence from x(n−k) to
x(n−1) or the following bit sequence from x(n+1) to
x(n+k)], the minimum length of the input sequence required
by the ANN to estimate the PRBS pattern would be deter-
mined by (2) or (8). Therefore, the minimum input size of the
ANN to experience the overfitting should be m1 in this case.

III. SIMULATION SETUP
We carry out simulation study to verify our finding presented
in the previous section. Fig. 4 shows the simulation setup.
We first generate a PRBS-N pattern by using a shift register
and XOR operation (as shown in Fig. 1) and send it to an
ANN. The ANN is composed of three layers: input layer,
hidden layer, and output layer. The input layer receives a sym-
metrical sequence composed of k preceding and k following
bits with respect to the time index n. The current bit x(n) is not
included in the input vector of the ANNbecause it is an output
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FIGURE 4. Simulation setup.

to be estimated by the ANN. The input vector including a bias
and 2k bits is regarded as a set of the input data. Then, the
input data are used for the calculation of outputs of the hidden
neurons. We use a rectified linear unit (ReLU) function as an
activation function of the hidden layer for fast convergence.
The number of the hidden neurons, Nh, is set to be 10. The
output of the jth hidden neuron, a(2)j , is calculated by the
ReLU function from a weighted sum of the input data with a
connectionweightw(1) between the input layer and the hidden
layer. The outputs of the hidden neurons are fed to the output
layer with a bias and then the estimated result of the ANN is
obtained at the output layer. In the case of the PRBS-N , its
value is either ‘0’ or ‘1’. Thus, the number of output neurons
is set to be 1 and we use a sigmoid function as an activation
function of the output layer. The output is estimated by the
sigmoid function from a weighted sum of the bias and the
outputs of the hidden neurons with a connection weight w(2)

between the hidden layer and the output layer.
In the training process, the estimated output is compared

with the desired PRBS-N pattern to obtain an error between
those two outputs. In this simulation, we use the cross entropy
loss function [30] due to the binary nature of the output. The
connection weights, w(1) and w(2), are updated from the error
using the backpropagation algorithm [31] based on the gradi-
ent descent method [32]. We train the ANN repeatedly by the
training data sets with a batch size of 200 and 1,000 epochs.

After training, we estimate the BER by using the direct
error counting. In our simulation, 10,000 input training data
sets and 1,000,000 input test data sets are used to train the
ANN and estimate the BER, respectively, for each PRBS-N.
The PRBSs are repeated when the length of data sets are
longer than the PRBS length. For example, PRBS-N is
repeated to compose 10,000 training data sets when N is
smaller than 14 since 213−1 < 10,000. The test data sets are
also composed of repeated PRBSs when the order of PRBS
is less than 20. Thus, our data sets consist of both unrepeated

and repeated PRBSs, depending upon the PRBS length. It is
also worth mentioning that we employ the first 10,000 bits of
PRBS for training and the next 1,000,000 bits for estimating
the BER. Thus, there is no overlap between the training and
test data sets when N is larger than or equal to 20.

IV. SIMULATION RESULTS
In this section, we discuss the simulation results and compare
them with the theoretical analyses formulated by (6) and (12)
for the LFSR-2 and LFSR-4 schemes, respectively.

A. MINIMUM INPUT SIZES OF ANN TO HAVE THE
OVERFITTING FOR LFSR-2-BASED PRBS
We first obtain the BER performance for all the LFSR-2-
based PRBSs listed in Table 1 as we vary the input size of
the ANN, k . We carry out simulation for all the PRBSs listed
in Table 1 to investigate the minimum input sizes of the ANN
having the overfitting. Fig. 5 shows some of these results. The
results exhibit a binary pattern similar to the comparator out-
put. The BER value is either∼0.5 or∼0. For example, when
k is smaller than 6 for PRBS-7, we obtain BERs close to 0.5.
The BER values drop close to 0 when k is larger than or equal
to 6. This is because when the ANN is capable of estimating
the entire PRBS from a part of the PRBS (i.e., overfitting),
the BER is measured to be zero. On the other hand, the BER
should be close to 0.5 when the overfitting problem does not
occur. The results show that when the input size of the ANN is
sufficiently small, the ANN cannot estimate the entire PRBS
from a part of the PRBS. Thus, we do not suffer from the
overfitting in this case. Fig. 5 clearly shows that the largest
input sizes to avoid the overfitting for PRBS-7, PRBS-15,
PRBS-25, and PRBS-35 are 5, 13, 21, and 32, respectively.
The overfitting occurs when the input sizes of the ANN are
larger than these values.

FIGURE 5. The measured BER values as a function of the input size of the
ANN, k , when the order of the PRBS is (a) 7, (b) 15, (c) 25, and (d) 35. The
PRBSs are generated by the LFSR-2 scheme.

Fig. 6 shows the minimum input size of the ANN to have
the overfitting as a function of the order of the PRBS, N .
For comparison, we also plot our theoretical results of (6) in
this figure. The simulation results match perfectly with the
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FIGURE 6. The minimum input size of the ANN to have the overfitting
versus the order of the PRBS when the PRBS is generated by using the
LFSR-2 scheme.

theoretical values. This result shows that the input size of the
ANN should be smaller than LLFSR2 to avoid the overfitting.
The occurrence of the overfitting can also be confirmed by

observing the importance distribution of the input data. For
this purpose, we define Wi as a sum of the absolute weights
between each input neuron and the hidden neurons, which is
expressed as

Wi =

Nh∑
j=1

∣∣∣w(1)
ij

∣∣∣ , (13)

where i is the tap index ranging from −k to k , but i 6= 0.
Also, j is the jth neuron in the hidden layer and w(1)

ij is the
connection weight between the input layer and the hidden
layer. The importance of input data can be quantified by Wi.
Fig. 7 shows the distribution of normalized Wi as a function
of time index i for some PRBSs. The input size of the ANN
is set to be LLFSR2, the minimum input size of the ANN to
have the overfitting as predicted in Section II. The results
show that specific input bits have significantly largerWi than

FIGURE 7. The importance distributions of the input data for (a) PRBS-7,
(b) PRBS-15, (c) PRBS-25, and (d) PRBS-35. The PRBSs are generated by
the LFSR-2 scheme.

other input bits. For example, we have normalizedWi values
close to 1 for PRBS-25 when i is −3 and 22 in Fig. 7(c).
These two i values correspond to the pivotal tap indexes
introduced in Section II. This implies that the ANN retrieves
the PRBS generation rule during the training process, and as a
result, we have the overfitting.We confirm that the pivotal tap
indexes have an overwhelming importance for all the PRBSs
listed in Table 1 when the overfitting occurs.

B. MINIMUM INPUT SIZES OF ANN TO HAVE THE
OVERFITTING FOR LFSR-4-BASED PRBS
Next, we analyze the BER performance of the PRBS-N
implemented by using the LFSR-4 scheme. Fig. 8 shows the
BER values for PRBS-8, PRBS-19, PRBS-27, and PRBS-37
as a function of the input size of the ANN, k . In the same
manner as we observed in the previous subsection, the BER
values are converged to zero when the input size is greater
than a specific value, indicating the overfitting. The results
show that we have a BER close to zero when the input sizes
of the ANN are larger than 3, 13, 21, and 30 for PRBS-8,
PRBS-19, PRBS-27, and PRBS-37, respectively. Obviously,
the overfitting problem arises in these cases.

FIGURE 8. The measured BER values as a function of the input size of the
ANN, k , when the order of the PRBS is (a) 8, (b) 19, (c) 27, and (d) 37. The
PRBSs are generated by the LFSR-4 scheme.

Fig. 9 shows the minimum input size of the ANN to have
the overfitting when the ANN is trained by using the PRBS-N
implemented by using the LFSR-4 scheme. The result of our
theoretical analysis formulated by (12) is also shown in this
figure. The results show that our analysis agrees perfectly
with the simulation results. It confirms that the input size of
the ANN should be smaller than LLFSR4 for the LFSR-4-based
PRBS-N to avoid the overfitting. In other words, the length
of PRBS required to train the ANN without the overfitting is
LLFSR4− 1.
Finally, we plot the importance distribution of the input

data as a function of the time index for some PRBSs imple-
mented by using the LFSR-4 scheme. The results are shown
in Fig. 10. The input size of the ANN is set to be LLFSR4.
In this case, the ANN is able to estimate the entire PRBS
pattern from a part of the PRBS since the input size of the
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FIGURE 9. The minimum input size of the ANN to have the overfitting
versus the order of the PRBS when the PRBS is generated by using the
LFSR-4 scheme.

FIGURE 10. The importance distributions of the input data for (a) PRBS-8,
(b) PRBS-19, (c) PRBS-27, and (d) PRBS-37. The PRBSs are generated by
the LFSR-4 scheme.

ANN is equal to LLFSR4, as predicted in Section II. Clearly,
the results show that the normalized Wi for the pivotal tap
indexes have overwhelming importance in the distribution.
That is why the ANN is able to estimate the PRBS pattern,
and thus the BER values converge to zero for the PRBS-N .

V. CONCLUSION
We have provided a design guideline on the PRBS length
required for training the ANN without posing the overfitting
problem. For a given input size of the ANN, the length of
the PRBS generated by using the LFSR should be larger than
(6) and (12) when the feedback is composed of the 2- and 4-
input XOR operations, respectively. Our theoretical analyses
are confirmed through computer simulation. Both the BER
performance and the importance distribution clearly show
that the overfitting occurs when the input size of the ANN is
larger than the proposed design guideline on the PRBS length.
Since the training and test data sets consist of both unrepeated
and repeated PRBSs, depending upon the length of PRBS,
our design guideline is applicable regardless of whether the

PRBS is repeated or not. We believe that the findings of this
work could be used to select the PRBS length for training the
ANN.
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