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ABSTRACT In the era of the Internet of Things (IoT) and Industry 4.0, the indoor usage of smart devices is
expected to increase, thereby making their location information more important. Based on various practical
issues related to large delays, high design cost, and limited performance, conventional localization techniques
are not practical for indoor IoT applications. In recent years, many researchers have proposed a wide
range of machine learning (ML)-based indoor localization approaches using Wi-Fi received signal strength
indicator (RSSI) fingerprints. This survey attempts to provide a summarized investigation ofML-basedWi-Fi
RSSI fingerprinting schemes, including data preprocessing, data augmentation, ML prediction models for
indoor localization, and postprocessing in ML, and compare their performance. Any ML-based study is
heavily reliant on datasets. Therefore, we dedicate a significant portion of this survey to the discussion of
dataset collection and open-source datasets. To provide good direction for future research, we discuss the
current challenges and potential solutions related to ML-based indoor localization systems.

INDEX TERMS Machine learning, fingerprints, indoor localization, positioning, deep learning, received
signal strength indicator, Wi-Fi.

I. INTRODUCTION
Currently, Internet of Things (IoT) devices are becom-
ing increasingly popular. With the advent of Industry 4.0,
advanced Smart-X applications using smart devices, such as
smart cities, homes, farms, and factories, are being developed
rapidly [1]. For such applications, the fusion of artificial intel-
ligence (AI), robotics, 5G, and big data technologies is cru-
cial. The number of smartphone users worldwide in 2019 was
3.3 billion, which represents a 10% increase from the previ-
ous year [2]. The number of active IoT devices is projected
to increase to 43 billion by 2023 [3]. Three out of every four
(74%) smart device owners are active users of location-based
applications [4]. Currently, most people spend approximately
80% of their daily lives indoors. As a result, approximately
70%of smartphone usage and 80%of data transmission occur
in indoor environments [5]. Therefore, indoor localization is
essential for providing intuitive and customized user services
and ubiquitous monitoring and control using smart devices.
Therefore, the localization market is projected to grow to
$183.81 billion by 2027 [6].
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Identifying (or predicting) the locations of devices (or
users) in outdoor and indoor settings/environments is known
as outdoor and indoor localization, respectively. For out-
door localization, users often use global navigation satellite
systems (GNSSs), such as the global positioning system
(depending on the region). GNSSs provide good positioning
performance in open (or outdoor) areas. However, in closed
(or indoor) areas, where a direct line-of-sight is unavailable,
they perform poorly and have very limited usage based on
severe indoor channel conditions, including shadowing and
multipath fading [7].

Therefore, for indoor localization, instead of GNSSs,
the following three categories of techniques are often used:
wireless signal-based techniques, vision-based techniques,
and other techniques. Wireless signal-based techniques use
various measurement parameters, such as the time of arrival
(ToA), time of flight (ToF), angle of arrival (AoA), time
difference of flight, time difference of arrival, received sig-
nal strength indicator (RSSI), and channel state information
(CSI) [8]–[15]. Vision-based systems, which are commonly
referred to as computer vision techniques, use multiple
devices, such as monochrome cameras and infrared cam-
eras, to capture visual information and apply computational
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processing techniques to estimate the locations of users
[16]–[19]. However, vision-based techniques are relatively
complex and expensive, have real-time issues related to
large processing delays, and suffer from uneven lighting
conditions, occlusion, and position changes of objects in an
environment, which degrades the performance and scalabil-
ity of this type of system [18]. Other techniques based on
acoustic background fingerprinting, the dead-reckon method,
magnetic fields, accelerometers, and barometers are also
used to estimate the locations of devices [20]–[25]. These
techniques may have high accuracy but often require addi-
tional specialized equipment for implementation, meaning
that energy consumption and system cost are significantly
increased.

In this survey, we focus on wireless-signal-based indoor
localization. In the literature, wireless-signal-based indoor
localization technology is classified into two categories: geo-
metric and fingerprinting approaches. Geometric approaches
include multilateration, trilateration, and triangulation meth-
ods, for which various measurement parameters (ToA, ToF,
AoA, etc.) can be used. These approaches are well established
but do not have sufficient performance for practical indoor
service provision based on outlier distortion caused by non-
line-of-sight signals and multipath problems. Additionally,
a large communication overhead and the need for good syn-
chronization circuits between devices increase the overall
system cost [26]–[30].

Fingerprinting approaches employ RSSI or CSI as pat-
tern matching parameters to determine the positions of
devices. Compared to geometric approaches, fingerprinting
approaches are relatively simple, easily incorporated into
smart IoT devices, and able to achieve acceptable accuracy
with support from existing wireless infrastructure (Wi-Fi,
cellular, etc.) RSSI estimates positions based on the col-
lected/received signal strengths from several access points
(APs), whereas CSI estimates positions based on a combi-
nation of the communication link attributes between a trans-
mitter and a receiver, including rank indication, the precoder
matrix indicator, and channel quality indicator. Therefore,
in terms of system performance, CSI is superior to RSSI [31].

However, this situation has changed based on the intro-
duction of modern AI technology. Recently, RSSI-based
Wi-Fi fingerprinting techniques using ML or ‘‘ML-based
RSSI fingerprinting’’ have recently demonstrated signifi-
cantly improved localization performance that is compara-
ble to that of other highly sophisticated schemes, including
CSI. Several studies [32]–[35] have demonstrated that the
performance of ML-based RSSI fingerprinting techniques is
satisfactory in terms of accuracy and latency, even though
there is a modest increase in system complexity based on the
incorporation of ML functions. CSI-based Wi-Fi fingerprint-
ing techniques using ML or ‘‘ML-based CSI fingerprinting’’
can provide enhanced localization performance but require
the consideration of trade-off factors in terms of implementa-
tion, such as larger datasets, larger computational power, and
longer latency. Additionally, CSI-supported APs that require

advanced network interface cards andmodified device drivers
incur additional installation costs [31], [36]–[39].

ML-based RSSI fingerprinting using big data can be less
susceptible to multipath fading and can efficiently han-
dle system issues such as signal fluctuations or hardware
failures. For example, ML techniques can constructively
exploit (learn) the sequential correlations of time-varying
RSSI measurements and use trajectory information, meaning
RSSI fluctuations caused by fading or hardware failure can be
alleviated [40], [41]. Self-calibration techniques for updating
radiomaps can also be incorporated to address RSSI temporal
variations. As a result, ML-based indoor localization using
Wi-Fi RSSI fingerprints is relatively straightforward but can
still provide high-quality localization services, even with no
extra infrastructure.

A. EXISTING INDOOR LOCALIZATION SURVEYS
Based on the high demand for indoor localization, research
in this area is on the rise [42]. In [43], the authors pre-
sented a survey on recent advances in theoretical approaches
to indoor localization and discussed various applications.
The literature [44] is one of the early survey papers that
discuss wireless indoor positioning techniques and systems.
The authors of [45] and [46] presented extensive stud-
ies on wireless indoor localization systems from a device
perspective and reviewed recent advances in device-based
and device-free localization. Similarly, in [47] and [48],
the authors presented a study on indoor localization methods
for a contemporary smartphone and its sensors. The authors
of [49] and [50] presented detailed discussions of schemes
for indoor localization from the perspective of IoT infras-
tructure. In [51], the authors presented a survey on Wi-Fi
fingerprint-based indoor positioning systems. They also dis-
cussed advances in terms of reducing labor-intensive tasks
such as data collection, calibrating heterogeneous devices,
and achieving energy efficiency for smartphones. In [52],
the authors presented an in-depth discussion of the challenges
related to fingerprinting in indoor positioning and navigation.
In [53], the authors presented a detailed survey on indoor
location-based services, including their challenges, require-
ments, and usability. In [54] and [55], the authors explored
future opportunities for localization services for 5G and
beyond-5G (or 6G) wireless communications systems, where
their key technologies (includingML-based schemes), under-
lying challenges, and potential solutions were discussed.
In [56] and [57], the authors presented a review report on
different ranging-based indoor localization. They discussed
different types of fingerprints, such as CSI, visible light, and
Bluetooth, and other localization methods. Additionally, they
proposed architecture for intelligent indoor localization.

B. MOTIVATION AND AIM
As addressed in Section I-A, most of the recently published
existing survey papers are generic and deal with a wide
range of wireless signal-based indoor localization schemes
[43]–[57] such that discussion about the latest ML-based
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TABLE 1. Summary of existing surveys related to indoor localization. The symbol ‘‘Yes’’ indicates that a publication has a significant amount of discussion
on scope, ‘‘Limited’’ indicates that a publication has limited discussion on the scope, and ‘‘No’’ indicates a publication that does not cover that area.
Nevertheless, readers may retrieve some related insights. Note that DC = Database Construction, DE = Database Enrichment, WR Fingerprinting = Wi-Fi
RSSI Fingerprinting.

indoor localization using Wi-Fi RSSI fingerprints has been
limited. Hence, it motivates us to present this exclusive sur-
vey paper that draws a boundary around Wi-Fi RSSI and
ML-based indoor localization and presents a comprehensive
discussion on distinctive ML technology aspects in indoor
localization. including database construction and enrichment
techniques, performance metrics, ML structure in indoor
localization, ML-based RSSI fingerprinting schemes, pub-
licly available datasets, and technical challenges and solu-
tions. This survey paper aims to help readers navigate the
abundance of existing literature regarding ML-based indoor
localization using Wi-Fi RSSI fingerprints. Table 1 sum-
marizes recently published survey articles related to indoor
localization, as discussed in Section I-A.

C. CONTRIBUTION OF THE PAPER
1) This work provides a survey of ML-based indoor local-

ization techniques using Wi-Fi RSSI fingerprints that
have been proposed in the literature over recent years.

2) We emphasize the importance of indoor localization
by discussing its potential futuristic applications that
can be exploited by various startups, companies, and
research organizations.

3) This work provides a detailed discussion of RSSI-based
Wi-Fi fingerprinting methodology along with the data
collection process. We also provide pros and cons of
Wi-Fi fingerprinting by highlighting its suitability in
indoor localization. Furthermore, we discuss the var-
ious techniques used for radio map construction and
data quality improvement.

4) We contribute by providing a brief discussion on
data preprocessing techniques, different ML prediction
models, and postprocessing techniques that can be used
in indoor localization. We also provide a brief dis-
cussion on dimensionality reduction, transfer learning

(TL), and data augmentation for localization system
implementation.

5) In this paper, we not only discuss popular public
datasets but also highlight relatively newer datasets.
The use of newer datasets can establish standardized
comparisons across various upcoming indoor localiza-
tion schemes.

6) Finally, we discuss open challenges and issues pertain-
ing to ML indoor localization using RSSI-based Wi-Fi
fingerprints and present corresponding potential solu-
tions. It can help readers direct their research toward
solving such important localization issues.

The rest of the paper is structured as follows. Section II
presents the applications of indoor localization in different
use cases. Section III discusses the RSSI, Wi-Fi fingerprint-
ing technology, and construction and enrichment of radio
maps. In Section IV, different performance metrics for the
evaluation of indoor localization are discussed. In Section V,
we briefly discuss the basics of ML prediction models and
special techniques such as data preprocessing, data augmen-
tation, ML algorithms for indoor localization, data post-
processing and TL. In Section VI, we summarize various
indoor localization schemes using AI algorithms. Section VII
presents some publicly available databases. In Section VIII,
we provide the details of challenges faced by ML-based
indoor localization and address their corresponding potential
solutions. Finally, we present the discussion and conclusion
of the paper in Section IX.

II. APPLICATIONS OF INDOOR LOCALIZATION
In this section, we discuss several different application areas
where indoor localization is needed, as shown in Fig. 1.
User or device localization has wide-scale applications in
surveillance, location-based social networking (LbSN) [58],
asset finding and tracking [59], the health sector, and disas-
ter management [60]. Smart-X (such as smart cities [61]),
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FIGURE 1. ML-based indoor localization application scenarios.

autonomous vehicles (AVs) [62], and the IoT [63] can also
be gained with indoor localization techniques. The fol-
lowing explains some application scenarios using indoor
localization.

1) In manufacturing plants, predicting the location of
autonomous robots by RSSI analysis provides a cost-
effective and straightforward way of monitoring (and
manufacturing) more products. In the near future,
human-robot collaboration will become a new norm,
where robots become co-bots. For example, for various
monotonic but dangerous tasks, using robots in the
right place is valuable and essential for a safety and
collision avoidance system.

2) In a large warehouse, where small UAVs can be used
for tasks, such as surveillance or shuffling of goods,
their real-time location is beneficial for better inventory
management and control. In shoppingmalls or markets,
personalized marketing and advertisement can be done
based on the customers’ location. It also helps busi-
nesses track customers’ habits, behavior patterns, and
footfalls.

3) In smart factories and buildings, Wi-Fi-enabled alarm
systems can provide the exact location of an accident in
the complex. Moreover, localization systems can help
evacuate people from danger zones by providing a safe
navigating path.

4) Smart homes are also an area where indoor local-
ization can be used. The smart devices’ location in
the house is known using indoor localization, which
enables a more personalized user experience. More-
over, the home owner can monitor and give access to
his/her Wi-Fi network only to those devices (users)
inside the house or a predefined area.

5) Indoor localization can be used for user location-based
authentication, such as location-based access control
for sensitive business data and hardware resource allo-
cation based on the user’s position. Similarly, anti-theft
devices can become more intelligent by utilizing the
potential of indoor localization.

6) The hospitality sector can obtain the most benefits
from this technology because most hotels and restau-
rants have a Wi-Fi network. Using the already installed

network, one can easily track users’ behavior patterns,
find the most favorable areas, and provide users with
personalized services by placing the autonomous ser-
vice robots or support staff at the right place.

7) In hospitals, there are many assistive smart machines
and equipment for patients. Using indoor localization,
the location and availability of these assistive machines
can be monitored. Additionally, doctors or nurses can
track the location of their patients in the hospital. In the
future, nanosensors and robots will be used for targeted
drug delivery, where localization techniques could be
used to track these nanorobots or sensors inside the
body with a drug container carrying drug particles and
releasing them at the target (e.g., tumor).

8) Indoor localization techniques are also valuable for
greenhouses where different types of crops and fruits
are grown. These techniques help the farmer to moni-
tor and track the location of various wireless sensors,
which ultimately helps in lowering the maintenance
cost of the greenhouse that enables him/her to become
a smart farmer. Similarly, indoor localization can be
instrumental in large warehouses to locate different
products, in libraries to search for books, and in park-
ing (indoor) areas to track vehicles.

9) Indoor localization is also crucial for applications
where relative position information and synchroniza-
tion among multiple devices are essential. For instance,
indoor entertainment performances by autonomous
drones or robots will boost with this technology. In
broadcasting any sports in a large indoor stadium,
where various movable wireless cameras are tracking
athletes from different locations, keeping track of cam-
era positions is also valuable for transmitting live action
from the field using technologies such as 5G or 6G.
It helps broadcasters increase their service efficiency
and quality.

10) Indoor localization will play a significant role in space
exploration. In this scenario, positioning information of
each device or human may be vital for efficient, safe,
and secure functioning in space.

III. RSSI-BASED Wi-Fi FINGERPRINTING
In this section, we first describe RSSI techniques in detail
and their working principles in wireless localization. We then
discuss Wi-Fi and compare it to other wireless standard tech-
nologies. Along with this, both Wi-Fi fingerprinting and fin-
gerprint collection processes are explained. We also discuss
the factors affecting Wi-Fi fingerprints. Finally, we address
the techniques used for radio map construction and its quality
improvement.

A. RSSI
RSS is the calculation of real signal power received by
a receiver, which is typically expressed in decibel milli-
watts (dBm) or milliwatts (mW ) [64]. RSS can be used to
measure the distance between transmitter (Tx) and receiver
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(Rx) devices based on the transmitted and received signal
power differences. Generally, two propagation models have
been used in RSSI-based wireless sensor networks: (1) free-
space models and (2) log-normal models. Free-space models
are simple (ideal) but are often limited in real applications
because they do not consider obstacles between receivers and
transmitters. Therefore, log-normal models are more practi-
cal than propagation models and are suitable for indoor and
outdoor environments based on their flexibility in different
environmental settings [65]. Mathematically, the free-space
propagation model is defined as follows [66]:

Pr = 10 log
(
PtGtGrλ2

(4π )2d2L

)
, (1)

where Pr is the received power, Pt is the transmitted power,
Gt is the transmitter antenna gain, Gr is the receiver antenna
gain, λ is the wavelength of the radio waves, d is the distance
between the transmitter and receiver, and L is the propagation
loss in the channel, which is a function of fading. The log-
normal propagation model is defined as follows [65]:

Pr = Pt + Gt + Gr − Lp(d0)− 10 log
(
d
d0

)α
+ Ca. (2)

In (2), α is the path loss exponent, which depends on a
specific propagation environment, Lp(d0) is the path loss
at a reference distance d0, and Ca is a normally dis-
tributed random number with zero mean and a variance of
σ 2 considering shadowing and other sources of uncertainty
(Ca ∼ N (0, σ 2)) [unit: dB] [65].
The RSSI representing the RSS level at a receiver device

has an arbitrary range of values that the chip supplier pri-
marily characterizes. For example, a receiver device may
translate dBm values into RSSI values ranging from 0 to 60,
0 to 100, or−100 to 0, depending on the chip vendor. RSSI is
one of the simplest and most widely used indoor positioning
tools in the literature [50]. Although RSSI-based solutions
have advantages such as lower device requirements, better
accessibility, and cost-effective system design, they also suf-
fer from numerous problems in indoor environments [67].
These problems include significant path loss, multipath fad-
ing loss, indoor noise and interference, absorption loss, and
the unavailability of some APs during localization. Various
in-building materials also affect RSS levels, as shown
in Table 2. To address these issues, several solutions have
been proposed in the literature, including various filter-
ing and averaging methods, RSS cutoff and self-calibration
techniques, the use of an increased number of APs or
reference points (RPs), andML-based schemes. In particular,
ML-based schemes such as wireless signal recognition
using ML and channel modeling using ML are promis-
ing candidates for solving RSSI-based indoor localization
issues [69]–[71].

B. Wi-Fi AND FINGERPRINTING
1) Wi-Fi
Wi-Fi is a family of IEEE 802.11 mainstream wireless net-
working interfaces that are widely used to deliver network

TABLE 2. Material vs decline in RSS [68].

and internet connectivity services to various users in both
private and public areas. Wi-Fi uses 2.4 GHz and 5 GHz
ISM frequency bands [72], which consists of channels with
20 MHz, 40 MHz, and 80 MHz bandwidths. As the cost of
manufacturingWi-Fi modules decreases, almost all of the lat-
est smartphones, environment monitoring sensors, and other
smart devices have built-in Wi-Fi capabilities. Furthermore,
due to the deep penetration of Wi-Fi network infrastructure,
Wi-Fi is easily accessible in various places, ranging from
small coffee shops to large stadiums and airports. Conse-
quently, almost 4.45 billion people were active internet users
in January 2020 [73], and most of them were using the
internet through Wi-Fi. Furthermore, the latest commercially
available Wi-Fi standard, Wi-Fi 6, which operates on bands
between 1 GHz and 6 GHz, has a reduced latency by 75%
and an increased transmission rate up to 11 Gbits/s (theoreti-
cally) [74] when compared to its previous version. Therefore,
the increased transmission will further expand the popularity
of Wi-Fi.

Additionally, compared to other wireless standards, such
as Bluetooth Low Energy (BLE), ZigBee, LoRaWAN, RFID,
and UWB [75], [76], Wi-Fi has a high bitrate and high scala-
bility and is relatively less affected by external factors. Higher
data transmission between devices provides more opportuni-
ties for improving the accuracy of localization [63], [77]. As a
result, Wi-Fi, the most suitable and popular wireless stan-
dard, has become one of the most widely studied schemes in
the indoor localization literature [78]–[80]. Therefore, Wi-Fi
indoor localization schemes that are directly accessible to
many smart devices will provide device-based solutions for
various futuristic localization services.

FIGURE 2. RSSI fingerprint (Wi-Fi).

2) FINGERPRINTING
The fingerprinting technique (also known as scene analysis
or fingerprint matching) is the most commonly used, cost-
effective, and high-precision localization technique. Finger-
printing, which is a pattern matching method, matches the
fingerprints of different positions in an analogous reference
frame to an unknown pattern of fingerprints to predict the
location of a particular device [81], [82]. To achieve high
positional accuracy, both temporal and spatial patterns should
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FIGURE 3. Basic workflow of ML-based indoor localization using Wi-Fi RSSI fingerprints.

be considered. A temporal pattern is an observed signal pat-
tern during the maneuvering of a device in an indoor environ-
ment. In contrast, a spatial pattern represents the geographic
composition of signals (roughly equivalent to the RSSI).
Determining the position of a device can exploit these signal
patterns. Additionally, scene analysis does not require precise
and rigid physical quantities, such as distances and angles.
In general, the fingerprint (fi) of a Wi-Fi signal consists of
three elements: the location coordinates (x, y) of an RP or
landmark, unique address or identification number of an AP
(APID), and RSSI values of the corresponding AP at an RP
(RSSIm). Therefore, the RSSI fingerprint of a Wi-Fi signal is
defined as fi = [(x, y),APID,RSSI1,RSSI2, . . . ], as shown
in Fig. 2.

The fingerprinting method consists of two phases,
as shown in Fig. 3: offline and online. Initially, in the offline
phase, fingerprints are obtained from a predefined number
n of landmarks using various sensors or smart devices to
construct a radio map (database) rdn(fi) = (fi1,fi2,fi3,
fi4, . . . ,fin−1,fin). A radio map is a visual illustration of the
availability and intensity of RSSI in an indoor environment.
Generally, ‘‘fingerprint data collection’’ involves multiple
steps, as shown in Fig. 4. In the first step of the offline phase,
the floor plan of a Wi-Fi-network-enabled indoor environ-
ment is defined, where a localization service is provided.
In the second step, the entire floor plan is divided into a
grid of lines with multiple design options or grid properties
such as round, hexagonal, or square. The third step involves
marking multiple landmarks or RPs at regular or irregular
distance intervals from each other. These RPs may or may
not have line-of-sight with APs. In the fourth step, as shown
in Fig. 4, RSSI values are collected using Wi-Fi-enabled
sensors or smart devices, along with corresponding AP and
RP coordinates. In the fifth step, all of the data collected
from different devices are combined. To construct a radio

FIGURE 4. Overview of fingerprint data collection process.

map, various preprocessing techniques, such as filtering and
averaging irregular values or eliminating null values, are
applied to the collected data. This radio map can then be used
for ML training and testing.

During training, a localization function tries to learn the
mapping between real-time RSSI observations and device
locations. The role of pattern matching in traditional finger-
printing algorithms is to determine the similarity between
training and testing fingerprints. The goal is to find a
pair consisting of the closest testing and training points in
the fingerprint space and then use training point position
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information to approximate (and estimate) the testing point in
the location space. The localization function can be as simple
as the Euclidean distance in the k-nearest neighbors (kNN)
algorithm or very complex in a deep learning-based local-
ization learning function. Subsequently, in the online phase,
ML models use the trained/learned localization function to
predict the real-time locations of devices based on RSSI
measurements, as shown in Fig. 3.

The performance of an ML algorithm is directly propor-
tional to the quality of the radiomap, and the quality of a radio
map depends on the quality of fingerprints. Wi-Fi signals are
affected by various factors. (1) The human body degrades
signal quality by absorbing signals because the human body
is approximately 70% water [83], [84]. (2) Multipath fad-
ing greatly degrades transmission signal quality [85], [86].
(3) The number of APs and RPs is critical. If the number
of APs and RPs is low, then the granularity of fingerprints
decreases. However, if the number is large, then it increases
the requested time for the data collection process, which may
cause interference between signals [87]. (4) Device orien-
tation is important because signals are often influenced by
the orientations of the devices, which determine the positions
and configurations of antennas [88]. (5) Device dependency
refers to the use of Wi-Fi sensors produced by different
vendors for specific devices. Every vendor has its own set of
standards for representing signal strength and arbitrary RSSI
values. As a result, fingerprints are sometimes unreliable
or incompatible [89], [90]. (6) Energy consumption varies
because some Wi-Fi networks consume larger amounts of
energy than other wireless systems [77]. (7) Data collection
processes have a significant impact. Radio map construction
itself is the greatest challenge in indoor localization. Col-
lecting fingerprints often takes a long time and consumes
many man-hours. It also requires a large amount of storage
space. A small change in an indoor environment may also
require re-evaluation or even recollection of RSSI values.
Based on these factors, the performance of ML localization
algorithms is often degraded, which hinders the adoption of
indoor localization systems in the real world.

C. TECHNIQUES FOR CONSTRUCTION AND ENRICHMENT
OF RADIO MAPS
Due to the above factors, collecting high-quality fingerprints
in indoor environments has been a very challenging pro-
cess. To comply with these factors, the most straightforward
approach is to collect as many fingerprints as possible from
multiple RPs in an indoor environment. However, it is a time-
consuming and labor-intensive process. Apart from being
cumbersome, it is sometimes not affordable. Therefore, one
of the critical challenges is to minimize the efforts for obtain-
ing high-quality training fingerprints for theMLmodel. In the
literature, many solutions have been proposed both for reduc-
ing the efforts of RSSI fingerprint collection and for improv-
ing the quality of fingerprints, including automatic fingerprint
collection using UAVs and robots [62], SLAM [91], crowd-
sourcing [92], and other efficient data collection methods.

To minimize labor-intensive work during the data collec-
tion process, [62] used UAVs to collect fingerprints. This
UAV-based collection method provides fingerprints of 3D
space, which are more valuable than conventional collec-
tion methods. However, the time and energy efficiency still
hinders the coverage of UAVs, which reduces scalability.
To address this issue, another method, AuF [93], was pro-
posed, where the fingerprinting database is autonomously
constructed with improved time and energy efficiency.
In [94], the authors proposed an automatic fine-grained
indoor radio map construction and adaptation scheme called
WiGAN. This scheme is an automatic fine-grained indoor
radio map construction empowered by Gaussian process
regression conditioned least-squares generative adversarial
networks (GPR-GANs), where a mobile robot collects the
RSS data.

The use of SLAM is often considered when constructing a
radio map with low survey costs. Due to its high processing
cost, it may not be appropriate to run on resource-constrained
smart devices such as IoT devices andmini drones. Mapman-
agement methods (MMMs) [95], such as pedestrian dead-
reckoning and map filtering, are often used to locate the
device’s starting point and optimize its output accordingly.
However, due to high computational costs, their implementa-
tion in resource-constrained smart devices is limited. Thus,
a SLAM-based scheme called Wi-Fi SLAM was proposed
in [96]. It employs a Gaussian process latent variable model
that links Wi-Fi fingerprints with a motion dynamics model
in the absence of certain location tags in the training data
point. In addition, the authors of [97] suggested GraphSLAM,
which transforms the posterior SLAM into a graphical net-
work, with a greedy algorithm used for data association. The
authors of [98] demonstrated that GraphSLAM improves the
computational efficiency of Wi-Fi SLAM while decreasing
its reliance on fingerprint distinctiveness.

The crowdsourcing approach harnesses the potential of
active and passive participatory actions of users. Participation
of the user can take place during the offline or online phases.
For this reason, [92] recently proposed the development of
radio maps in both active and passive formats. An active
crowdsourcing approach increases user involvement, which
decreases the necessity of special auditors but may incur
deliberate malpractice due to the involvement of participants.
However, a passive crowdsourcing approach decreases user
involvement by linking fingerprint data extracted from iner-
tial sensors on smartphones to the relevant RPs. Some of
the crowdsourcing approaches are organic indoor location
(OIL) [99], Zee [100], LiFS [101], and many more. OIL [99]
routinely asks users to attach their observations along with
their positions on the floor plan, provide details on neighbor-
ing wireless devices, and then represent the determined posi-
tion on a global map. Zee [100] usedmobile inertial sensors to
monitor users while conducting aWi-Fi scan at the same time.
This makes it possible to create a radio map while protecting
the privacy of users. LiFS [101] creates the radio map by
using smartphone built-in sensors for the floor plan, which
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results in quicker implementation and fewer working hours.
Another crowdsourcing scheme [102] is an RP graph-based
approach that uses sensors from smart devices to dynamically
locate the position of RPs linked to the captured fingerprints
and build realistic, quick, and accurate fingerprints. In this
scheme, the element of confidence (‘‘belief factor’’) in good
precision and reliability is used. In [103], the authors pro-
posed an automated construction and maintenance system for
radio maps, which uses an unsupervised learning algorithm
for the incremental and adaptive calibration process. After the
initial setup, the radio map adopts the changes reflected in the
environment. In [104], the authors proposed a gradient fin-
gerprinting indoor localization and tracking system (GIFT)
as a new fingerprinting method for indoor localization. The
key behind this is to use differential RSSI between adjacent
locations, which is more reliable than absolute RSSI. It is
also independent of the AP transmission power and receiving
device. GIFT is backward compatible with previously devel-
oped state-of-the-art fingerprint map construction techniques,
which might reduce training overhead.

In [105], the authors proposed an automatic Wi-Fi finger-
print system based on unsupervised learning. This system
combines a modified autoencoder and a modified generative
adversarial network (GAN) to create an initial radio map
and cope with the new addition or removal of APs dur-
ing the localization phase. The authors in [106] proposed
a hybrid generative/discriminative semisupervised learning
algorithm. This algorithm employs a large number of unla-
beled data samples to enhance/support the small number of
labeled data samples. Another semisupervised learning-based
radio map construction method was proposed in [107], which
uses a semisupervised self-adaptive local linear embed-
ding algorithm for the construction of the radio maps.
Other methods for the construction of radio maps include
DeepMap [108], manifold learning [109], and the multiwall
path loss model [110].

Radiomap constructionmethods also need to increase con-
sistency, handle outliers and irregular indoor coverage areas,
and improve positioning accuracy in indoor environments.
Several researchers have proposed a variety of approaches
for enhancing and enriching radio maps. To handle sparsity,
the authors of [111] used compressive sensing to derive extra
key features in radio maps by using singular value decom-
position (SVD) and kNN. The authors of [112] proposed a
Fourier transformation andminimizationmethod that reduces
the sparsity in radio maps by using a sparse group LASSO.
In [67], the authors proposed a scheme that uses an aug-
mented sparse recovery algorithm, LASSO for AP selection,
and fine localization. A technique for eliminating useless
APs and their fingerprints from radio maps was introduced
in [113]. Another scheme in [114] using RSS quantization
increases the consistency and efficiency of radio maps and
maintains the same accuracy while using 4-bit quantization
instead of conventional RSS. The authors of [115] proposed
a linear interpolation scheme that can be paired with extrap-
olation methods based on minimum observed values, mean

detected values, and triangulated edge signal gradients. They
also employed inverse distance weighting methods, which
can be used directly for interpolation and extrapolation to
improve the quality of radio maps. In [116], the authors pro-
posed an efficient scheme that automatically detects changes
in AP signals and updates fingerprint databases with no need
for another offline site survey. Their method adapts databases
to signal changes by applying a nonparametric Gaussian
process regression model. The authors of [117] proposed a
technique that generates dense fingerprints from real spatially
coarse RSS data by evaluating the cosine similarity of the
directions to different Wi-Fi APs. Another method called
RecTrack-GANwas proposed in [118]. This technique uses a
GAN to generate new data and update existing fingerprinting
databases. During the collection of fingerprints, real-time
Wi-Fi signals suffer from the effects of acquisition noise
and channel noise, and the fusion of different nodes with a
large amount of data harms system performance. To handle
this type of noise, various denoising techniques have been
introduced. In [119], the authors proposed a technique using
a stacked denoising autoencoder (DAE) that extracts RSSI
measurements to overcome the sparsity of Wi-Fi signals.
Another neural network scheme proposed by the authors
in [120] handles sparsity and fluctuations in indoor areas and
efficiently executes data denoising. In [121], the authors pro-
posed a denoiser that learns noise characteristics instead of
learning original data characteristics. The proposed denoiser
is a modified version of the DAE.

IV. PERFORMANCE METRICS
In this section, we discuss the different metrics essential to
assessing indoor localization systems. Most indoor localiza-
tion systems are application-dependent, so that some metrics
(or parameters) could have higher priority for a specific appli-
cation than the other metrics (parameters).

A. POSITIONING ACCURACY
The closeness of the estimated position to the actual location
of the device/user is termed accuracy. Accuracy is one of
the main parameters of indoor localization that evaluates the
efficiency of the system service. As mentioned in Section III,
the indoor environment has a dynamic nature such that Wi-Fi
fingerprinting could suffer significantly from the prospect of
high position accuracy. Therefore, researchers have tried to
determine a way of resolving such difficulties to achieve a
reasonably reliable outcome.

B. ROBUSTNESS
The robustness is characterized as the capacity of the system
that withstands or subdues adversaries such as radio map
errors, hardware failures, and incorrect Wi-Fi signals while
producing consistent results. A robust positioning system
allows the use of less or even incomplete information for user
location prediction. Studies have shown that ML schemes
such as autoencoders help to improve the robustness of the
system.
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C. SCALABILITY
Scalability is the capability of a positioning system that is able
to provide location information to a rising number of users.
In particular, techniques for commercial use often request
a high degree of scalability while having a reasonable cost.
However, this property may have put the device under a
tremendous load operating with undue strain.

D. COMPLEXITY AND COST
Another important parameter for evaluating the efficiency of
the system is the complexity of the indoor positioning system.
System software algorithms can be related to complexity and
cost. Algorithms significantly degrade the efficiency of the
system through their spatial and time complexity. Further
computational power is required to run highly sophisticated
algorithms that consume more energy. Hence, complexity is
key to the real-world implementation of indoor positioning
systems. However, the actual implementation of a localiza-
tion system, which optimally reduces complexity and cost,
may require significant efforts.

V. ML IN INDOOR LOCALIZATION
In this section, we discuss data preprocessing in ML, data
augmentation, ML algorithms, and postprocessing in ML,
which are primarily used in indoor localization. For further
information, readers may refer to [122]–[124].

ML is characterized by a computer algorithm that can auto-
matically learn and identify patterns in data. Based on this
learning, an algorithm can detect patterns or execute differ-
ent decision-making tasks for new unknown data. Typically,
ML is classified into three broad categories: supervised, unsu-
pervised, and reinforcement learning. In supervised learning,
labels are available for all training samples. In unsupervised
learning, labels are not available for any training samples.
In reinforcement learning, an agent learns to operate or take
actions to achieve a goal in an uncertain, potentially com-
plex environment, and in return, it receives rewards. There
is another subcategory of ML, i.e., semisupervised learning,
where some training samples have labels and the rest of
them are unlabeled. ML techniques can achieve human-level
performance on various tasks. Therefore, researchers have
used ML in indoor localization to achieve high performance
and compensate for or mitigate various problems during data
acquisition, such as missing RSSIs, RSSI redundancy, and
anomalies (or errors) in RSSI fingerprints. In Section III-C,
we mentioned several ML techniques for the collection,
enrichment, or cleaning of fingerprints.

The problem of locating a device in an indoor environment
can be formulated as an ML classification or regression prob-
lem based on required location information. The classifica-
tion problem attempts to determine the symbolic locations of
devices such as research labs, lecture rooms, or conference
rooms. The regression problem attempts to determine the
physical locations (i.e., actual coordinates) of devices.

A. DATA PREPROCESSING IN ML
Generally, in developing a better MLmodel, data preprocess-
ing helps to manipulate the raw data by performing various
tasks, including data cleansing and denoising, selection and
partitioning of data samples, feature tuning, feature extrac-
tion, and dimensionality reduction.
• Data cleansing or denoising: This task is to remove or
correct either records with false/incorrect values from
raw data or records with no significant number of
columns. In indoor localization, unavailable raw Wi-Fi
RSSI values from APs are often replaced with a spe-
cially assigned (or defined) number indicating missing
data. For instance, the authors in [125] replace all of
the unavailable signal values with ‘100’ in the dataset.
Additionally, denoising the raw Wi-Fi RSSI signals is
required for improved performance. Autoencoders or
GANs are often used for removing noise (denoising) in
raw signals [119].

• Selection and partitioning of data samples: This pro-
cess selects the random data samples from the input data
and splits the dataset into a training set, a validation set,
and a testing set.

• Feature tuning: This task is to improve the quality of
features for ML, which comprises scaling or normaliz-
ing the numeric data, clipping outliers, and adjusting the
data with skewed distributions. In indoor localization,
there are many normalization techniques, such as expo-
nential, zero-to-one normalized, and powered [126].

• Feature extraction: This task aims to reduce the num-
ber of features in a dataset by creating (or extracting)
new features from the existing ones (and then discarding
the original features).

• Dimensionality reduction: This process involves
reducing (or lowering) the number of features and
dimensions of data, providing more efficient data rep-
resentation, choosing the subset of input features for
model training (a type of feature extraction), or avoiding
trivial and redundant features. Additionally, most of
these features overlap with each other, which produces
redundancy in the training set so that dimensionality
reduction is used for redundancy removal. In indoor
localization, the input could be a radio map with many
features and dimensions, which could cause difficulty in
ML training. High-dimensional data often lead to a more
complex model and increase the chance of overfitting.
Then, dimensionality reduction avoiding such problems
forms a crucial part of the preprocessing step.

In indoor localization applications, many popularML algo-
rithms are commonly used for data preprocessing and dimen-
sionality reduction, such as singular value decomposition
(SVD), principal component analysis (PCA), kernel PCA
(KPCA), locally linear embedding (LLE), linear discriminant
analysis (LDA), t-distributed stochastic neighbor embedding
(t-SNE), and autoencoders [109], [111], [121], [127]–[131].
Below, we briefly discuss each of those algorithms, which
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are often used in data preprocessing and dimensionality
reduction.

1) SVD
SVD is a type of factorization that enables a high-dimensional
matrixM to be represented as a product of lower-dimensional
matrices. That is, the SVD function decomposes an m × n
matrix M into the following three matrices: M =

U
∑

V∗, where U is an m × m unitary matrix,
∑
=

diag(σ1, σ2, σ3, . . . , σn) is an m × n rectangular diagonal
matrix, and V∗ denotes the conjugate transpose of an n × n
unitary matrix V; the columns of U and V are also called
the left-singular and right-singular vectors, respectively. The
diagonal entries (σi) of the matrix

∑
that have nonnegative

values in descending order from the upper left corner of the
matrix are known as singular values of M [111].

2) PCA
PCA is the most popular unsupervised linear method. It is
a dimensionality reduction method that deals with high
dimensionality problems by linearly transforming features of
the high-dimensional data into a lower-dimensional space.
In other words, PCA is an eigenvalue decomposition of
the data covariance matrix Mc, which is used for low-rank
approximation. The principal components are obtained by
calculating the eigenvalue problem ofMc, that is, the covari-
ance matrix of the original data R, i.e., Mcνx = λxνx ,
where λx are the eigenvalues of the matrix Mc and νx are
the corresponding eigenvectors. That is, to reduce the dimen-
sionality of the data, the n eigenvectors (principal compo-
nents) corresponding to the n largest eigenvalues need to
be computed. The PCA process gives the resultant matrix
as follows: RPCA

= UT
nR, where Un = [ν1, ν2, . . . , νn].

As a result, the dimension of the original data matrix R
is reduced by multiplying it with the matrix Un, which
consists of n eigenvectors corresponding to the n largest
eigenvalues [127], [132].

3) KPCA
Kernel PCA (KPCA) is another variant of PCA that is mainly
used for nonlinear data preprocessing. KPCA computes the
principal eigenvectors of the kernel matrix rather than the
covariance matrix. A kernel matrix is the inner product of
the data points in the high-dimensional space (which is
also called kernel space). KPCA uses a kernel function that
projects the dataset into kernel space, where it is linearly
separable. That is, KPCA has the ability to create nonlinear
mappings in the kernel space [133].

4) LLE
LLE is a nonlinear spectral dimensionality reduction method
used for manifold embedding and feature extraction. LLE
tries to preserve the local structure of data in the embed-
ding space. In other words, the close points in the high-
dimensional input space should also be close to each other in
the low-dimensional embedding space. By this local fitting,

the far points in the input space also fall far away from
each other in the embedding space. From another perspec-
tive, the idea of local fitting by LLE is similar to piece-
wise spline regression. LLE unfolds a nonlinear manifold
by locally unfolding it piece by piece so that a suitable
total manifold unfolding is obtained. In general, we can
say that most of the unsupervised manifold learning meth-
ods have the idea of local fitting. The LLE algorithm has
the following three steps: first, it finds the k-nearest neigh-
bors (kNN) graph of all training points; second, it finds the
weights for linear reconstruction of every point by its nearest
neighbors; third, it embeds the data into a low- dimensional
embedding space using the same weights as in the input
space [131].

5) LDA
LDA is a method to find a linear transformation that max-
imizes class separability in the reduced dimensional space.
The criterion in LDA is to maximize between-class scatter
and minimize within-class scatter. The scatters are measured
by using scatter matrices. The performance of LDA increases
when the data are constructed using independent variables
with large data patterns. However, LDA is not applicable for
nonlinear applications [129].

6) t-SNE
t-SNE is a nonlinear, unsupervised, and manifold-based fea-
ture extraction method that maps high-dimensional data to
low-dimensional data while keeping the original data’s struc-
ture significant. In contrast to other dimensionality reduction
methods, t-SNE is mainly used for data exploration and
visualization. In other words, t-SNE provides an intuitive
understanding of how data are organized in high-dimensional
space [131].

7) AUTOENCODERS
Autoencoders are also unsupervised learning algorithms that
automatically attempt to learn essential features from unla-
beled data, which provide a better description than the orig-
inal input data. An autoencoder is a type of neural network
comprising two components: an encoder and a decoder. Both
components are connected by the bottleneck layer (or hidden
layer), also known as the latent space. The encoder com-
presses the input data into the lower dimension, while the
decoder reconstructs the input data from lower-dimensional
data. The goal of the autoencoders is to decrease the recon-
struction error of the data output. For more details, readers
may refer to [134].

The abovementioned techniques perform well when the
data are large enough. However, in the real world, the data
are often not sufficient for ML model training such that
system performance is not satisfactory. To address such
issues, the following data augmentation techniques are also
introduced.
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B. DATA AUGMENTATION
Typically, in the ML domain, the performance of a model
improves as the number of training data increases. Data
augmentation artificially increases the size of a training set
by generating many realistic variants of the original train-
ing instances. This process may reduce overfitting when it
is applied as a regularization technique. Data augmentation
consists of various methods, such as cropping, padding, and
horizontal flipping [135].

Indoor localization may often suffer from poor data
deficiency because collecting data is a daunting task. Data
augmentation can improve the potential of ML models by
generating new synthetic data from previously collected
datasets. This method may also detect and remove erroneous
or invalid data, allowing an improved database that can be
used for training the ML models. It can help researchers
generate different scenarios or features duringmodel training,
allowing ML models to become more robust. For example,
DataLoc+ [136] employs a data augmentation technique
for room-level indoor localization. Another study [137] uses
data augmentation to extend measurements and develop new
learning algorithms. The authors of [138] demonstrate the
feasibility of data augmentation using deep neural networks
(DNNs), and the authors of [139] use data augmentation
to reduce the number of required site surveys and improve
location accuracy. In [140], the authors propose a novel data
augmentation technique based on a conditional adversarial
network to handle the sparsity of RPs.

C. ML ALGORITHMS FOR INDOOR LOCALIZATION
The preprocessed data are used to train the ML prediction
models for indoor localization. The models’ hyperparame-
ters are tuned to achieve high accuracy as well as to avoid
under- and/or overfitting. The authors in [141] suggest a
guideline for choosing the best hyperparameters of several
ML models, such as k-nearest neighbors (kNN), support
vector machine (SVM), decision tree (DT), artificial neural
networks (ANNs), genetic algorithms, and federated com-
puting. Each of those ML models has different underlying
outcomes depending on predictive mechanisms. The per-
formance of the prediction models is usually evaluated on
a validation/test subset of database/radio maps. Addition-
ally, the abovementioned prediction models can be used to
approach the indoor localization problem in a supervised,
unsupervised, or semisupervised (partial labels for data) way.
Below, we briefly mention some of the commonly used ML
prediction models for indoor localization.

1) KNN
kNN is a nonparametric method that is used for predictive
problems such as classification or regression. The input con-
tains the k nearest training examples, and the output depends
on whether the method is used to classify or regress. kNN
is one of the most straightforward algorithms in ML that
classifies the dataset by computing the distance between two

points [64]. kNN is commonly used due to its ease of interpre-
tation and low calculation time. Values of k factors are crucial
in this algorithm. For better prediction, the k values should be
calculated such that the validation error becomes low [142].
Location Loc is derived by averaging location values of k
coordinates as follows:

Loc =
1
k

k∑
x=1

Locx . (3)

In indoor localization, RSSI fingerprint values depend on
the physical distance from APs to targeted devices. Assume
that k RPs are taken into account for the kNN algorithm,
where each RP is selected based on nearest k points to the
users’ location in the grid. It is a good indication of physical
proximity when the closest point is identified [64].

2) SVM
SVM is a supervised learning method used for classification,
regression, and detection of outliers [143]. It uses a tech-
nique called the kernel trick to transform the data and then
determines an optimal boundary between potential outputs
depending on such transformations. SVM is an algorithm
that takes the data as an input and draws a line dividing the
data into multiple classes. In those classified data, the points
nearest to the line are called support vectors, and the space
between the line and the support vectors is called the margin.
The key aim of the SVM algorithm is to locate a hyperplane
in an n-dimensional space that classifies the data points dis-
tinctly. The hyperplane is derived as follows:

minimize
1
2
‖w‖2 + C

n∑
i=1

ξi,

subject to yi (w · xi + b) ≥ 1− ξi, ∀xi ξi ≥ 0, (4)

where w is the vector of the margin width, C is the trade-
off between margin width and misclassifications, ξi is a slack
variable, and yi is the equivalent label of xi.
In indoor localization, SVM uses the support vectors for

training on the RSSI fingerprints in the radio map composed
of grid points. SVM scrutinizes the relation between its
trained grid points and fingerprints, describes each grid point,
and classifies the RSSI fingerprints into different zones or
groups.

3) DT
DT is a flowchart structure wherein each internal node is a
test on an attribute, each branch is a test result, and each leaf
node is a class label. Classification rules follow the paths from
the root to the edge. DT is a nonparametrically supervised
learning method for classification and regression. It works
for both categorical and continuous variables of input and
output. In this technique, the populations (or samples) are
divided into two or more homogeneous subsets (or subpopu-
lations) depending on the most critical input variables called
splitters/differentiators. The goal is to construct a model
that predicts the value of a target variable by learning the
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basic decision rules derived from the data characteristics.
The algorithm stops when there is an unbridled decision or
inefficiency. By pristine decision making, the data subset
of each node includes only one endpoint. It also empowers
predictive models with high precision, reliability, and inter-
pretation friendliness [144]. The sample data division rule
uses the Gini diversity index:

Ginii = 1−
n∑

k=1

(pi,k )2, (5)

where pi,k is the ratio of k class instances among the training
instances in the ith node.
In indoor localization, generally, DT is used for two stages.

In the first stage, a radio map is created with the help of a
DT model. In the second stage, RSSI fingerprints detected
from the AP at a specific location are classified to predict the
location of DT devices.

4) ANN
ANN is a computational framework based on the biological
brain’s structure and learning abilities. The interconnected
nodes in the ANN transmit signals to one another in different
layers. In particular, if the number of layers increases, i.e., the
depth of the structure increases, it becomes a popular deep
learning (DL) technology. It can therefore easily be said that
DL is a subset of the broaderML family. The basic perceptron
h(·) [124] is given by

step function : step(z)

hw(x) = step (z) = step
(
xTw

)
, (6)

where z = w1x1 + w2x2 + w3x3 + · · · + wnxn = (xTw),
x is the input vector, and w is the weight vector. The output
of fully connected layers is given by

hW,b (X) = ϕ (XW+ b) , (7)

where X is the matrix of input, W is the weight matrix, b is
the bias vector, and ϕ is the activation function.
In indoor positioning scenarios, ANNs (or DLs) can be

used for multiple tasks, such as feature extraction, dimension
reduction of radio maps, classification, regression, and fore-
casting of the devices’ locations. DL models and techniques
may provide position information in a single step when com-
pared to other standard ML algorithms.

In addition, DL models can take RSSI values directly
without calculating the average of these values, which con-
clusively diminishes the loss of information. This removes
the need for domain experience and the extraction of core
functionality. DL is a very promising scheme for improv-
ing localization accuracy in complex environment scenar-
ios, where feature extraction is challenging and the data
have high dimensions. DL is well known for its distributed
processing and analytic capabilities that contend with vast
quantities of unlabeled or labeled data. Additionally, DL may
help alleviate the effect of RSSI fluctuation due to multipath

fading and propagation loss. Furthermore, recent advance-
ments in DL will lead to techniques with better perfor-
mance, less energy, and more efficient computation, which
could incorporate low-power IoT devices. DL-based indoor
robot localization could even reduce the need for site sur-
veys. All of these enhancements in DL techniques enable
future indoor localization systems to have high accuracy, low
latency, strong robustness, and high adaptability to a dynamic
environment.

In the last decade, DL models such as multilayer percep-
tron (MLP), convolutional neural network (CNN), recurrent
neural network (RNN), and deep Q-network (DQN) (which
are briefly discussed below) have been proven to often outper-
form traditional (standard) ML models such as KNN, SVM,
and DT in complex tasks [124].
• MLP: An MLP is a supplement of a feedforward ANN.
An MLP consists of at least three layers of nodes: an
input layer, a hidden layer, and an output layer. The input
layer receives the input signal to be processed. Except
for the input nodes, each node is a neuron that uses a
nonlinear activation function. The output layer carries
out the required tasks, such as prediction and classi-
fication. An arbitrary number of hidden layers placed
between the input and output layers are the accurate
computational engines of the MLP. Similar to a feedfor-
ward network in an MLP, the data flow in the forward
direction from the input to the output layer. MLP uti-
lizes a supervised learning technique called backpropa-
gation for training. Its multiple layers with a nonlinear
activation function, distinguishing MLP from a linear
perceptron, are designed to approximate any continuous
function and to solve problems that are not linearly
separable [130], [145].

• CNN: A CNN is a particular type of feedforward neural
network in AI. CNN is widely used for image recog-
nition. Its architecture was inspired by visual cortex
organization, which is similar to the neuron connectivity
pattern in the human brain. CNN represents the input
data in the form of multidimensional arrays that work
well for a large number of labeled data. CNN extracts
every portion of the input image, which is known as the
receptive field. It assigns weights for each neuron based
on the significant role of the receptive field so that it
can discriminate the importance of neurons from one
another. Compared to ANN, CNN possesses the follow-
ing advantages: 1) [local connections] each neuron is no
longer connected to all neurons of the previous layer,
but only to a small number of neurons, which effectively
reduces the number of parameters and speeds up con-
vergence; 2) [weight sharing] a group of connections
can share the same weights, which further reduces the
number of parameters; 3) [downsampling-based dimen-
sionality reduction] a pooling layer harnesses the princi-
ple of image local correlation to downsample an image,
which reduces the amount of data to be retained. The
above three appealing characteristics make CNN one of
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the most representative algorithms in the deep learning
field [146], [147].

• RNN: An RNN is a neural network that maps from an
input space of sequences to an output space of sequences
in a stateful way. That is, the prediction of output
depends not only on the input but also on the hidden
state of the system, which is updated over time as the
sequence is processed. Such RNN models can be used
for sequence generation, classification, and translation.
RNN is a class of ANN, where connections between
nodes form a directed graph from a layer to previous
layers, allowing information to flow back into the previ-
ous parts of the network. Thus, each layer in the model
persistently depends on past events. LSTM is a special
kind of RNN consisting of a chain-like structure that is
capable of learning long-term dependencies by remem-
bering information for long periods [148].

• DQN: A DQN is a neural network that approximates a
state-value function in a Q-learning system. It is typ-
ically used in combination with experience replay to
store episode steps in memory for off-policy learning,
which takes samples randomly from the replay mem-
ory. Furthermore, the Q-Network is typically optimized
against a frozen target network that is modified with the
most recent weights every k steps. Experience replay
improves training stability by avoiding short-term oscil-
lations caused by a moving target. The Q-Network deals
with autocorrelation caused by online learning, where
having a replay memory makes the problem similar to a
supervised learning problem [34].

D. POSTPROCESSING IN ML
Postprocessing [149] is an additional process on the ML
model output to further improve the performance. Postpro-
cessing methods include various pruning schemes, quality
processing rules, sorting rules, and so on. These schemes run
various illustrative filters for noisy, imprecise, or undesired
information created by an algorithm. Similarly, postprocess-
ing is needed for an indoor localization output, as it may
incorrectly predict the location of the user due to missing
signal strength of the APs, hardware failures, and so on,
ultimately leading to unsuccessful positioning models. While
developing ML models, they often need retraining to com-
pensate for data changes and take the dynamic nature of the
environment into account. This retraining of the model may
increase the downtime, cost, and complexity of the system.
To avoid these issues, researchers have started using a state-
of-the-art technique called transfer learning.

E. TRANSFER LEARNING
Transfer learning (TL) has attracted significant research
attention in recent years and has been successfully applied
in various application areas, including computer vision and
natural language processing [150], [151]. TL is an ML tech-
nique to store the knowledge acquired during problem solving
and utilizes this acquired knowledge to solve other related

problems. In other words, it aims to discover the latent fea-
tures between source and target domains, extract knowledge
from the source, and transfer the extracted knowledge to
the target. It relies on the domain adaptation process, which
attempts to reduce the differences between domains [152].
TL provides significant performance improvements over tra-
ditional ML systems that have a dataset with uneven distribu-
tions, dimensional mismatching, inaccurate/lost data labels,
or limited training data [153].

The system must update a database/radio map used for
localization regularly. Otherwise, fingerprinting algorithms
will become obsolete, causing a significant decrease in
efficiency. For indoor localization, TL can provide several
advantages from the perspective of radio map updating.
It can compensate for ever-changing indoor environment set-
tings [154] and improve the scalability of indoor localiza-
tion without increasing the overhead of fingerprints [155].
Additionally, TL can enable indoor localization systems to
compensate for AP signal fluctuations and make radio maps
more adaptive [156]. TL reduces the requirements for recal-
ibrating fingerprints because it can quickly transfer previous
knowledge to a fingerprinting algorithm and make outdated
data more useful until significant structural changes occur in
an indoor area.

VI. ML-BASED RSSI FINGERPRINTING SCHEMES
This section summarizes recently published ML-based
indoor localization systems using Wi-Fi fingerprinting tech-
niques. We classify the localization systems into two types
of models, i.e., traditional ML (KNN, SVM, DT, RF, etc.)
or ANN (or DL: MLP, DNN, DQN, RNN, LSTM, etc.)
models. These models have different objectives depending
upon indoor localization applications, such as classification
in terms of symbolic location (i.e., room, floor, building, RP)
or prediction (or regression) in terms of physical location
(i.e., real coordinates). Their performances are evaluated
over public or private databases with respect to the following
metrics: positioning accuracy, scalability, robustness, cost
and complexity.

A. TRADITIONAL ML MODELS
In [157], the authors used PCA with a combination of ML
techniques. Their system attempts to find appropriate links
between a user’s location and predefined RPs. They used
custom datasets for their simulations and concluded that PCA
reduces complexity by up to 70% with improved positional
accuracy. Another SVM-based solution was proposed in [41]
for room-level prediction. This method uses a normalized-
rank-based SVM classifier (NR-SVM) and shows that exper-
imental results predict 93.75% of test cases with 98.75%
accuracy. In [158], the authors used an SVM with a custom
dataset and demonstrated that their proposed approach could
achieve 77% accuracy within 2 m. Additionally, the results
also indicated that their system is fast and efficient at pre-
dicting user locations and has lower complexity while being
robust and scalable.
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Another SVM-based positioning system was proposed
in [32]. Thismethod is also capable of recognizing user poses.
The proposed approach can compensate for the impacts of
shadows and user postures on RSSI. The authors collected
fingerprints and simulation results that demonstrated that
their system could recognize three poses with 97.16% accu-
racy and locate users with a positioning error of 0.4303 m.
Their approach is robust and has middling complexity but
lacks scalability. In [159], the authors proposed a fuzzy
least-squares SVM-based indoor localization scheme. They
designed a fuzzy coefficient that represents the loss of mis-
classified fingerprint data of various types. Additionally, they
divided their dataset into two subsets and selected the best
subset using the fuzzy C-means algorithm [160]. The pro-
posed scheme requires a significant amount of time to predict
the position of a user, making it unsuitable for real-world
applications.

In [33], the authors proposed an RF-based indoor local-
ization system using a smartwatch. They constructed their
dataset for their experiments and achieved 97.5% accuracy
with an execution time of less than 200 ms. Their system
achieves good accuracy but does not handle noise and signal
fading well. Therefore, despite having low complexity and
high precision, this system has poor stability and robustness,
which prevents it from being used in real-world applications.

In [161], the authors proposed a feature-scaling-based kNN
algorithm. This algorithm assigns different weights to two
other signals to reduce the similarity between the correspond-
ing RSS vectors. Additionally, it calculates the significant
signal distance between an RSS vector and the fingerprints
of every RP in a radio map. For simulations, the authors
constructed a fingerprint dataset from their university’s office
buildings, covering a total area of approximately 72 m2. The
results revealed that the mean location error was roughly
1.70 m. This robust algorithm can also be applied to other
environments.

In [162], the authors proposed a kNN-based scheme for
indoor localization. Their method attempts to handle spatial
ambiguity and dynamic RSSIs by leveraging past user loca-
tion information. The authors constructed a private database
for validating the proposed scheme. The results revealed that
it could achieve 80% accuracy with a positioning error of
0.89 m. This system is relatively simple and can handle the
dynamic nature of various environments but lacks scalability.
However, the experiments conducted in [125] indicated a
significant reduction in overall performance.

The system proposed in [91] uses unlabeled data for indoor
localization. This system uses SLAM, which has a slight
dependency on labeled data (precollected RSSI). This makes
the system scalable and robust, but using a more complex
algorithm increases the overall system complexity. However,
localization accuracy is high with a small amount of data.

In [163], the authors proposed a weighted ensemble
classifier for smartphone-based indoor localization. In this
study, various context-specific ML classifiers were grouped
according to the Dempster-Shafer belief theory (DSBT). The

DSBT is used to determine the weights of base classifiers
according to their prediction capabilities, and weighted vot-
ing is conducted to approximate an unknown location. The
authors evaluated the proposed method using the JUIndoor-
Loc database [164]. They also analyzed the performance
of their approach on the UJIIndoorLoc dataset [125] and
claimed to achieve an accuracy of 98%with a 2m localization
error. However, a lack of robustness and increased complexity
reduces the prospects for real-world implementations of this
method.

B. ANN (DL) MODELS
Typically, DL models refer to ANN models with higher
complexity than standard ML models. Significant research
has been conducted in this field in recent years. In [148],
the authors used an RNN-based model to predict the paths
and locations of devices in an indoor environment. They
devised a novel architecture called a convolutional mixture
density recurrent neural network that uses long short-term
memory (LSTM) [165] for state transitions. For the feature
extraction and the handling of missing Wi-Fi signals, they
used a VAE where identical latent distributions are assumed
for both Wi-Fi signals and user locations. The authors tested
their scheme on two different public datasets [125], [166] and
demonstrated that their implementation is superior to other
DL implementations. Although sophisticated and computa-
tionally expensive models make their system more robust
and scalable, they increase system cost and complexity. This
system has the potential for use in small-area applications in
the real world.

The CNN-based system was proposed in [146] to handle
time-varying RSSI values. The authors constructed a 2D
virtual radio map from 1D Wi-Fi RSSI values and then built
a CNN system to take 2D radio map inputs. Therefore, this
system can learn the topology of an RSSI-based radio map.
Furthermore, it achieves 95.41% accuracy for predicting the
building IDs and floor numbers based on an experimental
database [125]. Additionally, accuracy increases up to 95.5%
when a dropout layer is incorporated [167]. Therefore, this
scheme has low time complexity, fast execution time, and
good scalability.

Another study [147] used a CNN to predict the locations
of devices by considering RSSI data as time series of RSS
values. By using the dataset from [125] for their experiments,
they demonstrated that their system provides 100% accuracy
for both building and floor prediction and has a positioning
error of 2.77 m. This approach is less complicated than other
DNN-basedmethods and is robust because it can handle noise
and randomness in data. However, it has limited prospects in
the real world due to slow forecasting performance.

CNNLoc [168] is a multibuilding and multifloor indoor
localization system that uses Wi-Fi fingerprints. It uses an
SAE to extract specific features from raw RSSI fingerprints
and a CNN to achieve high accuracy during the online
phase. To validate this method, the authors performed sim-
ulations using two other datasets [125], [166], as well as
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their private dataset [168]. CNNLoc can achieve accuracies
of 100% and 95% for predicting buildings and floors, respec-
tively. The positioning errors for three different datasets
(i.e., [166], [168], and [125]) were 7.6 m, 10.88 m, and
11.78 m, respectively. However, its positioning error of more
than 3 m limits its prospects for real-world applications.

In [169], the authors proposed a continuous wavelet trans-
form (CWT)-based approach that formulates indoor RSSI
fingerprints. They developed two DL-based algorithms. The
first uses images translated by CWT as RSSI input data with
Gaussian noise and then trains a CNN to predict the user’s
positions. The second uses spectral density data extracted
from CWT images and then trains an ANN to predict the
user’s positions. The authors claimed to achieve room predic-
tion accuracies of 97.3% and 70.6% for the CNN and ANN,
respectively, and RP prediction accuracies of 94.93% and
60.6%, respectively. Another CNN approach was introduced
in [170] with a reported localization accuracy of approxi-
mately 94.13%, where the online prediction complexity was
shifted to an offline preprocessing step.

A device-free indoor localization system using both RSSI
and CSI was proposed in [145]. The use of MLP and a 1D
CNN for location prediction makes this system less com-
plicated. ReLU and softmax activation functions are used to
improve system performance. Additionally, this system uses
a private dataset. The results demonstrated that the system
could achieve 99.97% and 82.92% accuracies with 1.92 m
and 0.92 m positioning errors, respectively, when using CSI
and RSSI. Overall, RSSI achieves acceptable accuracy with
a lower positioning error. However, this system sacrifices
robustness and scalability to achieve low complexity.

In [34], the authors used an agent-based system to han-
dle unreliable Wi-Fi fingerprints and localize target devices.
They used a hierarchical search algorithm, starting from the
outer boundary of a localized environment and converging
toward the target device. They modeled indoor localization
as a Markov decision process (MDP) [171], where a deep
Q-network (DQN)-based learning agent meshes (coordi-
nates) fluidly with an indoor area and performs localiza-
tion using a sliding window. The authors claimed that their
model does not require any prior information and can provide
on-demand real-time localization. For experiments, they used
a public database [125]. The results demonstrated that their
system could locate 75% of devices with a positioning error
of 0.55 m and achieve 76.43% accuracy up to 1 m. This
system is robust and can be implemented in extensive areas,
making it scalable, but using a DQN-based agent makes it
computationally expensive and sophisticated.

In [172], the authors proposed an AutLoc system that
uses an autoencoder to improve accuracy by reducing noisy
RSS. Deep autoencoders are trained to denoise data in the
offline phase and construct RSS fingerprints based on learned
weights. Additionally, three different ML algorithms (RF,
multiplayer perceptron classification (MPC), and multilayer
perceptron regression (MPR)) were used to predict loca-
tions and average the results to obtain a final position. This

system can achieve high accuracy, but it is computationally
expensive.

Hybloc [173] is an infrastructure-less indoor localization
technique. It uses aGaussianmixturemodel (GMM) [174] for
soft clustering and employs an RF technique for both room-
level and latitude-longitude-level prediction. The authors also
proposed a dataset slicing technique to find natural groups
in a dataset based on GMM-dependent soft clustering, which
is driven by Akaike information criteria (AIC) and Bayesian
information criteria (BIC) [175]. They claimed an average
accuracy of 85% with a positioning error of 6.26 m on
a public database [125]. Their experiments revealed that
their system is robust and scalable in real-world applica-
tions but has increased complexity because it requires data
preprocessing.

The method proposed in [130] is a robust DNN system
that achieves precise positioning in a multibuilding environ-
ment. This system uses linear discriminant analysis (LDA)
for data cleaning and dimensionality reduction. Additionally,
it uses a multilayer perception (MLP) [176] with a rectified
linear unit (ReLU) activation function to improve system
performance. The authors used a private dataset and achieved
99.15% accuracy with a positioning error of 0.98 m. The
use of an MLP and LDA reduces the time complexity of the
system and increases its robustness.

Another study [185] demonstrated that pre- and postpro-
cessing techniques could improve the performance of ML
models. Since then, many authors have used these techniques
in a wide variety of systems. The authors of [179] proposed
pre- and postprocessing indoor localization based on a DNN.
They also used TensorFlow for rapid system implementa-
tion and constructed their own dataset of RSSI fingerprints.
Experimental results demonstrated that pre- and postprocess-
ing could help an ML model achieve a high accuracy of
95-94% with a precision of 4 m in indoor environments.
Overall, pre- and postprocessing can make a system more
robust and scalable and make systems more computationally
expensive.

In [177], another indoor localization system using an
autoencoder-based deep extreme learning machine (ELM)
localization algorithm was proposed. This algorithm high-
lights the impact of increasing the number of training data on
localization performance. The authors constructed a private
database for testing the proposed algorithm, and the results
demonstrated that the algorithm could achieve 95.75% accu-
racy as the amount of training data increased. It only achieved
an accuracy of 87.45% without increasing the amount of
training data. Overall, increasing the amount of training data
improved the system’s accuracy and made it more robust and
scalable. However, large datasets increase the initial system
cost and complexity based on algorithm retraining and data
augmentation requirements.

In [182], another autoencoder and DNN-based localiza-
tion scheme was proposed to increase scalability for a large
multifloor building. Two stacked unsupervised autoencoder
models were implemented in the proposed method, and the
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TABLE 3. Summarized view of indoor localization schemes. Note that CA = Classification Accuracy, PE = Positioning Error (regression), avg = average.

entire network was trained globally by adding a softmax out-
put layer for classification. By using a private database based
on 162 rooms, this method required less time for training and
achieved an accuracy of 85.58%. This scheme is scalable and
robust but also has high complexity.

The method proposed in [181] is a passive scanning-based
smartphone localization system for indoor environments.
This system uses a local-feature-based deep LSTM technique
to localize devices and a local feature extractor to minimize
noise impact in RSSI values. It also extracts robust local
features from observed RSSI values using a sliding window
mechanism. The authors used a custom database and demon-
strated that their system could locate a smartphone with a
precision of 2m. This system provides robustness at the price
of complexity.

A DNN-based approach called SDNNLoc was proposed
in [35]. It uses a DAE for feature extraction to achieve robust-
ness. Additionally, a field-programmable gate array (FPGA)
acceleration strategy was implemented in conjunction with a
DNN to provide scalability. In their experiments, the authors
used a crowd-sensing technique to construct a private dataset.
The results demonstrated that the proposed approach can
achieve more than 80% accuracy with a positioning error of
less than 2 m and requires only 40 ms to provide location
information. Therefore, SDNNLoc can be used in the real
world, but it suffers from high complexity.

The authors of [183] proposed a robust indoor localiza-
tion scheme using capsule networks called CapsLoc. Their
method extracts a hierarchical structure from fingerprint data.
This structure consists of a convolutional layer, main capsule
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layer, and feature capsule layer. Their scheme uses dynamic
routing to drive the feature capsule layer, followed by one-
hot encoding for mapping actual labels to grid locations dur-
ing training. For their experiments, the authors constructed
a private dataset containing 33,600 data points from three
rooms with a coverage area of 460 m2. The results revealed
an average accuracy, positioning error, and processing time
of 98%, 0.68m, and 0.5 ms, respectively. Additionally, based
on the robust nature of this scheme, it can be scaled with
acceptable complexity.

The authors of [184] proposed a high-adaptability indoor
localization (HAIL) method that uses both absolute and
relative RSS levels to provide robust and accurate loca-
tion information. HAIL uses a back-propagation neural net-
work (BPNN) to calculate the similarities between different
fingerprints constructed based on absolute RSS values. Their
simulation results demonstrated that HAIL could achieve
80% accuracy with an average localization error of 0.87 m.
Additionally, the authors tested their method on multiple
devices and concluded that the proposed method could be
applied to heterogeneous devices. Furthermore, HAIL is
robust and scalable because it can be implemented in a wide
range of indoor environments with low complexity.

In [178], the authors proposed a DNN-based localization
system that uses an SAE for feature reduction and employs
a DNN for floor and building prediction. They reported 92%
accuracy for the prediction of floors and buildings in mul-
tifloor and multibuilding environments [125]. Their system
is relatively robust and has medium complexity. The authors
of [180] proposed the WiDeep system, which uses a DL
probabilistic framework to reduce noise in RSSI data. They
reported positioning errors of 2.64 m and 1.21 m each in two
different indoor test environments. This system is robust but
is challenging to scale and has high complexity.

In [40], the authors proposed another RNN-based solu-
tion for predicting trajectories by leveraging the correlations
among RSSI values. To handle the temporal fluctuations of
RSSIs, a weighted average filter (WAF) was applied to both
input data and output locations. The results demonstrated that
the average localization error was as low as 0.75 m with 80%
errors under 1 m.

Each scheme discussed above has advantages and disad-
vantages that make it unique. However, in Table 3, one can see
that some schemes achieve high accuracies but have increased
complexities, while other methods have a higher degree of
robustness but lack scalability. Some have low complexities
and scalability but a higher degree of robustness with poor
accuracies. It is not easy to compare these methods directly
because they use different radio maps/datasets (public or
private) to perform their experiments. Many of the methods
are application dependent. However, there are two reason-
able ways to compare different schemes. First, one can use
public databases that are accessible to all researchers and
engineers. Second, one can use a specific standard scaling
method to compare various features of private or public
datasets [186].

Additionally, note that the current research trend focuses
primarily on performing fingerprint collection, dealing with
the sparse and noisy nature of raw Wi-Fi fingerprints, and
developing ML/DL algorithms to achieve high prediction
accuracy. However, it mostly neglects other aspects, such as
privacy & security of user data during localization, design
of low-latency localization models, and implementation of
scalable and energy-efficient indoor localization systems.
These aspects deserve more attention from academia and
industry. Additionally, the fusion of various wireless signals
(Wi-Fi, Bluetooth, ultrawideband, cellular, etc.) and the use
of intelligent reflecting surfaces (IRS) [187] will emerge as a
prominent method for low latency and highly accurate indoor
localization applications.

VII. OPEN-SOURCE DATABASES
Data collection, an essential but cost-intensive process,
is often the first step toward ML-based indoor positioning.
In this section, we discuss some of the publicly available
datasets for ML-based indoor localization using Wi-Fi RSSI
fingerprints, which are summarized in Table 4.

A. UJIIndoorLoc DATASET
The UJIIndoorLoc database encompasses three Jaume I
University buildings with four or more floors, whose total
coverage area is approximately 110, 000 m2. UJIIndoor-
Loc was produced in 2013, and its features were collected
using 20 people and 25 Android devices. This database
contains 19,937 training data points and 1,111 valida-
tion/test data points. It has a total of 529 features, including
Wi-Fi fingerprints, fingerprint coordinates, and other valu-
able details [125].

B. KTH/RSS DATASET
The database includes measured RSS data in two differ-
ent indoor and outdoor environments collected using a
mobile robot in 2016. The total coverage area is approxi-
mately 400 m2, including an indoor hallway, a set of rooms,
and an abandoned steel factory in Dortmund, Germany.
The mobile robot’s location has been documented using
odometry [188].

C. MINHO DATABASE
The Minho database was compiled at the University of
Minho, Portugal, in July 2017, whose total coverage was
approximately 1000 m2. A Raspberry Pi 3 Model B with
an internal Wi-Fi interface and four external USB Wi-Fi
interfaces was the basis for the data collection system. The
database collects a total of 5,783 fingerprints that consist
of 4,973 fingerprints labeled as training fingerprints and
the remaining fingerprints used as test fingerprints. In that
database, each fingerprint has RSS values measured from 11
different APs [189].
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TABLE 4. Public databases.

D. CROWDSOURCED Wi-Fi DATABASE AND BENCHMARK
SOFTWARE FOR INDOOR POSITIONING
The new open-source Wi-Fi fingerprint dataset, known as the
Tampere database, consists of 4,648 fingerprints collected
from 21 devices that present some benchmark indoor posi-
tioning results. The dataset was collected during January-
August 2017 in a four-floor university building in Tampere,
Finland, covering a floor plan of approximately 22, 570m2.
It includes 687 fingerprints for training, as well as 3,951 fin-
gerprints for testing or estimation, [166].

E. LIBRARY DATASET
The Library dataset is a Wi-Fi RSS database designed to
support the analysis of transient signal fluctuations and the
development of reliable fingerprinting-based indoor location
methods. For 25 months, researchers collected this Wi-Fi
data from their university library building, which has a floor
plan of approximately 308 m2. The database contains both
576 training samples and 3,120 test samples. The collec-
tion of all fingerprints was carried out using 620 APs. The
database is presented as a list of sets of files. Each dataset
contains four files that store their own RSS sets, locations,
times, and identifiers [190].

F. JUIndoorLoc DATABASE
The JUIndoorLoc database covers a five-floor building at
Jadavpur University. Each floor covers an area of 882 m2,
and the entire region is divided into grids of 1 m×1 m. The
database that was collected using four Android devices con-
sists of a total of 25,364 samples, including 23,904 samples
for training and the remaining 1,460 samples for testing. Its
177 attributes contain RSSI values of 172 APs and other
useful information [164].

VIII. OPEN CHALLENGES AND THEIR POTENTIAL
SOLUTIONS IN INDOOR LOCALIZATION
ML-based indoor localization using Wi-Fi RSSI fingerprints
has several advantages, but it also has certain disadvantages,
as shown in Fig. 5. We discuss some of the significant
challenges associated with ML-based fingerprinting tech-
niques: lack of privacy, lack of standardization of algorithms,
lack of databases, heterogeneity of devices, high energy
consumption, Wi-Fi networks not made for localization,
and handover delay during Wi-Fi roaming. In this section,
we also present potential solutions corresponding to those
challenges.

FIGURE 5. Open challenges of fingerprinting-based indoor localization
using ML.

A. LACK OF PRIVACY
Location privacy of mobile devices, smart vehicles, cellular
users, and smart IoT devices is already the most significant
concern in localization. Privacy is the most significant barrier
to the introduction of full-scale indoor localization systems
in the real world. The indoor positioning system always
‘‘knows’’ the user’s location when connected to the network.
Tracking his/her location is illegal when it is done without
prior user permission because many users may not be willing
to reveal their locations. In addition, location information
can be critical and have privacy-enhancing information. It
may quickly expose personal and confidential information
about any individual user, such as users’ health, the driving
pattern of their smart vehicles, attitudes, actions, use of elec-
tricity, and much more. Another security danger presented by
indoor location systems in industrial or high-profile buildings
is the leakage of sensitive process information, assembly
lines, and other related details. Furthermore, the structural
configuration can also be accessed by studying the buildings’
radio map, which also poses a possibility of terrorist attacks
and other harmful activities. Therefore, we need reasonable
solutions to these privacy issues.

The potential solution can be using algorithms that do not
expose either internal data of users or a map of the building.
These issues can be overcome by technological solutions
such as secure data collection techniques, federated learn-
ing, secure encryption technology, or the use of lightweight
blockchain nodes. As nontechnical solutions, authorities will
lay down strict but relevant rules and regulations for indus-
tries to use users’ location data. Data should not be shared
with any third-party entities or individuals without the user’s
proper consent.
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B. LACK OF STANDARDIZATION
There are currently no standards or sets of rules that can be
considered a guide for designing indoor positioning systems.
Additionally, there have been no dedicated ML localization
algorithms until now. The lack of sizeable state-of-the-art
standard radio maps/datasets poses significant obstacles in
constructing an effective indoor positioning system.

1) LACK OF BENCHMARK RADIO MAPS/DATABASES
Despite being widely studied, a Wi-Fi-based indoor localiza-
tion study lacks benchmark radio maps/databases compared
to otherML applications. In regard to some publicly available
databases that we discussed in the previous section, they still
have many drawbacks, such as a lack of validation datasets,
outdated datasets, and limited data samples. Due to this, many
studies use private radio maps, but their construction is a
time-consuming and expensive process. Nevertheless, these
private radiomaps suffer from several drawbacks, such as low
coverage area, inability to adapt according to the dynamic
environment, limited applications, and a deficient number
of APs and RPs. Consequently, it is almost impractical to
check various proposed techniques and make performance
comparisons among different schemes.

This problem can be solved by creating a large and
modern benchmark dataset that is compatible with the lat-
est technology and adaptable to the new changes of the
dynamic environment. The dataset should include proper
training, testing, and validation data subsets that are use-
ful for evaluating the proposed methods. These datasets
should also act as universal datasets. Crowdsourcing meth-
ods are the easiest way to gather data with fewer resources
and create large datasets. Another approach to building
the benchmark datasets is collaboration between researchers
from different universities and industries so that construc-
tion time and cost can be greatly reduced. Another potential
approach would be to set up a global organization that makes
universal standards for comparing different datasets and
methods.

2) LACK OF DEDICATED STANDARD MACHINE LEARNING
ALGORITHMS FOR INDOOR LOCALIZATION
There is no dedicated ML or DL algorithm for indoor
localization. Optimized ML algorithms for image classi-
fication, object recognition, and speech recognition have
already been addressed. However, there are no exclusive
standard ML/DL algorithms for indoor localization to date.
Currently, all ML techniques used in indoor localization
are general techniques. It restricts the indoor localization
techniques to be commercially viable and needs additional
highly complex supporting systems to achieve acceptable
performance.

Hence, there is a necessity for a dedicated standard low-
cost ML algorithm or a set of specific ML algorithms that
is entirely tailored and optimized for indoor localization.
Developing fully optimized ML algorithms (or packages)

for localization will improve the system’s efficiency, robust-
ness, scalability, and versatility. These packages consist of
different algorithms (or software modules) assigned to
specific tasks, which allow parallel processing in indoor
localization. Moreover, ML algorithms also need to be capa-
ble of processing limited data while maintaining reasonable
positioning accuracy. Reference [191] shows that symbolic
artificial intelligence algorithms could provide solutions to
solve the problems mentioned above.

C. NEED FOR ADAPTIVE RADIO MAP CONSTRUCTION
In indoor localization, the radio map construction process
is a daunting task. Many techniques are proposed to reduce
the time-consuming and laborious tasks, as mentioned in
Section III-C. However, building a radio map that can be
adaptive to the dynamic behavior of the indoor environment
is still a significant challenge. Thus, there is a significant
requirement for adaptive radio map construction algorithms
such that they can detect changes in the environment and
automatically update the radio map. Using crowdsourc-
ing [92] for data collection and semisupervised learning [107]
could be a potential candidate to address the challenge of
adaptive radio map construction.

D. HETEROGENEITY IN DEVICES
Heterogeneity in devices is one of the significant issues in
indoor localization. As mentioned in Section III, different
devices use Wi-Fi sensors from other vendors, which is a
major challenge for a universal localization system that works
well with all devices. Most manufacturers have a different
style of implementation for different hardware. The hetero-
geneity of the device creates a bottleneck in the adoption of a
proper localization system.

The inherent solution to crack the bottleneck of hetero-
geneity is to develop some accord and establish a set of
standards that every manufacturer complies with. Another
way is to create a localization system whose hardware and
software are platform-independent. It also improves the inter-
operability and scalability of the system with various and
different devices.

E. HIGH ENERGY CONSUMPTION
Currently, high energy consumption is also an essential
concern in the smart device market. Localization services
may hinder the efficient use of Wi-Fi APs and localized
devices because they often request added energy consump-
tion. Hence, there is a need for an energy-efficient sys-
tem coupled with optimized indoor localization algorithms.
Energy consumption can be reduced by using energy-efficient
processing units, sensors, and localization algorithms and
decreased by using parallel processing. This makes indoor
localization more available for places where energy resources
are even limited, such as isolated or remote or military
environments. Another approach is to build a remote local-
izing system, which may reduce battery anxiety among
users.
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F. Wi-Fi NETWORK NOT MADE FOR LOCALIZATION
Wi-Fi technology is primarily developed for providing inter-
net services. If Wi-Fi APs are being used to provide indoor
localization services, it does affect its primary task, i.e., inter-
net services. This additional task creates a resource man-
agement issue in existing Wi-Fi systems. It can be solved
by introducing the localization standard in the upcoming
Wi-Fi version, which does not interfere with current data
communication services. Future versions of Wi-Fi APs may
need to consider separate (or affordable) channel resources
and hardware for localization services.

G. HANDOVER DELAY DURING Wi-Fi ROAMING
Another major challenge is handover delay in Wi-Fi net-
works, where multiple APs are installed in a given coverage
area. Handover is a crucial technique in keeping seamless
connections during subscribers’ (or devices’) movement and
enabling Wi-Fi roaming. However, there is still a signifi-
cant lag or delay during handoff despite many efforts by
researchers. To address this issue, behaviour pattern analysis
or location prediction of the device (or user) using ML or DL
could be helpful, as it might alert the nearest APs (or candi-
dates) for potential handoff or increase the user’s probability
of choosing the best candidate with no disruption.

IX. DISCUSSION AND CONCLUSION
In the era of Industry 4.0, smart IoT devices will become
major components of our daily lives or even be integrated
with human life. Indoor localization-based 5G/6G applica-
tions (or services) using IoT devices (or subscribers) are
expected to expand significantly. Therefore, the location
information of subscribers is becoming increasingly impor-
tant. Many researchers and engineers have focused on the
development of variousML-based localization algorithms for
improved indoor services.

This paper is the first to provide an overview of various
ML-based indoor localization techniques using Wi-Fi RSSI
fingerprints to the best of our knowledge. In this paper, after
briefly introducing various indoor localization applications
and services expected to grow in the future, we presented
extensive investigations of ML-based Wi-Fi indoor local-
ization technologies, including Wi-Fi RSSI fingerprinting,
radio map construction, and various ML-based localization
schemes.We also discussed performancemetrics that can val-
idate various proposed ML-based localization schemes. We
then addressed some relevant open datasets that are available
for validating ML models in indoor environments.

Additionally, this paper provided an elaborate discussion
of the open challenges faced byML-based indoor localization
techniques. We also presented potential technical or nontech-
nical solutions that are dependent on the nature of various
localization problems. These open challenges and solutions
may provide future research directions for researchers in
academia and industry. Various services using indoor local-
ization will become a new source of income for many

businesses. Such services will also change how we interact
with smart devices. As a result, the privacy of users will
become a significant concern in the near future. In addition
to improving the accuracy of indoor localization, the privacy
of users in indoor areas is becoming increasingly important
as we attempt to develop an intelligent IoT society.
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