
Received August 12, 2021, accepted August 27, 2021, date of publication September 9, 2021, date of current version September 24, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3111156

An Adaptive Density-Sensitive Similarity Measure
Based Spectral Clustering Algorithm and
Its Parallelization
GEN ZHANG 1,2, LANJUN WAN 1,2, KUN GONG 1,2, CHANGYUN LI 1,2,
AND MANSHENG XIAO1
1School of Computer Science, Hunan University of Technology, Zhuzhou 412007, China
2Hunan Key Laboratory of Intelligent Information Perception and Processing Technology, Hunan University of Technology, Zhuzhou 412007, China

Corresponding author: Lanjun Wan (wanlanjun@hut.edu.cn)

This work was supported in part by the National Natural Science Foundation for Young Scientists of China under Grant 61702177; in part
by the Natural Science Foundation of Hunan Province, China, under Grant 2019JJ60048; in part by the National Key Research and
Development Project under Grant 2018YFB1700204, Grant 2018YFB1003401, and Grant 2019YFD1101305; and in part by the Key
Research and Development Project of Hunan Province under Grant 2019GK2133.

ABSTRACT The clustering effect of the spectral clustering algorithm depends on the calculation of
the similarity between samples. Although a better clustering effect of the spectral clustering algorithm
can be obtained using the Gaussian kernel function to calculate the similarity between samples, it relies
on the setting of the kernel parameter. Therefore, an adaptive density-sensitive similarity measure based
spectral clustering (DSSC) algorithm is proposed for improving the clustering effect. Specifically, firstly,
the Euclidean distances between samples are calculated to get the nearest neighbors of each sample.
Secondly, the standard deviation of distances between each sample and its nearest neighbors is calculated as
the density parameter. Thirdly, the density-sensitive distances between each sample and its nearest neighbors
are calculated. Finally, the similarities between each sample and its nearest neighbors are calculated to
construct a similarity matrix. In addition, the proposed DSSC algorithm is parallelized on Dask distributed
parallel computing platform with CPU+GPU, which can improve the computational efficiency of the DSSC
algorithm by taking full advantage of the CPU and GPU resources. A series of experiments are conducted to
verify the effectiveness of the proposed DSSC algorithm on several synthetic datasets and UCI datasets, and
the results show that the DSSC algorithm not only achieves satisfactory clustering results, but also obtains
better efficiency of performing large-scale clustering analysis.

INDEX TERMS Dask, density-sensitive, parallelization, similarity, spectral clustering.

I. INTRODUCTION
The clustering algorithm [1] is one of the unsupervised
learning algorithms commonly used for data mining, and
its purpose is to divide the samples of the same class into
the same cluster as many as possible. The clustering algo-
rithms can be divided into density-based clustering, parti-
tion clustering, hierarchical clustering, grid-based clustering,
and graph-based clustering. The spectral clustering algo-
rithm [2] belongs to graph-based clustering, which has a bet-
ter clustering effect. It has been successfully applied to fault

The associate editor coordinating the review of this manuscript and

approving it for publication was Senthil Kumar .

diagnosis [3], image segmentation [4], text classification [5],
healthcare [6], and other fields.

In recent years, the spectral clustering algorithm is still
a popular research object in the field of data mining [7].
Xie et al. [8] proposed a local standard deviation spectral
clustering algorithm, which uses the standard deviations of
distances between samples and their nearest neighbors as the
kernel parameter of the Gaussian kernel function. Du et al. [9]
used the local covariance to construct an adjacency matrix
to improve the traditional spectral clustering, which ensures
that the adjacency matrix is not affected by intersection
points. Ye and Sakurai [10] adopted the probability neighbor-
hood measure to calculate the similarities between samples,
which can improve the adaptability to the complex data and

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 128877

https://orcid.org/0000-0002-5314-3019
https://orcid.org/0000-0001-7236-3589
https://orcid.org/0000-0001-5464-6788
https://orcid.org/0000-0002-3959-0680
https://orcid.org/0000-0002-8587-7017


G. Zhang et al.: Adaptive DSSC Algorithm and Its Parallelization

the clustering accuracy of the spectral clustering algorithm.
Park and Zhao [11] used the symmetric double stochastic
similarity matrix to construct a Laplacian matrix, which is
applied to the single-cell RNA-sequencing and good results
are achieved. Zhu et al. [12] employed a local represen-
tation method to remove the interference of some outliers
and sparsification to remove redundant features, and a robust
similaritymatrix is constructed. Yuan and Zhu [13] developed
a spectral clustering algorithm based on fast search of natural
neighbors, which can adaptively determine the number of
natural neighbors of each sample and the number of clusters.
The above research has improved the clustering effect of the
spectral clustering algorithm, but the Euclidean distancemea-
sure is utilized to calculate the similarities between samples,
which cannot well reflect the distribution of samples.

Recently, the density-sensitive similarity measure is often
used to improve the clustering effect of the spectral clustering
algorithm. Zhang et al. [14] proposed a spectral clustering
algorithm based on local density adaptive similarity, which
adopts the common near neighbor measure method to con-
struct a similarity matrix. Yang et al. [15] proposed a spectral
clustering algorithm based on density sensitive similarity,
which uses an adjustable line segment lengthmeasuremethod
to calculate the distances between samples to construct a
similarity matrix, and a random matrix is constructed based
on the Markov chain. Yan et al. [16] improved the spectral
clustering algorithm by using the density sensitive similarity
measure and optimizing the selection of initial clustering
centers of K-Means clustering algorithm. Wang et al. [17]
adopted the density sensitive similarity measure to construct
a similarity matrix and the affinity propagation algorithm to
replace K-Means clustering algorithm for the final clustering.
The above research has achieved good clustering results, but
the parameter values are generally determined by experience,
and the constructed similarity matrix is a dense matrix.

Although the spectral clustering algorithm can provide a
high clustering accuracy, it usually needs to solve the eigen-
values and eigenvectors of the Laplacian matrix. This process
is not only time-consuming but also takes up a lot of memory
resources, which is not conducive to perform large-scale
clustering analysis. To reduce the running time of the spec-
tral clustering algorithm for large-scale data, the Nyström
method is adopted in [18], [19]. Some distributed parallel
computing frameworks are used to parallelize the spectral
clustering algorithm recently. In [20], [21], Hadoop MapRe-
duce is used to parallelize the spectral clustering algorithm.
Taloba et al. [22] designed an efficient spectral clustering
algorithm based on Spark for large-scale graph processing.
Huo et al. [23] proposed an efficient parallel spectral clus-
tering algorithm based on Julia. Although the above research
can effectively reduce the running time of the spectral clus-
tering algorithm, how to fully utilize all available computing
resources of a cluster to improve the efficiency of performing
large-scale clustering analysis is still a challenge.

In this paper, an adaptive density-sensitive similarity mea-
sure based spectral clustering algorithm is proposed, which

can better calculate the similarities between samples and their
nearest neighbors to improve the clustering effect to a certain
extent. Aiming at the problems of long running time and
highmemory occupancy for the spectral clustering algorithm,
the proposed DSSC algorithm is parallelized on Dask dis-
tributed parallel computing platform, which can improve the
efficiency of the DSSC algorithm for performing large-scale
clustering analysis.

The main contributions of the paper are as follows.
• An adaptive density-sensitive similarity measure

method for the spectral clustering algorithm is proposed
to improve the clustering effect. At first the nearest
neighbors of each sample are determined according
to the Euclidean distances between samples, then the
density-sensitive distances between each sample and its
nearest neighbors are adaptively calculated, and finally
the similarities between each sample and its nearest
neighbors are calculated to construct a similarity matrix.

• The proposed DSSC algorithm is parallelized on
Dask distributed parallel computing platform with
CPU+GPU, which can improve the computational effi-
ciency of the DSSC algorithm by taking full advantage
of the CPU and GPU resources.

• A series of experiments are conducted to verify the
effectiveness of the proposed DSSC algorithm on sev-
eral synthetic datasets and UCI datasets, and the results
show that the DSSC algorithm not only achieves sat-
isfactory clustering results, but also obtains better effi-
ciency of performing large-scale clustering analysis.

The rest of the paper is organized as follows. Section II
outlines NJW algorithm and Dask. Section III describes the
proposed DSSC algorithm and its parallelization. Section IV
presents the experimental results and analysis. Section V
gives the conclusion.

II. BACKGROUND
A. OVERVIEW OF NJW ALGORITHM
The spectral clustering originates from graph theory, which
transforms a clustering problem into a graph cut problem
in essence. It can be divided into 2-way spectral clustering
and multi-way spectral clustering according to the graph cut
criteria. The Ng-Jordan-Weiss (NJW) algorithm [2] which
belongs to themulti-way spectral clustering is widely used for
data mining. The NJW algorithm is described in Algorithm 1,
which includes the following steps.

Step 1: Construct a similarity matrix S. Assuming that a
sample set X = (x1, x2, . . . , xn) is given, the similarity si,j
between the sample xi and the sample xj can be calculated by

si,j =

exp
(
−
∥∥xi − xj∥∥2
2σ 2

)
, if i 6= j;

0, otherwise,

(1)

where σ is a scale parameter.
Step 2: Construct a degree matrix D. The degree matrix

is a diagonal matrix, so the value of the i-th element on the

128878 VOLUME 9, 2021



G. Zhang et al.: Adaptive DSSC Algorithm and Its Parallelization

Algorithm 1 NJW Algorithm
Input: The scale parameter σ , the number of clusters c
Output: The clustering results
1: Construct a similarity matrix S by (1);
2: Construct a degree matrix D by (2);
3: Construct a Laplacian matrix: L = D− S;
4: Normalize L by (3) and obtain a normalized Laplacian

matrix Lsym;
5: Perform eigen-decomposition for Lsym and select eigen-

vectors corresponding to the first c maximum eigenval-
ues to construct a new matrix V ;

6: Standardize V by (4) to obtain a new matrix Y ;
7: Perform clustering analysis for Y using K-Means cluster-

ing algorithm;

diagonal can be calculated by

di,i =
∑
j

si,j. (2)

Step 3: Construct a normalized Laplacian matrix Lsym.
At first the Laplacian matrix L can be calculated as follows:
L = D− S, and then the normalized Laplacian matrix can be
constructed by

Lsym = D−
1
2 LD−

1
2 . (3)

Step 4: Perform eigen-decomposition for the normalized
Laplacian matrix Lsym, and the eigenvectors corresponding
to the first cmaximum eigenvalues are selected to construct a
new matrix V = (v1, v2, . . . , vc)T , where V is a n× cmatrix.
A new matrix Y can be obtained by standardizing the matrix
V as follows:

yi,j =
vi,j√∑
j
v2i,j
. (4)

Step 5: The K-Means clustering algorithm is used to per-
form clustering analysis for the matrix Y .

B. OVERVIEW OF DASK
Dask [24] is a lightweight distributed parallel computing
platform based on Python, which provides two types of APIs:
the low-level APIs and the high-level APIs. The low-level
APIs include Delayed and Future, and the high-level APIs
include Array, Dataframe, and Bag. Users can construct a
task graph using these APIs. Furthermore, Dask also pro-
vides three kinds of schedulers: multithreading,multiprocess-
ing, and distributed. The multithreading or multiprocessing
scheduler can only be used on a single node via threads or
processes. The distributed scheduler can be used on a cluster
with multiple workers. Fig. 1 depicts the flow of processing a
task on a Dask cluster. Firstly, the client creates a task using
APIs provided by Dask and submits the task to the distributed
scheduler. Secondly, the distributed scheduler divides the task
into several subtasks. Thirdly, these subtasks are assigned to

FIGURE 1. Diagram of processing a task on a Dask cluster.

several worker nodes. Each worker node processes the sub-
tasks assigned to it independently, and the obtained subresults
are returned to the distributed scheduler. Finally, the obtained
results are returned to the client.

III. THE PROPOSED DSSC ALGORITHM AND ITS
PARALLELIZATION
A. THE PROPOSED DSSC ALGORITHM
The key of the spectral clustering algorithm is the calculation
of the similarity between samples, and a good similarity mea-
sure method can improve the clustering effect of the spectral
clustering algorithm. Therefore, an adaptive density-sensitive
similarity measure method is proposed to optimize the con-
struction of the similarity matrix for the spectral clustering
algorithm. Assuming that the number of the nearest neighbors
of each sample is k , the sample xi has k nearest neighbors:
xi.1, xi.2, . . . , xi.k , and the density-sensitive distance between
the sample xi and its l-th nearest neighbor can be calculated
by

d(xi, xi.l) =
k−1∑
t=1

als (pt , pt+1) . (5)

In (5), pt represents a path point between the sample xi and
its l-th nearest neighbor, where 1 ≤ t ≤ k . Specifically,
the path point p1 is one of among remaining k − 1 nearest
neighbors excluding the l-th nearest neighbor, which has the
shortest Euclidean distance from the sample xi. The path
point pt is one of among remaining k − t nearest neighbors
excluding the path points p1, p2, . . . , pt−1 and the l-th nearest
neighbor, which has the shortest Euclidean distance from the
path point pt−1, where 2 ≤ t ≤ k − 1. The path point pk is
the l-th nearest neighbor of the sample xi. als (pt , pt+1) is the
adjustable line segment length between the path point pt and
the path point pt+1, which can be calculated as follows:

als (pt , pt+1) =
(
ρ
dist(pt ,pt+1)
i − 1

)δi
. (6)

In (6), dist (pt , pt+1) is the Euclidean distance between
the path point pt and the path point pt+1, the standard devi-
ation of distances between the sample xi and its k nearest

neighbors is δi = 1
√
k

√∑k
t=1 (dist (xi, xi.t)− µi)

2, where

µi =
1
k

∑k
t=1 dist (xi, xi.t), and ρi = exp

(
δ−1i

)
is an adaptive

density parameter. The density parameter ρi of the sample xi
is determined according to the standard deviation of distances
between the sample xi and its k nearest neighbors, which

VOLUME 9, 2021 128879



G. Zhang et al.: Adaptive DSSC Algorithm and Its Parallelization

overcomes the weakness of manually setting the density
parameter. Therefore, the similarity between the sample xi
and its l-th nearest neighbor can be calculated by

si,l =
1

d(xi, xi.l)+ 1
. (7)

The proposed adaptive density-sensitive similarity mea-
sure based spectral clustering algorithm is described in Algo-
rithm 2, which includes the following steps.

Step 1: Construct a similarity matrix. Supposing that there
is a sample set X = (x1, x2, . . . , xn), the calculation of the
similarities between each sample and its nearest neighbors
can be described as follows. Firstly, the Euclidean distance
dist(xi, xj) between the sample xi and the sample xj is cal-
culated as follows: dist(xi, xj) = ‖xi − xj‖2. Secondly, k
nearest neighbors of each sample are determined according
to the shortest Euclidean distance. Thirdly, k − 1 path points
of the path from the sample xi to its l-th nearest neighbor
are determined according to the shortest Euclidean distance.
Fourthly, the density-sensitive distance d(xi, xi.l) between the
sample xi and its l-th nearest neighbor is calculated by (5),
where 1 ≤ l ≤ k . Fifthly, the similarity si,l between the
sample xi and its l-th nearest neighbor is calculated by (7),
where 1 ≤ l ≤ k , and the similarities between the sample xi
and its non-nearest neighbors are set to 0. Finally, the similar-
ity matrix Sn×n = (s1, s2, . . . , si, . . . , sn) is obtained, where
si =

(
si,1, si,2, . . . , si,n

)
.

Step 2: Construct a degree matrix. The value of the i-th
element on the diagonal is calculated by (2), and the degree
matrix Dn×n is obtained, where 1 ≤ i ≤ n.

Step 3: Construct a normalized Laplacian matrix.
At first the Laplacian matrix L is constructed as follows:
L = Dn×n− Sn×n, and then the normalized Laplacian matrix
Lsym is obtained by (3).

Step 4: Select the eigenvectors to construct a new matrix.
Firstly, the eigen-decomposition is performed for the matrix
Lsym to obtain z eigenvalues and z eigenvectors. Secondly,
the eigenvectors corresponding to the first cminimum eigen-
values are selected from z eigenvectors to construct a new
matrix Vn×c = (v1, v2, . . . , vc)T . Finally, the matrix Vn×c is
standardized by (4) to get a new matrix Yn×c.
Step 5: Perform clustering analysis. The K-Means cluster-

ing algorithm is used to perform clustering analysis for the
matrix Yn×c, and the clustering results are obtained.

B. PARALLELIZATION OF THE DSSC ALGORITHM
1) ANALYSIS OF PARALLELIZATION STRATEGY
Table 1 presents the running time of four main stages of
the proposed DSSC algorithm obtained using one CPU core,
eight CPU cores, and one GPU on a single worker node for a
synthetic dataset, respectively. The four main stages include
constructing a similarity matrix (stage 1), constructing a
degree matrix and a normalized Laplacian matrix (stage 2),
performing eigen-decomposition and selecting eigenvectors
to construct a newmatrix (stage 3), and performing clustering
analysis using K-Means clustering algorithm (stage 4).

Algorithm 2 The Proposed DSSC Algorithm
Input: n samples, the number of nearest neighbors k ,

the number of clusters c
Output: The clustering results
1: for i← 1 to n do
2: for j← 1 to n do
3: Calculate the Euclidean distance between the sam-

ple xi and the sample xj;
4: end for
5: end for
6: Determine k nearest neighbors of each sample;
7: for i← 1 to n do
8: for l ← 1 to k do
9: Determine the path point pk , which is the l-th near-

est neighbor of xi;
10: Determine the path point p1, which is one of among

remaining k − 1 nearest neighbors of xi and has the
shortest Euclidean distance from xi;

11: for t ← 2 to k − 1 do
12: Determine the path point pt , which is one of

among remaining k − t nearest neighbors of xi
and has the shortest Euclidean distance from the
path point pt−1;

13: end for
14: Calculate the density-sensitive distance d(xi, xi.l) by

(5);
15: Calculate the similarity si,l by (7);
16: end for
17: end for
18: Construct a degree matrix Dn×n by (2);
19: Construct a Laplacian matrix L ← Dn×n − Sn×n;
20: Get a normalized Laplacian matrix Lsym by (3);
21: Perform eigen-decomposition for Lsym and select the

eigenvectors corresponding to the first cminimum eigen-
values to construct the matrix Vn×c;

22: Standardize Vn×c by (4) to get the matrix Yn×c;
23: Perform clustering analysis for Yn×c using K-Means

clustering algorithm;

TABLE 1. Running time of each stage of the DSSC algorithm (seconds).

It can be seen from Table 1 that the running time of these
four stages obtained using eight CPU cores are decreased by
68.14%, 67.76%, 89.56%, and 17.65% compared with that
obtained using one CPU core, respectively. The results show
that it is necessary to parallelize the DSSC algorithm.

As shown in Table 1, the running time of stage 1 obtained
using eight CPU cores is 21.03% less than that obtained using
one GPU, this is because the 8-core CPU is more suitable to
perform the complicated three-layer for-loop used for con-
structing a similarity matrix (see lines 7-17 in Algorithm 2)

128880 VOLUME 9, 2021



G. Zhang et al.: Adaptive DSSC Algorithm and Its Parallelization

than the GPU. The running time of stage 2, stage 3, and
stage 4 obtained using one GPU are decreased by 99.81%,
32.80%, and 35.71% compared with that obtained using eight
CPU cores, respectively, which shows that stage 2, stage 3,
and stage 4 are more suitable to be executed on the GPU.
Therefore, the parallelization strategy of the proposed DSSC
algorithm is as follows: stage 1 can be parallelized on CPU,
and stage 2, stage 3, and stage 4 can be parallelized on GPU.

2) IMPLEMENTATION OF THE PARALLEL DSSC ALGORITHM
According to the parallelization strategy discussed in
Section III-B1, the DSSC algorithm is parallelized on Dask
distributed parallel computing platform with CPU+GPU,
as shown in Fig. 2. Firstly, the similarity matrix is constructed
on CPU of each worker node in parallel, and the obtained
similarity matrix is copied from CPU to GPU. Secondly,
the degree matrix and the normalized Laplacian matrix are
constructed on GPU of each worker node in parallel. Thirdly,
the eigen-decomposition is performed and the eigenvectors
are selected to construct a new matrix on GPU of each
worker node in parallel. Fourthly, the K-Means clustering
is performed on GPU of each worker node in parallel, and
the clustering results are copied from GPU to CPU. Finally,
the clustering results are gathered from each worker node
to the master node.

FIGURE 2. Flowchart of the parallel DSSC algorithm.

The parallel DSSC algorithm is described in Algorithm 3,
which includes the following steps.

Step 1: Divide the sample set. Supposing that the number
of samples is n and the block size is m, n samples are divided
into n/m blocks, n/m blocks are distributed to r worker nodes
evenly, and all CPU threads or GPU threads are used to
process (n/m)/r blocks in parallel on each worker node.

Step 2: Parallelly construct n/m similarity matrices on
r worker nodes with CPU. For the sample set of the ω-th
block Xω =

(
xω1 , x

ω
2 , . . . , x

ω
m
)
, firstly, the Euclidean distance

Algorithm 3 The Proposed Parallel DSSC Algorithm
Input: n samples, the number of nearest neighbors k ,

the number of clusters c, the block size m
Output: The clustering results
1: Divide n samples into n/m blocks;
2: Distribute n/m blocks to r worker nodes evenly;
3: for all r worker nodes with CPU in parallel do
4: for ω← 1 to n/m do
5: for i← 1 to m do
6: for j← 1 to m do
7: Calculate the distance between xωi and xωj ;
8: end for
9: end for
10: Determine k nearest neighbors of each sample in the

ω-th block;
11: for i← 1 to m do
12: for l ← 1 to k do
13: Determine the path point pk , which is the l-th

nearest neighbor of xωi ;
14: Determine the path point p1, which is one of

among remaining k − 1 nearest neighbors of
xωi and has the shortest distance from xωi ;

15: for t ← 2 to k − 1 do
16: Determine the path point pt , which is one of

among remaining k − t nearest neighbors of
xωi and has the shortest distance from pt−1;

17: end for
18: Calculate the density-sensitive distance

d(xωi , x
ω
i.l) by (5);

19: Calculate the similarity sωi,j by (7);
20: end for
21: end for
22: Copy Sωm×m from CPU to GPU;
23: end for
24: end for
25: for all r worker nodes with GPU in parallel do
26: for ω← 1 to n/m do
27: Construct a degree matrix Dωm×m by (2);
28: Construct a Laplacian matrix Lω←Dωm×m-S

ω
m×m;

29: Get a normalized Laplacian matrix Lωsym by (3);
30: Perform eigen-decomposition for Lωsym and select

the eigenvectors corresponding to the first c mini-
mum eigenvalues to construct the matrix Vωm×c;

31: Standardize Vωm×c by (4) to get the matrix Yωm×c;
32: Perform clustering analysis for Yωm×c using

K-Means clustering algorithm;
33: Copy the clustering results from GPU to CPU;
34: end for
35: end for
36: Gather the clustering results from each worker node to

the master node;

dist(xωi , x
ω
j ) between the sample xωi and the sample xωj is

calculated as follows: dist(xωi , x
ω
j ) = ‖x

ω
i − x

ω
j ‖2, where 1 ≤

ω ≤ n/m and 1 ≤ i, j ≤ m. Secondly, k nearest neighbors

VOLUME 9, 2021 128881



G. Zhang et al.: Adaptive DSSC Algorithm and Its Parallelization

xωi.1, x
ω
i.2, . . . , x

ω
i.k of the sample xωi are determined according

to the shortest Euclidean distance. Thirdly, k − 1 path points
of the path from the sample xωi to its l-th nearest neighbor
are determined according to the shortest Euclidean distance.
Fourthly, the density-sensitive distance d(xωi , x

ω
i.l) between

the sample xωi and its l-th nearest neighbor is calculated by
(5), where 1 ≤ l ≤ k . Fifthly, the similarity sωi,l between the
sample xωi and its l-th nearest neighbor is calculated by (7),
where 1 ≤ l ≤ k , and the similarities between the sample xωi
and its non-nearest neighbors are set to 0. Finally, the ω-th
similarity matrix Sωm×m is obtained and copied from CPU
to GPU.

Step 3: Parallelly construct n/m degree matrices on r
worker nodes with GPU. The value of the i-th element on
the diagonal is calculated by (2), and the ω-th degree matrix
Dωm×m is obtained, where 1 ≤ i ≤ m and 1 ≤ ω ≤ n/m.

Step 4: Parallelly construct n/m normalized Laplacian
matrices on r worker nodes with GPU. At first the ω-th
Laplacian matrix Lω is constructed as follows: Lω = Dωm×m−
Sωm×m, and then the ω-th normalized Laplacian matrix Lωsym is
obtained by (3), where 1 ≤ ω ≤ n/m.

Step 5: Parallelly select eigenvectors to construct n/m new
matrices on r worker nodes with GPU. Firstly, the eigen-
decomposition is performed for the matrix Lωsym to obtain
z eigenvalues and z eigenvectors, where 1 ≤ ω ≤ n/m.
Secondly, the eigenvectors corresponding to the first c min-
imum eigenvalues are selected from z eigenvectors to con-
struct a new matrix Vωm×c =

(
vω1 , v

ω
2 , . . . , v

ω
c
)T . Finally,

the matrix Vωm×c is standardized by (4) to get a new
matrix Yωm×c.

Step 6: Parallelly perform clustering analysis on r worker
nodes with GPU. The K-Means clustering algorithm is used
to perform clustering analysis for the matrix Yωm×c, where 1 ≤
ω ≤ n/m, and the clustering results are obtained and copied
from GPU to CPU.

Step 7: Gather the clustering results from each worker node
to the master node.

C. ANALYSIS OF TIME COMPLEXITY
The time complexities of the four main stages of the proposed
DSSC algorithm are analyzed as follows.

In stage 1, the time complexity of calculating the Euclidean
distances between samples is O(n2), the time complex-
ity of determining k nearest neighbors of each one of n
samples is O(n2 log n), the time complexity of calculating
the similarities between n samples and their own k near-
est neighbors (see lines 7-17 in Algorithm 2) is O(nk2).
Therefore, the time complexity of constructing the simi-
larity matrix is O

(
n2 + n2 log n+ nk2

)
, and the time com-

plexity of parallelly constructing the similarity matrix on
r worker nodes with θ available CPU threads each is
O
(
(n2 + n2 log n+ nk2)/(rθ )

)
.

In stage 2, the time complexity of constructing the nor-
malized Laplacian matrix is O(n3), and the time complexity
of parallelly constructing the normalized Laplacian matrix

on r worker nodes with γ available GPU threads each is
O(n3/(rγ )).

In stage 3, the time complexity of performing eigen-
decomposition for the normalized Laplacian matrix is
O(n3), and the time complexity of selecting the eigenvec-
tors corresponding to the first c minimum eigenvalues is
O(n log n). Therefore, the time complexity of performing
eigen-decomposition and selecting eigenvectors to construct
a new matrix is O(n3 + n log n), and the time complexity
of parallelly performing eigen-decomposition and selecting
eigenvectors to construct a newmatrix on r worker nodeswith
γ available GPU threads each is O

(
(n3 + n log n)/(rγ )

)
.

In stage 4, the time complexity of performing clustering
analysis for a n × c matrix using K-Means clustering algo-
rithm with c clustering centers is O(nc2τ ), where τ is the
number of iterations of K-Means clustering algorithm. The
time complexity of parallelly performing clustering analysis
using K-Means clustering algorithm on r worker nodes with
γ available GPU threads each is O

(
(nc2τ )/(rγ )

)
.

IV. EXPERIMENT
A. EXPERIMENTAL SETUP
In order to verify the effectiveness of the proposed DSSC
algorithm, K-Means clustering algorithm [25], DBSCAN
clustering algorithm [26], NJW algorithm [2], DSC algo-
rithm [15], and the DSSC algorithm are implemented on the
six synthetic datasets and four UCI datasets [27], respectively.
Furthermore, the computational efficiency of the parallel
DSSC algorithm is evaluated on the Dask cluster with three
synthetic datasets used for large-scale clustering analysis.

The hardware configurations and software configurations
of the experimental platform are listed in Table 2 and Table 3,
respectively. Note that the CPU and the GPU of each worker
node contain 8 CPU cores and 2560 GPU cores, respectively.

TABLE 2. Hardware configurations of the experimental platform.

B. CLUSTERING ANALYSIS ON SYNTHETIC DATASETS
In order to more intuitively prove the superiority of the pro-
posed DSSC algorithm, the experiments are conducted with
K-Means clustering algorithm, DBSCAN clustering algo-
rithm, NJW algorithm, DSC algorithm, and the DSSC algo-
rithm on six different synthetic datasets. The descriptions of
six synthetic datasets are listed in Table 4, and the parameter
settings of different clustering algorithms on six synthetic
datasets are listed in Table 5.
As shown in Fig. 3, the K-Means clustering algorithm

obtains good clustering effect on the fiveClusters dataset, but
the clustering effects obtained on the other five non-convex

128882 VOLUME 9, 2021



G. Zhang et al.: Adaptive DSSC Algorithm and Its Parallelization

FIGURE 3. Clustering effects of K-Means clustering algorithm obtained on six different datasets.

FIGURE 4. Clustering effects of DBSCAN clustering algorithm obtained on six different datasets.

FIGURE 5. Clustering effects of NJW algorithm obtained on six different datasets.

FIGURE 6. Clustering effects of DSC algorithm obtained on six different datasets.

FIGURE 7. Clustering effects of DSSC algorithm obtained on six different datasets.

TABLE 3. Software configurations of the experimental platform.

datasets are not good. This is because K-Means clustering
algorithm uses the Euclidean distance measure to calculate
the similarities between samples, it cannot effectively per-
form clustering analysis for the non-convex datasets. Besides,

the clustering effect is also affected by the selection of initial
clustering centers and the number of iterations.

As shown in Fig. 4, the DBSCAN clustering algorithm has
a inferior clustering effect only on the fiveClusters dataset.
This is because each kind of samples of the fiveClusters
dataset has a different density, it is difficult to reasonably
set the neighborhood distance threshold ε and the number of
neighborhood samplesMinPts.

As shown in Fig. 5, the NJW algorithm obtains sat-
isfactory clustering effects on six different datasets, but
this depends on finding an appropriate value of the scale
parameter σ .

VOLUME 9, 2021 128883



G. Zhang et al.: Adaptive DSSC Algorithm and Its Parallelization

TABLE 4. Descriptions of six synthetic datasets.

TABLE 5. Parameter settings of different clustering algorithms on six
synthetic datasets.

TABLE 6. Descriptions of four UCI datasets.

As shown in Fig. 6, the DSC algorithm achieves satis-
factory clustering effects on the first five datasets, whereas
the clustering effect obtained on the twoUnbalanceSpirals
dataset is inferior. This is because the densities of the two
kinds of samples of the twoUnbalanceSpirals dataset are
quite different, it is difficult to find an appropriate value
of the density parameter ρ to achieve a good clustering
effect.

As shown in Fig. 7, the proposed DSSC algorithm achieves
satisfactory clustering effects on six different datasets. This is
because the DSSC algorithm can find an appropriate value of
the density parameter ρ. Moreover, it can adaptively deter-
mine the value of ρ, thus it can obtain good clustering effects
even on the complex datasets.

C. CLUSTERING ANALYSIS ON UCI DATASETS
In order to further verify the effectiveness of the proposed
DSSC algorithm, in terms of four different performance
evaluation indexes, the DSSC algorithm are compared with
K-Means clustering algorithm, DBSCAN clustering algo-
rithm, NJW algorithm, and DSC algorithm on four dif-
ferent UCI datasets. These four performance evaluation
indexes include the clustering accuracy, adjusted rand index
(ARI) [28], Fowlkes-Mallows index (FMI) [29], and normal-
ized mutual information (NMI) [30]. The descriptions of four
UCI datasets are listed in Table 6, and the parameter settings
of different clustering algorithms on these four UCI datasets
are listed in Table 7.

TABLE 7. Parameter settings of different clustering algorithms on four
UCI datasets.

TABLE 8. Clustering accuracies of different clustering algorithms
obtained on different datasets.

TABLE 9. ARI of different clustering algorithms obtained on different
datasets.

TABLE 10. FMI of different clustering algorithms obtained on different
datasets.

Table 8 shows the clustering accuracies of different cluster-
ing algorithms obtained on different datasets. It can be seen
from Table 8 that the clustering accuracies of five different
clustering algorithms obtained on the Iris dataset are higher
than that obtained on the other three datasets. Especially,
the clustering accuracy of the DSSC algorithm obtained on
the Iris dataset is 5.81%, 22.55%, and 16.49% higher than that
obtained on the Seeds, Wine, and Zoo datasets, respectively.
It also can be seen from Table 8 that the average clustering
accuracy of the DSSC algorithm obtained on four datasets
is 3.65%, 25.63%, 6.46%, and 6.11% higher than that of
K-Means clustering algorithm, DBSCAN clustering algo-
rithm, NJW algorithm, and DSC algorithm obtained on four
datasets, respectively. The results indicate that the proposed
DSSC algorithm can offer a satisfactory clustering accuracy
to a certain extent.

It can be seen from Table 9 that the average value of ARI of
the DSSC algorithm obtained on four UCI datasets is 3.89%,
22.08%, 3.75%, and 8.13% higher than that of K-Means
clustering algorithm, DBSCAN clustering algorithm, NJW
algorithm, and DSC algorithm obtained on these datasets,

128884 VOLUME 9, 2021



G. Zhang et al.: Adaptive DSSC Algorithm and Its Parallelization

FIGURE 8. Clustering accuracies of the proposed DSSC algorithm obtained with different number of nearest neighbors and
different datasets.

TABLE 11. NMI of different clustering algorithms obtained on different
datasets.

respectively. It can be seen from Table 10 that the average
value of FMI of the DSSC algorithm obtained on four UCI
datasets is 2.97%, 13.17%, 0.46%, and 6.39% higher than that
of K-Means clustering algorithm, DBSCAN clustering algo-
rithm, NJW algorithm, and DSC algorithm obtained on these
datasets, respectively. It also can be seen from Table 11 that
the average value of NMI of the DSSC algorithm obtained
on four UCI datasets is 3.01%, 10.46%, 1.32%, and 4.31%
higher than that of K-Means clustering algorithm, DBSCAN
clustering algorithm, NJW algorithm, and DSC algorithm
obtained on these datasets, respectively. The results further
prove that the proposed DSSC algorithm can achieve satisfac-
tory clustering effects on different datasets. This is because
the DSSC algorithm can adaptively determine the value of
the density parameter to construct a more robust similarity
matrix.

D. ANALYSIS OF PARAMETER SENSITIVITY
In the proposed DSSC algorithm, the number of nearest
neighbors needs to be set manually. In order to explore
whether the number of nearest neighbors has an impact on the
clustering accuracy of the DSSC algorithm, the comparative
experiments are carried out with different number of nearest
neighbors on four different UCI datasets.

As shown in Fig. 8, with the increase of the number of near-
est neighbors, the clustering accuracies of the DSSC algo-
rithm obtained on four different datasets have a slight change.
The maximum clustering accuracies of the DSSC algorithm
obtained with different number of nearest neighbors on the

TABLE 12. Descriptions of three synthetic datasets used for large-scale
clustering analysis.

TABLE 13. Running time of the parallel DSSC algorithm obtained with
different number of worker nodes (seconds).

Iris, Seeds, Wine, and Zoo datasets are 95.33%, 89.52%,
72.78%, and 78.84%, respectively. The minimum clustering
accuracies of the DSSC algorithm obtained with different
number of nearest neighbors on the Iris, Seeds, Wine, and
Zoo datasets are 93.33%, 86.19%, 70.21%, and 77.00%,
respectively. The ranges of clustering accuracies of the DSSC
algorithm obtained with different number of nearest neigh-
bors on the Iris, Seeds, Wine, and Zoo datasets are 2.00%,
3.33%, 2.57% and 1.84%, respectively. The results show that
the number of nearest neighbors has a little impact on the
clustering accuracy of the proposed DSSC algorithm.

E. ANALYSIS OF COMPUTATIONAL EFFICIENCY
To evaluate the computational efficiency of the parallel DSSC
algorithm, three different size of synthetic datasets used for
large-scale clustering analysis are adopted to carry out exper-
iments on the Dask cluster with CPU+GPU. The descriptions
of these three synthetic datasets are shown in Table 12.

Table 13 presents the running time of the parallel DSSC
algorithm obtained with different number of worker nodes.
For the three different size of datasets, with the increase of
the number of worker nodes, the running time of the parallel

VOLUME 9, 2021 128885



G. Zhang et al.: Adaptive DSSC Algorithm and Its Parallelization

DSSC algorithm gradually decrease. For theDB-1, DB-2, and
DB-3 datasets, the running time of the parallel DSSC algo-
rithm obtained with four worker nodes are 71.62%, 73.21%,
and 74.08% less than that obtained with one worker node,
respectively. Compared with one worker node, the running
time of the parallel DSSC algorithm obtained with 2, 3,
and 4 worker nodes on the three different size of datasets
are decreased by 48.59%, 64.94%, and 72.97% on average,
respectively. The results show that the computational effi-
ciency of the parallel DSSC algorithm can be improved for
large-scale clustering analysis to a certain extent by properly
increasing the number of worker nodes.

The speedup is often used to evaluate the computa-
tional efficiency of a parallel algorithm. In this experiment,
the absolute speedup is used to evaluate the computational
efficiency of the parallel DSSC algorithm, and it can be
calculated by

Speedup =
Ts
Tp
, (8)

where Ts is the running time of the serial DSSC algorithm
and Tp is the running time of the parallel DSSC algorithm
obtained on the Dask cluster with p worker nodes.

Fig. 9 shows the speedups of the parallel DSSC algorithm
obtained with different number of worker nodes on different
size of datasets. As illustrated in Fig. 9, with the increase
of the number of worker nodes, the speedups of the par-
allel DSSC algorithm obtained on the three different size
of datasets gradually increase. For example, the speedup of
the parallel DSSC algorithm obtained on the DB-3 dataset
increases from 1.99× to 7.69× when the number of worker
nodes increases from 1 to 4, which shows that the parallel
DSSC algorithm has good parallelism. It also can be seen
from Fig. 9 that the speedups of the parallel DSSC algorithm
obtained with four worker nodes are 5.64×, 6.34×, and
7.69× for the DB-1, DB-2, and DB-3 datasets, respectively.
The results demonstrate that the parallel DSSC algorithm
achieves a high speedup in performing large-scale clustering
analysis. This is because the parallel DSSC algorithm can
make full use of the computing resources of a Dask cluster
with CPU+GPU to improve the efficiency of performing
large-scale clustering analysis in parallel.

F. EVALUATION ON DIFFERENT DASK CLUSTERS
In order to better evaluate the computational efficiency of
the parallel DSSC algorithm, for the three different size of
datasets listed in Table 12, the experiments are conducted on
the Dask cluster with CPU andDask cluster with CPU+GPU,
respectively. It is worth noting that both of the Dask clusters
contain four worker nodes.

As depicted in Fig. 10, with the increase of dataset size,
the running time of the parallel DSSC algorithm obtained on
both Dask clusters increase gradually. For the three differ-
ent size of datasets, the running time of the parallel DSSC
algorithm obtained on the Dask cluster with CPU are longer
than that obtained on the Dask cluster with CPU+GPU. For

FIGURE 9. Speedups of the parallel DSSC algorithm obtained with
different number of worker nodes on different size of datasets.

FIGURE 10. Running time of the parallel DSSC algorithm obtained on
different Dask clusters.

the DB-1, DB-2, and DB-3 datasets, the running time of the
parallel DSSC algorithm obtained on the Dask cluster with
CPU+GPU are 36.78%, 37.23%, and 38.68% shorter than
that obtained on the Dask cluster with CPU, respectively.
The results demonstrate that the parallel DSSC algorithm can
fully utilize all available CPU and GPU resources of a Dask
cluster to improve the computational efficiency.

V. CONCLUSION
In the paper, an adaptive density-sensitive similarity measure
based spectral clustering algorithm is proposed to improve
the clustering effect of the spectral clustering algorithm.
First of all the Euclidean distances between samples are
calculated to determine the nearest neighbors of samples,
then the density-sensitive distances between samples and
their nearest neighbors are adaptively calculated, and finally
the similarities between samples and their nearest neighbors
are calculated to construct a similarity matrix. In order to
improve the efficiency of the DSSC algorithm for performing

128886 VOLUME 9, 2021



G. Zhang et al.: Adaptive DSSC Algorithm and Its Parallelization

clustering analysis, the DSSC algorithm is parallelized
on Dask distributed parallel computing platform with
CPU+GPU. Experiments on six synthetic datasets and four
UCI datasets show that the proposed DSSC algorithm obtains
more satisfactory clustering results compared with K-Means
clustering algorithm, DBSCAN clustering algorithm, NJW
algorithm, and DSC algorithm. For example, the DSSC algo-
rithm obtains a clustering accuracy of 95.33% on the Iris
dataset. In addition, the parallel DSSC algorithm obtains
better efficiency of performing large-scale clustering analy-
sis. For example, the running time of the DSSC algorithm
obtained with four worker nodes on the DB-3 dataset is
reduced by 87.01% and 74.08% than that obtained with
one CPU core and that obtained with one worker node,
respectively.

Compared with some existing clustering algorithms,
the proposed DSSC algorithm has the following advantages:
1) it can improve the clustering effect to a certain extent by
adaptively calculating the similarities between each sample
and its nearest neighbors; 2) it is more suitable for perform-
ing large-scale clustering analysis through its paralleliza-
tion on Dask distributed parallel computing platform with
CPU+GPU. However, the parallelization of the DSSC algo-
rithm on GPU has the following limitations: 1) the parallel
efficiency of constructing a similarity matrix on GPU is
low, because the logic of constructing a similarity matrix is
complex; 2) the size of each block is limited to the GPURAM
size when the dataset is divided into multiple blocks.

In the future work, in order to make the DSSC algorithm
more suitable for performing larger-scale clustering analy-
sis, the DSSC algorithm with lower time complexity will
be explored. Moreover, how to fuse multiple DSSCs into a
better one through the ensemble clustering technique will be
considered to further improve the clustering effect. It is also
worth considering that the DSSC algorithm will be applied to
mechanical fault diagnosis or other fields.

REFERENCES
[1] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J. Er,

W. Ding, and C.-T. Lin, ‘‘A review of clustering techniques and develop-
ments,’’ Neurocomputing, vol. 267, pp. 664–681, Dec. 2017.

[2] A. Y. Ng, M. I. Jordan, and Y.Weiss, ‘‘On spectral clustering: Analysis and
an algorithm,’’ in Proc. 15th Adv. Neural Inf. Process. Syst., Vancouver,
BC, Canada, Dec. 2002, pp. 849–856.

[3] W. Song, M. Lai, X. Li, Y. Song, and L. Gao, ‘‘A new spectral clustering
based on particle swarm optimization for unsupervised fault diagnosis
of bearings,’’ in Proc. IEEE 15th Int. Conf. Autom. Sci. Eng. (CASE),
Aug. 2019, pp. 386–391.

[4] X. Wang, C. Chang, and X. L. Wang, ‘‘A fast incremental spectral cluster-
ing algorithm for image segmentation,’’ in Proc. Int. Conf. Comput. Sci.
Comput. Intell. (CSCI), Dec. 2017, pp. 402–407.

[5] R. Janani and S. Vijayarani, ‘‘Text document clustering using spectral
clustering algorithmwith particle swarm optimization,’’ Expert Syst. Appl.,
vol. 134, pp. 192–200, Nov. 2019.

[6] M. Shi and G. Xu, ‘‘Spectral clustering using Nyström approximation for
the accurate identification of cancer molecular subtypes,’’ Sci. Rep., vol. 7,
p. 4896, Jul. 2017.

[7] H. Jia, S. Ding, X. Xu, and R. Nie, ‘‘The latest research progress on spectral
clustering,’’Neural Comput. Appl., vol. 24, nos. 7–8, pp. 1477–1486, 2014.

[8] J. Xie, Y. Zhou, and L. Ding, ‘‘Local standard deviation spectral clus-
tering,’’ in Proc. IEEE Int. Conf. Big Data Smart Comput. (BigComp),
Jan. 2018, pp. 242–250.

[9] T. Du, G. Wen, Z. Cai, W. Zheng, M. Tan, and Y. Li, ‘‘Spectral clustering
algorithm combining local covariance matrix with normalization,’’ Neural
Comput. Appl., vol. 32, no. 11, pp. 6611–6618, Jun. 2020.

[10] X. Ye and T. Sakurai, ‘‘Spectral clustering with adaptive similarity measure
in kernel space,’’ Intell. Data Anal., vol. 22, no. 4, pp. 751–765, Jun. 2018.

[11] S. Park and H. Zhao, ‘‘Spectral clustering based on learning similarity
matrix,’’ Bioinformatics, vol. 34, no. 12, pp. 2069–2076, Jun. 2018.

[12] X. Zhu, J. Gan, G. Lu, J. Li, and S. Zhang, ‘‘Spectral clustering via
half-quadratic optimization,’’ World Wide Web, vol. 23, pp. 1969–1988,
Nov. 2020.

[13] M. Yuan and Q. Zhu, ‘‘Spectral clustering algorithm based on fast search
of natural neighbors,’’ IEEE Access, vol. 8, pp. 67277–67288, 2020.

[14] X. Zhang, J. Li, andH. Yu, ‘‘Local density adaptive similaritymeasurement
for spectral clustering,’’Pattern Recognit. Lett., vol. 32, no. 2, pp. 352–358,
2011.

[15] P. Yang, Q. Zhu, and B. Huang, ‘‘Spectral clustering with density sensitive
similarity function,’’Knowl.-Based Syst., vol. 24, no. 5, pp. 621–628, 2011.

[16] J. Yan, D. Cheng, M. Zong, and Z. Deng, ‘‘Improved spectral clustering
algorithm based on similarity measure,’’ in Proc. Int. Conf. Advan. Data
Mining Appl. (ADMA), Guilin, China, Dec. 2014, pp. 641–654.

[17] L. Wang, S. Ding, and H. Jia, ‘‘An improvement of spectral clustering via
message passing and density sensitive similarity,’’ IEEE Access, vol. 7,
pp. 101054–101062, 2019.

[18] Q. Zhan and Y. Mao, ‘‘Improved spectral clustering based on Nyström
method,’’Multimedia Tools Appl., vol. 76, pp. 20149–20165, Oct. 2017.

[19] Y. Zhao, Y. Yuan, F. Nie, and Q. Wang, ‘‘Spectral clustering based on
iterative optimization for large-scale and high-dimensional data,’’ Neuro-
computing, vol. 318, pp. 227–235, Nov. 2018.

[20] L. Zhang, L. Hou, and D. Lei, ‘‘Spectral clustering algorithm based on
Hadoop cloud platform research and implementation,’’ in Proc. 5th Int.
Conf. Adv. Mater. Comput. Sci., Mar. 2016, pp. 1–4.

[21] L. Ma, ‘‘Efficient parallel clustering spectral algorithm based on Hadoop,’’
in Proc. Int. Conf. Appl. Techn. Cyber Secur. Intell. (ATCI), Shanghai,
China, Jun. 2018, pp. 935–941.

[22] A. I. Taloba, M. R. Riad, and T. H. A. Soliman, ‘‘Developing an efficient
spectral clustering algorithm on large scale graphs in spark,’’ in Proc. 8th
Int. Conf. Intell. Comput. Inf. Syst. (ICICIS), Dec. 2017, pp. 292–298.

[23] Z. Huo, G. Mei, G. Casolla, and F. Giampaolo, ‘‘Designing an efficient
parallel spectral clustering algorithm on multi-core processors in Julia,’’
J. Parallel Distrib. Comput., vol. 138, pp. 211–221, Apr. 2020.

[24] M. Rocklin, ‘‘Dask: Parallel computation with blocked algorithms and task
scheduling,’’ in Proc. 14th Python Sci. Conf., Jul. 2015, pp. 130–136.

[25] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, ‘‘An efficient K-means clustering algorithm: Analysis and
implementation,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7,
pp. 881–892, Jul. 2002.

[26] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, ‘‘A density-based algorithm
for discovering clusters in large spatial databases with noise,’’ in Proc. 2nd
Int. Conf. Knowl. Discovery Data Mining, Portland, OR, USA, Aug. 1996,
pp. 226–231.

[27] D. Dua and C. Graff. UCI Machine Learning Repository. Accessed:
May 3, 2021. [Online]. Available: http://archive.ics.uci.edu/ml

[28] D. Steinley, ‘‘Properties of the Hubert–Arable adjusted Rand index,’’ Psy-
chol. Methods, vol. 9, no. 3, pp. 386–396, 2004.

[29] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, ‘‘On clustering validation
techniques,’’ J. Intell. Inf. Syst., vol. 17, no. 2, pp. 107–145, Dec. 2001.

[30] N. X. Vinh, J. Epps, and J. Bailey, ‘‘Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction
for chance,’’ J. Mach. Learn. Res., vol. 11, pp. 2837–2854, Jan. 2010.

GEN ZHANG was born in Anhui, China, in 1995.
He received the B.S. degree in network engineer-
ing from West Anhui University, Lu’an, China,
in 2019. He is currently pursuing the M.S. degree
in computer science and technology with Hunan
University of Technology, Zhuzhou, China. His
research interests include industrial big data anal-
ysis and industrial equipment fault diagnosis.

VOLUME 9, 2021 128887



G. Zhang et al.: Adaptive DSSC Algorithm and Its Parallelization

LANJUN WAN was born in Hunan, China,
in 1982. He received the B.S. and M.S. degrees
in computer science and technology from Hunan
University of Technology, Zhuzhou, China,
in 2005 and 2009, respectively, and the Ph.D.
degree in circuits and systems from Hunan Uni-
versity, Changsha, China, in 2016. He is currently
an Assistant Professor with the School of Com-
puter Science, Hunan University of Technology.
He has publishedmany research articles in interna-

tional conferences and journals, such as JPDC, CCPE, ParCo, and Sensors.
His research interests include industrial big data analysis, industrial equip-
ment fault diagnosis, high-performance computing, and parallel computing.
He serves as a Reviewer for the JPDC, CCPE, Sensors, and IEEE ACCESS.

KUN GONG was born in Hunan, China, in 1996.
He received the B.S. degree in mechanical engi-
neering from Hunan University of Technology,
Zhuzhou, China, in 2019, where he is currently
pursuing the M.S. degree in computer science and
technology. His research interests include indus-
trial big data analysis and industrial equipment
fault diagnosis.

CHANGYUN LI was born in Hunan, China,
in 1972. He received the Ph.D. degree in com-
puter science and technology from Zhejiang Uni-
versity, Hangzhou, China, in 2007. He is currently
a Full Professor of computer science and the
Dean of the School of Computer Science, Hunan
University of Technology, Zhuzhou, China. His
major research interests include industrial big
data analysis, industrial equipment fault diagnosis,
intelligent information perception and processing

technology, the Internet of Things, and software methodology.

MANSHENG XIAO was born in Hunan, China,
in 1968. He received the M.S. degree in com-
puter science and technology from Xi’an Jiaotong
University, Xi’an, China, in 2005. He is cur-
rently a Full Professor with the School of Com-
puter Science, Hunan University of Technology,
Zhuzhou, China. His major research interests
include industrial big data analysis, intelligent
information processing, pattern recognition, and
image processing.

128888 VOLUME 9, 2021


