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ABSTRACT The establishment of reliable water level prediction models is vital for urban flood control
and planning. In this paper, we develop hybrid models (GA-XGBoost and DE-XGBoost) that couple two
evolutionary models, a genetic algorithm (GA) and a differential evolution (DE) algorithm, with the extreme
gradient boosting (XGBoost) model for hourly water level prediction. The Jungrang urban basin located on
the Han River, South Korea, was selected as a case study for the proposed models. Hourly rainfall and water
level data were collected between 2003 and 2020 to construct and evaluate the performance of the selected
models. To compare the prediction efficiency, two other tree-based models were chosen: classification
and registration tree (CART) and random forest (RF) models. A comparison of the results showed that
two hybrid models, GA-XGBoost and DE-XGBoost, outperformed RF and CART in the multistep-ahead
prediction of water level, and the relative errors of the hybrid model ranged from [2.18%-9.21%], compared
to [3.76%-10.41%] and [2.99%-11.88%] for the RF and CART, respectively. Reliable performance was also
supported by other measures. In general, the GA-XGBoost and DE-XGBoost models displayed relatively
similar performance despite their small differences. The CART model was not preferable for multistep-
ahead water level predictions, even though it yielded the lowest Akaike information criterion (AIC) value.
This study verifies that despite having some drawbacks when considering long step-ahead prediction and
model complexity, hybrid XGBoost models might be superior to many existing models for hourly water level
prediction.

INDEX TERMS Extreme gradient boosting, evolutionary algorithms, water level prediction, tree-based
model, urban floods.

I. INTRODUCTION
Floods are among the greatest risks in most cities around the
world. Due to hydrometeorological and hydrological vari-
ability induced by climate change, urban floods are more
complex now than in previous decades [1], [2]. Therefore,
flood management is becoming a critical challenge, espe-
cially in developed cities. Reliable urban flood prediction
for heavy rainfall events is vital for alleviating the damage
to urban basins [3]. Consequently, high-accuracy water level
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predictions for a fine time step are necessary for urban areas
and are being given significant attention from scientists.

To achieve accurate predictions, various approaches have
been established and applied. These attempts can be divided
into two groups. The first group involves the coupling
of hydrological and meteorological forecasting models for
predictions based on physical rainfall-runoff formulations
[4]–[6]. These methods generally use simplified assump-
tions for hydrological processes and require forecasted
hydrometeorological data. The second group includes data-
driven methods, such as statistical approaches and machine
learning approaches, that do not require excessive data
for hydrological processes and are not difficult to apply.
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Data-driven methods mainly use the relevant features of past
data to make hydrological predictions.

Machine learning models have been widely used in many
areas of hydrology in recent years due to their superior
capabilities in learning the details of complex hydrolog-
ical processes. Various machine learning algorithms have
been implemented and developed, including the adaptive
neuro-fuzzy inference system (ANFIS) [7], [8], support vec-
tor machine (SVM) [9], [10], neural networks-based model
(i.e., recurrent neural network (RNN) [11] and long
short-term memory (LSTM) [12]–[16]), auto regressive
moving average (ARMA) [17], [18] and genetic program-
ing [19]–[22]. Machine learning algorithms have provided
reliable performances in terms of forecasting water levels and
streamflow and simulating rainfall-runoff mechanisms.

Unlike the abovementionedmachine learningmodels, tree-
based models are computationally cheap[23]. In addition,
there is no requirement regarding the distribution of pre-
dictors in tree-based models. Additionally, whereas a neural
network is almost identical to a black box that provides results
without a clear explanation, tree-based models provide an
understandable interpretation for visualization [24]. Classi-
fication and regression trees (CARTs) have been used to
solve hydrological problems, such as runoff generation [25]
and streamflow forecasting [26]. Random forest (RF) algo-
rithms have also been used for runoff and streamflow simu-
lation [27]–[29]. Extreme gradient boosting (XGBoost) was
first apprised by Chen and Guestrin [30] and has received
considerable attention from scientists for machine learning
applications. Whereas an RF is an ensemble tree-based algo-
rithm, XGBoost is based on boosting trees that use a gradient
descent algorithm. TheXGBoost model uses additive training
strategies to consider all the outputs of weak learners to
create a strong learner. XGBoost leverages strengths from two
algorithms: gradient boosting (GB) and the decision tree (DT)
algorithm. Therefore, this scalable algorithm might provide
good results and visualizations in terms of effective water
level predictions in urban areas. Recently, a few works have
explored the performance of XGBoost in the hydrological
domain and obtained promising results. Ni et al. [23] used
the XGBoost method integrated with the Gaussian mixture
approach for forecastingmonthly streamflow; they concluded
that the advanced tree-based model outperformed a support
vector machine (SVM) and suggested that the new model be
applied in water management as a superior option because of
its reliable performance Hadi et al. [31] integrated XGBoost
and an extreme learning machine (ELM) to model monthly
streamflow. These previous studies successfully appliedmod-
els for monthly streamflow predictions in large river basins.
However, the capabilities of tree-based models at the urban
basin scale and at hourly time steps are still poorly under-
stood. Therefore, we investigated the performance of the
XGBoost model in hourly water level prediction for a small
urban basin in this study.

The development of the XGBoost model requires the inter-
nal optimization of hyperparameters. Hybrid models can

provide a solution in this type of optimization process [32].
The present study integrates the XGBoost model with two
evolutionary algorithms: a genetic algorithm (GA) and a
differential evolution (DE) algorithm. The GA and DE algo-
rithms were used to optimize the hyperparameters during the
training stage and then generate an optimal set of param-
eters for the testing stage. The GA is a type of stochastic
search algorithm that is based on the fundamental concepts
of evolution and natural selection [33]. The GA mimics the
biological process of evolution through selection, crossover,
and mutation [34]. This algorithm has received significant
attention in recent studies [19], [35]–[38]. The DE algorithm
was developed based on the GA and is a well-designed
metaheuristic method for the global optimization of non-
continuous or nondifferentiable functions. The DE algorithm
is suitable for optimizing continuous variables in multiple
dimensions. Some hydrology-related studies have recently
applied the DE algorithm in streamflow simulation [39],
flood assessment [40], hydraulic design [41], [42] and water
capacity modeling [43], [44].

The objective of this study is to investigate the perfor-
mance of the hybrid XGBoost models GA-XGBoost and
DE-XGBoost for predicting hourly multistep-ahead water
levels in an urban basin. In addition, the performance of the
hybrid XGBoost models is compared to that of two tree-based
models, including a CART and an RF. Detailed information
about the study area and the data used are given in section 2.
The different algorithms used in this work are provided
in section 3. The model configuration and implementation
schemes are presented in section 4. The fifth section illus-
trates the performance of the algorithms, and a discussion on
the results is provided. Finally, the conclusions are discussed
at the end of this article.

II. STUDY AREA AND DATA PROCESSING
A. STUDY AREA
The Jungrang basin is located between 37◦32’ and 37◦39’
latitude and from 126◦58’ to 127◦9’ longitude in the lower
part of the Han River basin. The Jungrang basin includes an
upstream part and a downstream part, which jointly cover an
area of 299.87 km2. The downstream part of the Jungrang
basin is situated in the Seoul metropolitan area, which is one
of the largest cities in South Korea. In cities, urban flooding
typically occurs within a few hours of a strong precipitation
event. Therefore, this basin is vulnerable to floods and flood
destruction following heavy rain events, such as the historical
precipitation events in 2006, 2010, and 2011. The climate
in this region is a continental monsoon climate, which is
characterized by an uneven distribution of rainfall throughout
the year. The highest incidence of flood events is from June to
September annually. The locations of the Jungrang basin
on the Korean Peninsula, rainfall stations, and water level
stations are presented in Fig. 1; ten ground rainfall stations
and three water level stations are denoted by red triangles and
black pentagons (Fig. 1(b)), respectively.
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FIGURE 1. (a) Location of the Jungrang Basin in South Korea. (b) Jungrang Basin and locations of the rain gauges and
water level stations.

B. DATA PROCESSING
Measured rainfall data from 10 selected ground gauges with
automatic weather systems were collected by the Korean
Meteorological Administration (KMA) and Water Resources
Management Information System (WAMIS). The KMA sta-
tions include IDs 406, 407, 408, 409, 424, 532, 598,
and 599. The WAMIS stations include IDs 10184010 and
10184125. All the selected rain gauges record information
with a temporal resolution of 1 hour. Hourly observed water
level data were collected by the Han River Flood Control
Office (HRFCO) at the Jungrang, Wolgye, and Singok sta-
tions. Series of rainfall and water level data were collected
and processed from 2003 to 2020. The heavy rainfall events
that normally occur from June to September were selected.
Table 1 shows the selected events and the corresponding
information used in this study. The presented minimum and
maximum water level series (Table 1) were measured at
Jungrang station. The events numbered from 1 to 36 in
Table 1 occurred between 2003 and 2017 and were chosen
for calibration and validation in the training stage. The period
from 2018 to 2020, which included six heavy rainfall events
(from 37 to 42 in Table 1), was chosen as the testing stage.

In this study, we used the mean areal precipitation (MAP)
in the upstream and downstream subbasins as the main
inputs of the tree-based models. A quality control process

for rain gauge data was implemented to fill missing values
and verify abnormal values by using the inverse distance
weighting (IDW) approach [45]. This process makes the
data completed and realistic, then the models can learn and
perform reasonable predictions. The hourly observed MAP
was calculated by using the Thiessen polygon technique.
Table 2 presents the descriptive statistics and the configura-
tions of inputs and outputs used in this study. There were nine
input variables for the models at each time step (t), including
the MAP in the upstream and downstream subbasins at time
steps (t , t−1, and t−2) [39] and the water level at time step t
at three stations. The output of the different time-step models
is the water level at Jungrang station for the next time steps
(e.g., t + 1, t + 2, t + 3, t + 4, t + 5, and t + 6).

III. METHODOLOGY
A. CLASSIFICATION AND REGRESSION TREES (CARTs)
First proposed by Breiman et al. [46], CARTs are common
machine learning algorithms used for data classification and
regression. CARTs do not use any assumptions regarding
parameters but instead focus on the repetitive division of the
dataset to build a decision tree. A CART can handle various
inputs, such as numerical, categorical, and binary inputs;
therefore, CARTS can be used for hydrological datasets [25].
The CART algorithm uses the binary recursive partitioning

VOLUME 9, 2021 125855



D. H. Nguyen et al.: Development of Extreme Gradient Boosting Model Integrated With Evolutionary Algorithms

TABLE 1. Summary of rainfall events used in this research.

approach to split datasets until they become homogeneous
clusters set based on a certain threshold. This algorithm can
produce an output with the structure of a hierarchical binary
model that is easy to visualize and understand.

CARTs use the Gini coefficient and decreasing variance
concepts in the binary classification approach [46]. In this
study, the variables in the datasets are sequential; there-
fore, the Gini variance was utilized to develop a regres-
sion tree. Detailed information regarding CART algorithms
was provided by Breiman et al. [46], Han et al. [47], and
Lee and Kim [25].

B. RANDOM FOREST (RF)
First proposed by Breiman [48], the random forest (RF)
approach is an ensemble machine learning method involving
decision trees. The RF algorithm provides many advantages
over other algorithms, including avoiding overfitting, captur-
ing nonlinearity, and using a small set of model parameters.

In the regression method, the RF model is trained many times
with bootstrap samples, and the outputs of every tree are
averaged to obtain the expected value. In an RF decision tree,
a subset of variables used for optimizing objective functions
and splitting each node is arbitrarily chosen, and this subset
is autonomous among trees with different nodes. The pro-
cess in which multiple training datasets are generated by the
bootstrap resampling of the initial training dataset is called
bagging or bootstrap aggregation. Therefore, many trees are
normally used, and the number of trees corresponds to the
ntree parameter in the RF algorithm. The mtry parameter in
the RF model is related to the splitting process at each node
based on an arbitrary choice of a subset of variables. A RF
regression model issues sets of parent and child nodes for
each bootstrap sample until the stopping condition is met
with reference to the minimum node size parameter. Detailed
information regarding RF algorithms and parameters was
provided by Breiman [48] and in recent studies [29], [49].

TABLE 2. The inputs and outputs of the models.

C. EXTREME GRADIENT BOOSTING (XGBOOST)
First proposed by Chen and Guestrin [30], extreme gradient
boosting (XGBoost) is an efficient and scalable machine
learning method involving tree boosting systems based on
the original gradient boosting framework of Friedman [50].
Compared to the original gradient boosting model, XGBoost
can perform parallelization processes in constructed boost
trees to independently generate branches. XGBoost uses a
CART ensemble to fit samples of training data. Each CART is
associated with an autonomous decision rule for a binary tree,
and each leaf node yields a predictive score. The algorithm
outputs the sum of the corresponding node values for a given
input. Fig. 2 shows a simple example of the XGBoost algo-
rithm. If the given input x is for an 18-year-old man who uses
a personal computer each day, then the output of the mapping
tree (shown in Fig. 2) is ŷ (x) = 2 + 0.9 = 2.9. In general,
the predicted score can be written as follows:

ŷk =
∑n

i=1
gi (xk), gi ∈ G (1)
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where ŷk denotes the predicted score, gi denotes a CART,
xk denotes the input vector, n denotes the number of CARTs,
and G represents the CART space.

FIGURE 2. A classical instance of the XGBoost model.

A regularized objective function in XGBoost that includes
two parts is optimized to define the CARTs as follows:

2(φ) =
∑K

k=1
L
(
yk , ŷk

)
+

∑N

i=1
�(gi),

� (g) = γV + 0.5λ ‖w‖2 (2)

where L presents the training loss function between the
true value y and predicted value ŷ; � denotes regularization
penalty scaling; V denotes the number of leaves in a CART;
andw presents the score vectors for leaves. The regularization
term is used to control the complexity of the model and avoid
overfitting.

The XGBoost model is formally trained in an additive way.
At the t-th iteration, the t-th CART is added to minimize the
following objective:

2(t) =
∑K

k=1
L
(
yk , ŷk

(t−1)
+ gt (xk)

)
+�(gt) (3)

The model uses second-order Taylor expansion to simplify
the objective:

g (x) = g (a)+ g′ (a) (x − a)+
g′′ (a)
2

(x − a)2 (4)

By applying Eq. (4) with x as the objective 2(t) (Eq. (3))
and ŷk

(t−1) as a, the function objective is estimated as follows:

2(t) ∼=
∑K

k=1
L
(
yk , ŷk

(t−1)
+ fkgt (xk)+

skg2t (xk)
2

)
+�(gt) (5)

where fk and sk denote the first- and second-order formula-
tions of the loss function, respectively. A simplified formu-
lation of the objective can be obtained after removing the
constant terms:

g2(t) ∼=
∑K

k=1

(
fkgt (xk)+

skg2t (xk)
2

)
+�(gt) (6)

Let Ij = {k | q (xk) = j} be the instance set for leaf j. Eq. (6)
can be rewritten by expanding � in the following equation:

2(t) ∼=

K∑
k=1

(
fkgt (xk)+

skg2t (xk)
2

)
+ γV + 0.5λ

V∑
j=1

w2
j

∼=

V∑
j=1

∑
k∈Ij

fk

wj +
1
2

∑
k∈Ij

sk + λ

w2
j

+ γV
(7)

By calculating the derivatives of Eq. (7) according to wj
and equating them to zero, the optimal weight w∗j of leaf j is
obtained as follows:

w∗j =

∑
k∈Ij

fk∑
k∈Ij

sk + λ
(8)

The simplified objective can be rewritten as:

2(t) ∼= −
1
2

V∑
j=1

(∑
k∈Ij

fk

)2

∑
k∈Ij

sk + λ
+ γV (9)

Let IR and IL be the instance sets for right and left nodes
after splitting. Given I = IR∪IL , loss reduction after splitting
is estimated by:

2split =
1
2



(∑
k∈IR

fk

)2

∑
k∈IR

sk + λ
+

(∑
k∈IL

fk

)2

∑
k∈IL

sk + λ
−

(∑
k∈I

fk

)2

∑
k∈I

sk + λ

− γ
(10)

D. GENETIC ALGORITHM (GA)
The genetic algorithms (GA) was first proposed by
Holland [51] and further expanded by Goldberg [52]. The
GA approach is inspired by biological evolution phenom-
ena, including natural selection, chromosomal crossover, and
genetic mutation. GAs use stochastic optimization to explore
the best values in a complex search space. This approach can
be used to optimize continuous and discontinuous functions,
whether constrained or unconstrained.

Fig. 3 shows a flowchart of the GA used in this study. The
GA operators are described as follows.

i. Selection:An initial arbitrary population of a given size
is generated at the beginning of the evolution process;
at step k = 0, we obtain

{
θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
n

}
. At step

k , the fitness f
(
θki

)
of each element in the population

is calculated, and probabilities pki are assigned to all
elements as follows:

pki =
f
(
θki

)
n∑
i=1

f (θi)
(11)
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FIGURE 3. The genetic algorithm flowchart.

The next population is reproduced and formed through
sample substitution, and each element corresponds to a
reproducing probability pki .

ii. Crossover: A new element called a child is generated
and assigned to the population when genetic exchange
among parents reaches a crossover point. A child is
formulated as follows:

C = pk2 + Rcr
(
pk1 − p

k
2

)
(12)

where Rcr denotes the ratio indicating the distance
between child C and the better parent (pk1 or pk2) and
pk1 is the parent with the best fitness score. The com-
bination of elements in the next generation has a sig-
nificant impact on GA performance, which is denoted
by Fcr . This scheme is repeated for all elements of the
population.

iii. Mutation: Some of the newly formed element genes
can be mutated with low arbitrary probability Pm. This
operator maintains the diversity in the population to
avoid premature convergence and thereby increases the
likelihood of generating improved elements.
Then, the GA sets the step to k = k + 1 and returns
to the fitness evaluation stage. When the convergence
conditions are met, the GA optimization process stops,
and θ∗ ≡ argmaxθki f

(
θki

)
is produced as the optimum.

E. DIFFERENTIAL EVOLUTION ALGORITHM (DE)
First proposed by Storn and Price [53], the differential evo-
lution (DE) algorithm is a population-based evolutionary
scheme for optimizing fitness functions that are determined
in continuous space. In this method, the generation of the

population, the establishment of subsequent generations and
fitness function evaluation are similar to the corresponding
processes in the GA; however, crossover and mutation are
implemented in different ways. Compared those in the GA,
all the elements in the DE algorithm evolve. The evolved
elements are directly exchanged among generations if the
objective function scores are improved. Notably, global solu-
tions can be produced by DE [43]. Fig. 4 shows the flowchart
of the DE algorithm. The overview of this algorithm [54] is
as follows.

1) INITIALIZATION OPERATOR
At step k = 0, the initial value of the j-th variable
for the i-th element can be generated using the following
equation:

χ
j
i,0 = χ

j
min + rand (0, 1) ·

(
χ jmax − χ

j
min

)
(13)

where rand (0, 1) denotes a random number generator that
generates values in the range of (0-1) from a uniform dis-
tribution and χ jmax and χ jmin are the lower and upper bound
vectors of the variables. Then, a new mutant vector V i,g =[
vji,g
]∣∣∣p,n
i=1,j=1

is created for xi,g by using the mutation opera-

tor, where p, n, and g are the number of elements, the num-
ber of optimization variables, and the generation index,
respectively.

2) MUTATION OPERATOR
The new mutant vector is generated as:

V i,g = xr1,g + F ·
(
xr2,g − xr3,g

)
(14)
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FIGURE 4. The differential evolution algorithm flowchart.

where F ∈ (0, 1) denotes the scale factor, which controls
population evolution; r1, r2, and r3 denote the randomly
selected vector indexes.

3) CROSSOVER OPERATOR
A new element vector is generated based on combining the
vectors xi,g and V i,g.

ui,g =
[
uji,g

]∣∣∣p,n
i=1,j=1

=

{
vji,g if

(
rand j (0, 1) ≤ Cr or j = jrand

)
χ
j
i,g otherwise

(15)

where Cr denotes the crossover probability; jrand is a ran-
domly selected index; and the constraint j = jrand is used
to guarantee that ui,g includes at least one variable from V i,g.

4) SELECTION OPERATOR
This operator works to determine which candidate element is
chosen for the next generation by comparing the trial vector
ui,g to the target vector xi,g.

xi,g+1 =

{
ui,g if f (ui,g) ≤ f (xi,g)
xi,g otherwise

(16)

where f denotes the estimated objective function score. After
the new population is generated, the operator processes are
repeated until the optimal convergence or termination condi-
tion is met.

F. PERFORMANCE MEASURES
In this study, the performance of the models is evaluated
based on various indicators, including the root mean square
error (RMSE), correlation coefficient (CC), Nash-Sutcliffe
efficiency (NSE), time lag (TL) between the predicted and
observed occurrence of peakwater levels, bias, mean absolute
error (MAE), and mean absolute percentage error (MAPE).
The indicators are formulated as follows.

RMSE

=

√
1
n

∑n

i=1

(
WLprei −WL

obs
i

)2
(17)

CC

=

∑n
i=1

(
WLprei −WL

pre
mean

) (
WLobsi −WL

obs
mean

)√∑n
i=1

(
WLprei −WL

pre
mean

)2∑n
i=1

(
WLobsi −WL

obs
mean

)2
(18)

NSE

= 1−

n∑
i=1

(
WLobsi −WL

pre
i

)2
n∑
i=1

(
WLobsi −WL

obs
mean

)2 (19)

TL

= Tpre − Tobs (20)

BIAS

=

n∑
i=1

(
WLobsi −WL

pre
i

)
n∑
i=1

(
WLobsi

) (21)
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FIGURE 5. The GA-XGBoost and DE-XGBoost hybrid system.

MAE =

n∑
i=1

∣∣WLobsi −WL
pre
i

∣∣
n

(22)

MAPE =

n∑
i=1

∣∣∣∣WLobsi −WL
pre
mean

WLobsi

∣∣∣∣
n

× 100 (23)

whereWLprei andWLobsi are the predicted and observed water
levels at time step i, respectively;WLobsmean andWL

pre
mean are the

average values of the observed and predicted water levels,
respectively; and WLpremax and WLobsmax are the predicted and
observed peak water levels, respectively.

IV. MODEL IMPLEMENTATION
In this work, hybrid GA-XGBoost and DE-XGBoost models
were developed based on R packages, including xgboost
[30], [55] and GA [34], [56], to predict the multistep-ahead

water level at Jungrang-gyo station in the Jungrang basin.
In the developed system, the seven hyperparameters of the
XGBoost model, including the maximum number of itera-
tions (nr), maximum tree depth (d), learning rate (η), min-
imum loss reduction (γ ), subsample ratio for columns (δ),
minimum sum of instance weights (µ), and subsample ratio
for training instances (s), were used to search the optimized
sets by using the GA and DE algorithms. The meaning and
range of the hyperparameters can be found in the above-
mentioned articles. In this study, the values of nr , d , η,
γ , δ, µ, and s were set in the ranges of [50-800], [3-10],
[0.005-0.3], [0-3], [0.3-0.8], [0-10], and [0.4-1], respectively.
The two developed hybrid systems in which RMSE was
used as an objective function of the optimization process
are shown in Fig. 5. RMSE is widely used in hydrology,
forecasting, and regression analysis to determine how con-
centrated the predicted and observed data are around the
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line of best fit. This indicator can be sensitive to the peak
values of water levels that need to be detected by the
models.

For comparison, CART and RF models were developed
based on R packages, including rpart [57] and randomForest
[48], [58]. For the CART model, the complexity parame-
ter was tuned in the range of (0, 1) with the grid search
method. For the RF model, the number of trees (ntree)
and the randomly split samples of variables (mtry) have the
main influence on the modeling results. As suggested in the
package documentation and literature [27], [59], the ntree
parameter for an RF should be sufficiently large. The param-
eters mtry and ntree were tuned in the ranges of [1-15] and
[1000-2000], respectively, with the grid search method.

The k-fold cross-validationmethod was applied to mitigate
the overfitting problem in the tree-basedmodels. All themod-
els (CART, RF, GA-XGBoost, and DE-XGBoost) used 5-fold
cross-validation, which has been widely used in previous
studies [23]; this approach is shown in Fig. 6(a). Each hybrid
model is described in detail in the following paragraphs.

For the GA-XGBoost model, the population size (Ps) and
the maximum number of generations (Gmax) are the most
sensitive parameters in the GA and were determined based
on a parametric test. The crossover probability Fcr between
pairs of chromosomes should be a large value (70%-80%).
The mutation probability Pm for a parent chromosome should
be a small value because the probability ofmutation occurring
is small. Therefore, in this study, Fcr and Pm in the GA
were selected to be 70% and 3%, respectively, and were
set at the initial step. In this study, the uniform crossover
method was applied; this approach utilizes a mixing rate to
copy a gene from each parent to create child genes (Fig. 3).
To set suitable values of Gmax and Ps, nine GA-XGBoost
models that used the 5-fold cross-validation technique were
developed based on a set of Ps values, including 20, 50,
100, 150, 200, 250, 300, 400, and 500. Fig. 6(b) presents
the GA-XGBoost performance and indicates that the RMSE
values were stable after 700 generations and that the best
Ps was 200 based on the lowest RMSE. Similar to those in
the GA-XGBoost model, the mutation probability (F) and
crossover probability (Cr ) for the DE operator were chosen
as 3% and 70%, respectively. As illustrated in Fig. 6(c),
the RMSE values of DE-XGBoost were unchanged after
320 generations, and the optimal population size was 150. For
the stopping criteria in thesemodels, themaximum number of
iterations (maxiter) was selected as 1000, and the consecutive
number of iterations without an improvement in the fitness
score (run) was chosen as 100. Notably, the abovementioned
optimization process was for 1-hour-ahead water level pre-
diction. For the remaining lead times, the parameters of the
optimization models were set to the same values as those in
the 1-hour case.

V. RESULTS AND DISCUSSION
This section presents the prediction performance results for
the hybrid models (GA-XGBoost and DE-XGBoost) and

FIGURE 6. Construction of GA-XGBoost and DE-XGBoost hybrid models:
a) k-fold cross-validation approach, b) GA-XGBoost performance, and
c) DE-XGBoost performance.

other tree-based models (RF and CART) for six test events.
The detailed results and discussion are as follows.

Table 3 summarizes a performance comparison of the
four tree-based models—GA-XGBoost, DE-XGBoost, RF,
and CART—regarding the indicators RMSE, CC, NSE, MA,
and MAPE for one- to six-step-ahead predictions of water
level. In addition to comparing the abovementioned indica-
tors for the different models, the complexity of the models
was evaluated. The Akaike information criterion (AIC) was
used to examine model complexity [60]. The AIC formula is
as follows:

AIC = n× log
(√

RMSE
)
+ 2k (24)

where n denotes the sample number and k denotes the num-
ber of leaf nodes corresponding to rules based on certain
predictors.

Table 3 indicates that the accuracy of the prediction models
generally decreased as the number of time steps increased.
For the 1-hour-ahead forecast, all the tree-based models
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TABLE 3. Performance of different tree-based models in one- to
six-step-ahead water level prediction for test events.

produced good results, with high CC and NSE values and low
RMSE andMAE values. For the 2-hour-ahead prediction, the
performance of the CART declined substantially compared
to that in the 1-hour-ahead prediction. In detail, the NSE and
CC values of the CART approach decreased from 0.9607 and
0.9806 to 0.8934 and 0.9477, respectively. Additionally,
the RMSE and MAE values of the CART increased from
0.0788 and 0.0252 to 0.1298 and 0.0476, respectively. As the
time step length increased, the CART accuracy continu-
ally decreased. The RF performed better than the CART.
For the six-hour ahead prediction, the RF displayed good
performance, with slightly lower NSE and CC values and
higher RMSE and MAE values compared to those of DE-
XGBoost. GA- and DE-XGBoost outperformed the RF and
CART models in terms of all the performance indicators. For
the 1-, 4-, and 6-hour-ahead predictions, GA-XGBoost exhib-
ited slightly better performance than DE-XGBoost; however,
the opposite result was observed the 2-hour-ahead forecast.
For the 3- and 5-hour-ahead predictions, both models dis-
played similar performance. The relative error of the hybrid
GA-XGBoost model (MAPE = 2.18%) was approximately

1.58% lower than that of the RF and 0.81% lower than that
of the CART for the 1-hour-ahead prediction. For the rest of
the time steps, both hybrid models exhibited lower MAPE
values than the RF and CART models. The MAPE values of
GA-XGBoost were slightly lower than those of DE-XGBoost
for five of the six time steps. For the AIC indicator, which
considers bothmodel complexity and accuracy, the AIC value
for the GA-XGBoost model (9539.9) was approximately one-
sixth the AIC value of the RF in the 1-hour ahead-prediction.
The AIC values of the RF for other time steps were the
highest among those of all models. RF performance in terms
of RMSE, CC, NSE, MAE, and MAPE was less reliable
than that of the XGBoost models, even though it had a more
complex model structure. The AIC values of DE-XGBoost
were slightly lower than those of GA-XGBoost for four of the
six time steps. The CART exhibited the smallest AIC values
for all time steps due to the simple structure (a single tree) of
the algorithm. However, the performance of the CART was
not reliable, as shown in Table 3 and the following analyses.

To further investigate the performance of theGA-XGBoost,
DE-XGBoost, RF, and CARTmodels, continuous 6-hour lead
time predictions at each time step t were obtained. Notably,
the results of multistep-ahead models were combined into a
6-hour forecasting series at each time step t . Fig. 7 displays
the performance of the models for continuous 6-hour lead
time predictions for the six test events. The performance
criteria were based on the mean 6-hour predictions generated
at each time t for the test events. As shown in Fig. 7, the two
hybrid models outperformed the other models, with lower
RMSE and MAE values and higher CC and NSE values in
6-hour lead time predictions. Notably, DE-XGBoost exhib-
ited better performance than GA-XGBoost in terms of the
RMSE and MAE, and both models yielded similar CC and
NSE results. As in the multistep-ahead predictions, the RF
performed better than the CART in terms of RMSE, CC and
MAE. For NSE results, the CART model displayed slightly
better accuracy than the RF model for 1-hour to 4-hour lead
time and showed approximately the same as both hybrid
models for the 1-hour and 4-hour lead time. However, this
single phenomenon does not suggest that the performance of
the CART is robust when comprehensively considering all
the performance features.

Fig. 8 provides an intuitive way to evaluate the perfor-
mance of the hybrid tree-based, RF, and CART models in
terms of hydrographs of the observed versus one-, three-,
and five-step-ahead predicted water levels for four events:
37, 40, 41, and 42. For the one-hour-ahead forecast, all the
models captured the behavior of the time-series water level
well. Nevertheless, CART displayed instability in predicting
water level variations (Fig. 8(d), (g), and (j)). The RF exhib-
ited generally underestimated forecasts when the water level
decreased (Fig. 8(g)) and a larger time lag (Fig. 8(j)) than the
two hybrid models. In addition, the RF produced a notable
underestimation of the second peak water level compared
to the two XGBoost-based models for event 37 (Fig. 8(a)).
In long step-ahead predictions, the CART displayed poor
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FIGURE 7. The performance of the models in terms of the RMSE, correlation coefficient, NSE, and MAE
for continuous 6-hour lead time predictions based on the test event.

performance in capturing the behavior of water levels during
the events (Fig. 8(c), (e-f), (h-i), and (k-l)). Compared to
the GA- and DE-XGBoost models, the RF exhibited more
underestimated predictions of the peak water level for events
37, 40, and 42 (Fig. 8(b), (e-f), and (k-l)). The GA- and
DE-XGBoost predictions illustrated very similar behav-
ior for the various prediction steps, and there was only
small difference in water level variations in both models
(Fig. 8(g-i) and (k-l)).

TABLE 4. Bias performance of the models for the test events.

Table 4 shows the bias performance of the models for the
test events. The CART displayed good bias results for the
prediction steps; however, this result did not indicate overall
good performance. The two hybrid models outperformed the
RF for all multistep-ahead predictions. GA-XGBoost exhib-
ited slightly better performance than DE-XGBoost for four of
the six step-ahead predictions.

Table 5 presents the time lag between the predicted
and observed occurrences of the water level peaks for the

test events. The hybrid models GA- and DE-XGBoost out-
performed the RF and CART, with lower time lags for the
water level peak in the multistep-ahead predictions for events
39, 40, and 42. In addition, both hybrid models yielded lower
time lags than that of the RF for the 4-hour- and 6-hour-
ahead predictions for events 37 and 41, respectively. The RF,
GA-XGBoost and DE-XGBoost models displayed similar
time larges for events 37, 38, and 41. Generally, the two
hybrid models can not only produce more accurate predic-
tions for single-peak events but also yield better performance
for multipeak events compared to the RF and CART.

Fig. 9 shows the scatter plots of the GA-XGBoost,
DE-XGBoost, RF and CART models for the t + 3 and
t + 5 predictions. As shown in Fig. 9, the two hybrid models
yielded better performance (with higher CC values and nar-
rowly dispersed points for t + 3 predictions (Fig. 9(a)) and a
more reasonable distribution of points for t + 5 predictions
(Fig. 9(b)) than the CART. The RF outperformed the CART;
however, compared to the hybrid-XGBoost models, more
underestimated points and a lower CC value were produced.
The points of the CART are generally scattered in layers. For
longer step-ahead predictions (e.g., t + 5), the differentiation
among point layers is clearer than that for t + 3 predictions.
This finding suggests that as a simple tree-based model,
the CART is not suitable for multistep-ahead forecasting.

To further compare these four tree-based models in an
intuitiveway, a Taylor diagramwas created. ATaylor diagram
is a mathematically based graphical diagram that provides
a visualized representation of how closely predictions and
observations are based on the correlation coefficient, RMSE,

VOLUME 9, 2021 125863



D. H. Nguyen et al.: Development of Extreme Gradient Boosting Model Integrated With Evolutionary Algorithms

FIGURE 8. Time series of model-predicted water levels for t + 1, t + 3, and t + 5 step-ahead cases.

FIGURE 9. Scatter plots of the GA-XGBoost, DE-XGBoost, RF, and CART
models for a) t + 3 and b) t + 5 predictions.

and standard deviation. Fig. 10 shows the Taylor diagram of
themultistep-ahead predictions (t+1, t+2, t+3, and t+5) for
the test events. As shown, GA-XGBoost and DE-XGBoost
produce the results close to the observations, with higher CC

and lower RMSE values than those of the other models for all
time steps.

Although the hybrid XGBoost models outperformed the
RF and CART models, the GA- and DE-XGBoost models
display some limitations that need to be discussed. The two
hybrid models produced underestimations of water level pre-
dictions (Fig. 8(c), (f), and (i) and Fig. 9 (b)) and large
time lags for peak water levels (Table 5) for 5-hour- and
6-hour-ahead predictions. The models displayed relatively
poor performance in terms of NSE for long prediction steps.
Specifically, the NSE values were approximately 0.65 for
the 6-hour-ahead predictions (Table 3) and were lower than
0.6 for continuous 6-hour lead time predictions (Fig. 7(d)).
This decrease is performance might be related to the char-
acteristics of the basin. The examined basin is relatively
small (299.87 km2), and the water level and streamflow are
very sensitive to hydrological variables, especially rainfall
variability. Obtaining reliable rainfall predictions for long
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TABLE 5. Performance of the models based on the time lag of the peak
water levels for the test events.

FIGURE 10. Taylor diagrams of the multistep-ahead models: (a) t + 1,
(b) t + 2, (c) t + 3, and (d) t + 5.

steps (5 and 6 hours ahead) remains a challenge for forecast-
ing systems. The effectiveness of rainfall forecasting often
deteriorates as the prediction step increases. In addition,

using past data without considering the variations in other
hydrological features and other correlated parameters, such
as basin cover changes over multiple decades, radiation, and
wind speed, might be a source of error. Therefore, to improve
the accuracy of the models, it might be necessary to add
some related basin features and other correlated predictors to
capture the changes in the basin over long periods.When con-
sidering model complexity and accuracy together, the hybrid
XGBoost models yield high AIC values. This result reflects
the trade-off of using models with complex tree structures to
obtain high prediction accuracy.

VI. CONCLUSION
In the context of effective urban flood control, it is nec-
essary to predict reliable water levels during heavy rain-
fall events. Accurate water level prediction remains a sci-
entific challenge and has received considerable attention
due to the nonlinear and nonstationary nature of water lev-
els. In this study, we developed and examined four tree-
based models: GA-XGBoost, DE-XGBoost, RF, and CART
models. Through a case study in the Jungrang urban basin,
South Korea, the performance of the four tree-based models
was compared based on multistep-ahead predictions of water
levels. The data were collected from rain gauges and water
level stations from 2003 to 2020, with 42 heavy rain events
during that span.

The obtained results showed that (1) the two hybrid mod-
els, GA-XGBoost and DE-XGBoost, outperformed the RF
and CART models in multistep-ahead water level predic-
tion based on the considered performance measures, includ-
ing lower RMSE and MAE values and higher CC and
NSE values. In addition, compared to the benchmark mod-
els, the hybrid XGBoost models provided better time lag
results for water level peaks and superior bias. (2) Gener-
ally, the performance of the GA-XGBoost and DE-XGBoost
models was similar; however, there were small differences
between them. DE-XGBoost provided better accuracy than
GA-XGBoost for continuous 6-hour lead time prediction
based on values generated at every time step. GA-XGBoost
performed slightly better than DE-XGBoost for series of sep-
arate time step predictions. (3) The CART, as a simple tree-
based model, was not suitable for multistep-ahead water level
predictions.

Although there are some limitations when considering long
step-ahead predictions (i.e., the underestimation of water lev-
els, large time lags for water level peaks, and poor NSE mea-
sures), the hybrid XGBoost model might be a superior option
to the existing models used for hourly water level prediction.
In future work, tree-based models should be explored, and
their performance should be assessed at different basin scales
and temporal scales. To improve hourlymultistep predictions,
an approach that combines monthly forecasting, periodic pat-
terns and daily and hourly forecasting should be investigated.
In addition, the comparison of the tree-based models with
other machine learningmethods and the optimization of input
predictors should be examined in future research.
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