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ABSTRACT Crack detection and measurement are essential tasks for maintaining and ensuring safety.
Accurate crack detection is very challenging because of non-uniform intensity, poor continuity, and irregular
patterns of cracks. The complexity of the background and variability in the data acquisition process also
complicate the problem. Many approaches to crack detection have been proposed, but the accuracy of the
detection leaves much to be desired. The aim of this study is to develop a practical crack detection method
for real-time maintenance. We focus on a deep end-to-end and pixel-wise crack segmentation. We propose
a lightweight U-Net-based network architecture with emphasis on the learning process. In order to verify
the effectiveness of the proposed method, we conduct tests on publicly available pavement crack datasets
and compare our model with state-of-the-art crack detection methods. Extensive experiments show that the
proposed method effectively detects cracks in a complex environment, and achieves superior performance.
The code and proposed model can be found in https://github.com/dvalex/daunet

INDEX TERMS Deep learning, crack detection, U-Net, pavement crack segmentation.

I. INTRODUCTION
Automatic crack detection is essential for effective mainte-
nance systems. That is why it has attracted much attention
for scientific research. Fan et al. [1] and Cao et al. [2] have
conducted an extensive survey of the various crack detec-
tion algorithms. Among those in recent years, deep learn-
ing has been widely applied to crack detection, because of
its excellent robust feature representation capability. Deep
learning approaches can be divided roughly into patch-based
classification and segmentation. In the patch-based approach
the image is cropped to small patches, then a deep neural
network is trained to classify each patch as crack or not.
Patch-based algorithms are sensitive to the patch size and
because these methods do not extract cracks at the pixel-
level, in general, a post-processing step is required to separate
crack pixels from the background. In contrast, in the seg-
mentation approach, each pixel is classified as a crack pixel
or a background pixel. These are the so-called end-to-end
methods. The end-to-end methods have an encoder-decoder
architecture. Encoder networks consisting of convolutional
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layers are applied to extracted features of cracks by forming
feature maps. Decoder networks are employed to resize fea-
ture maps to the same size as the input image after a series of
up-sampling and convolution layers. The output of a model
is a crack prediction map, where crack regions have a higher
probability and non-crack regions have a lower probability.

The segmentation approach has obvious advantages over
the patch-based approach. It is more robust and main-
tains global context information. There is no need for
post-processing and parameter tuning. It is an end-to-end
method and crack measurements can be carried out directly
on the output image.

At present, researchers have proposed a series of segmen-
tation algorithms. Yang et al. [3] adopt Holistically-nested
Edge Detection (HED) [4], an edge detection method as its
backbone architecture. To enhance feature representation a
feature pyramid module is introduced enriching lower-level
layers’ context information from higher-level feature maps.
Similar to HED, the proposed network has the so-called
side networks or parallel prediction maps, whose hierarchical
boosting module makes the model focus on hard samples
rather than easy samples. Selection of the proper objective
or loss function is important for training crack detection
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networks. During the training, the loss function is com-
puted over all pixels in a training image and crack map.
However, the distribution of crack and non-crack pix-
els is heavily biased since most regions are non-crack
pixels. Yang et al. [3] adopt the HED strategy and use
sigmoid cross-entropy loss with class-balancing weights.
Song et al. [5] propose a model with ResNet encoder. The
encoder is followed by Multiscale Dilated Attention (MDA)
module. In this module dilated convolution is used to get
information from more distanced pixels. MDA allows col-
lecting semantic information at multiple scales with rel-
atively fewer parameters. In the decoder a feature fusion
upsampling module is proposed, merging low-level and high-
level features. For the loss function Song et al. [5] choose
dice coefficient, which is a popular loss function for image
segmentation tasks, since it expresses an overlap between
two regions. Lau et al. [6] propose a U-Net-based network
architecture. In the encoder, a pre-trained ResNet-34 neu-
ral network is adopted. The channel squeeze and excitation
module is used in the decoder. Dice coefficient is used as
the loss function. Training of various layers with different
learning rates is conducted to improve convergence and per-
formance. Fan et al. [1] propose amethod consisting of U-net
architecture with multi-dilation module and hierarchical fea-
ture learning module. The multi-dilation module located
between the encoder and decoder uses the dilated convolu-
tions described above. Hierarchical feature learning module
inspired by [4] uses side networks and integrates multi-scale
features from high to low-level convolutional layers. The loss
function is similar to [3]. Liu et al. [7] use VGG 16 convolu-
tional layers in the encoder. In decoder hierarchical features
acquired from multiple layers are upsampled and used as a
side output before being all fused at the end. The main differ-
ence with other models is that a post-processing step based
on guided filtering and conditional randomfields methods are
applied to refine the network predictions. The loss function is
similar to [3].Wang et al. [8] use pre-trained DenseNet121 as
an encoder. A feature pyramid attention module is inserted
between the encoder and decoder, which combines low-level
and high-level features. The decoder module upsamples by
combining low-level and high-level features. The proposed
architecture resembles U-net. The sum of cross-entropy loss
and dice loss is selected as the loss function.

Reviewing the related literature, we notice several trends
in crack segmentation models. Most of the proposed crack
segmentation networks fuse features of different scales. This
is a necessary step to improve crack detection performance
since higher-level feature maps contain context information
while lower-level feature maps include detailed information.
Another trend is a U-net architecture [9]. This can be justified
by the fact that U-net fuses encoder feature maps with the
decoder and can generate accurate feature maps. Another
trend is the dilated convolution module. Features in each
region cannot be clearly classified as crack, without the
surrounding information. One way to collect the surround-
ing information is to increase the size of the filters, which

however leads to an increase in parameters and the com-
putational cost. The dilated convolution helps to solve this
problem: it can capture rich context information with fewer
parameters involved. The most popular loss functions used in
crack segmentation networks are cross-entropy and dice loss.

Although several methods proposed in the literature have
shown satisfactory results there is still much room for
improvements. The objective of this study is to develop
a practical crack detector that can be used in real-time
maintenance applications. A practical model has to have a
lightweight architecture. Based on the reviewed literature we
chose U-net architecture, and after extensive experiments,
we selected Resnet18 as the encoder. Adding dilated convo-
lution and attention modules didn’t improve the performance.
Therefore, we directed our efforts on the learning phase,
and by proposing a new augmentation strategy and care-
fully choosing loss functions and learning rate strategy we
developed a network that outperforms state-of-the-art crack
detection methods. We call the proposed method DAUNet
(Deep Augmented U-Net).

Proposed models have to be evaluated and compared. Sev-
eral evaluation metrics are proposed in the literature. The
standard metrics used are precision (Pr), recall (Re), and
F-measure (F). Yang et al. [3] introduce ODS (Optimal
Dataset Scale), OIS (Optimal Image Scale), which are bound-
ary evaluation metrics from [10]. Since Pr and Re cannot
appropriately demonstrate the overlapping extent between
detected crack and ground truth, Yang et al. [3] introduce a
new metric AIU (Average IoU (Intersection-over-Union)),
which is the average IoU over all thresholds, and it illustrates
the overall overlap extent between detections and ground
truth.

The evaluation of metrics requires ground true data. Tran-
sition regions between crack pixels and non-crack pixels are
difficult to annotate, and that is why the ground truth data
has an annotation bias. Researchers have dealt with the bias
problem differently. [5], [7], [11] consider manual labeling
as ground truth, ignoring bias. In the cases where images are
carefully labeled by experts, this approach can be considered
reasonable. The majority of crack detection publications [1],
[6], [8], [12]–[16] consider all predictions to be true positive
pixels if a crack pixel is k pixels near to the manually labeled
crack pixel. Depending on the research k vary from 2 to 5.
However, this criterion is too loose and not precise enough
to measure the detection results. If a pixel is predicted as
background and it is near to the manually labeled crack
pixel, the error occurs only when it coincides with the ground
truth. Also, the topology of the predicted true positives may
substantially differ from the ground truth, especially in wide
crack cases. Yang et al. [3] adopt an evaluation procedure
from the image boundary detection literature, where anno-
tation bias is dealt with by computing the correspondence
between detected and ground truth pixels. Martin et al. [10]
present the algorithm for computing the correspondence
between a thresholded machine boundary map and a human-
labeled boundary map. The correspondence problem is
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converted into a minimum cost bipartite assignment prob-
lem, where the weight between a machine boundary pixel
and a human boundary pixel is proportional to their rela-
tive distance in the image plane. One can then declare all
boundary pixels matched beyond some threshold dmax to be
non-hits. We call dmax as maximum tolerance for the correct
match. To solve the assignment problem Martin et al. [10]
propose to use Goldberg’s algorithmwhich is part of the CSA
package and is the best-known algorithm for min-cost sparse
assignments [17]. Since cracks are different from boundaries
and solving an assignment problem is time consuming, in [3]
during evaluation both crack detection and ground truth are
thinned to one pixel wide before computing performance
metrics.

From above it is clear that it is not appropriate to compare
the performance based on the published results, and testing
of models has to be conducted based on the same evalua-
tion criteria and implementation. Therefore, for comparison,
we choose the state-of-the-art deep learning segmentation
model from [3]. There are reasons for this selection: the
code and data are public and fair comparisons are possible,
the performance of the proposed model is high and reliable.

In this paper, we propose a novel crack segmentation
method based on encoder-decoder architecture to perform
crack detection in an end-to-end way. The contributions of
this paper are summarized below.

• Development of a lightweight model that impressively
outperforms state-of-the-art heavyweight models on
benchmark datasets.

• Introduction of an augmentation and loss function com-
bination technique for crack images which helps to
obtain marginally better performance.

• Proposal of a new measurement to evaluate crack detec-
tion methods. Since ODS and OIS measures are time
consumingwe introduce their simplified versions. These
newmeasures allow quick evaluation of the performance
and thus help shorten development time.

We use known techniques but find out new combinations
that result in a practical algorithm, which makes a big dif-
ference in the real world. The contribution of the paper is
the practical algorithm that provides overwhelming superior
results compared to state-of-the-art methods.

II. PROPOSED METHOD
We formulate crack segmentation as a pixel-wise binary clas-
sification task. For a given input image I the proposed model
generates a crack prediction map M , where crack regions
have a higher probability and non-crack regions have a lower
probability. In this section, we describe the implementation
details of the proposed DAUNet.

A. NETWORK ARCHITECTURE
The network we propose has a U-Net based architecture [9].
U-Net is a convolutional neural network that was developed
for biomedical image segmentation. The main challenges in

biomedical image segmentation are: structures with low con-
trast, strong shape variations, weak borders, and a few anno-
tated images. U-Net outperformed the best sliding-window
convolutional networks on several challenges for segmenta-
tion of neuronal structures in electron microscopic stacks.
Since we face similar challenges in crack segmentation we
choose U-Net as a base of the proposed method.

U-Net consists of an encoder (downsampling path) and
a decoder (upsampling path). The encoder is the first half
of the architecture. It is usually a pre-trained classification
network like VGG or ResNet, which is used to encode the
input image into feature representations at multiple differ-
ent levels. We use ResNet18 [18] as the encoder. We also
tried VGG16, ResNet34, and ResNet50. Taking into account
execution speed and accuracy, ResNet18 is a clear winner.
The ResNet18 is pre-trained on ImageNet, and its last two
classification layers are removed. The decoder is the sec-
ond half of the architecture. The goal is to semantically
project the discriminative features (lower resolution) learned
by the encoder onto the pixel space (higher resolution) to
get a dense classification. The decoder comprises of repeat-
ing upsampling blocks that double the spatial resolutions of
the output activations while halving the number of feature
channels. While upsampling, the decoder also concatenates
the higher resolution feature maps from the encoder network
with the upsampled features in order to better learn represen-
tations. Since upsampling is a sparse operation we need more
detailed information from earlier stages to better represent the
localization. Finally, the model restores the image resolution
through an upsampling operation. This fully convolutional
network receives an RGB image as input and produces a
one-channel crack prediction map of the same size.

The generalization ability of deep learning methods
depends on a large amount of training data, which is difficult
to obtain. Data augmentation is regarded as an effective strat-
egy to address this problem. Popular crack image augmenta-
tion methods include random rotations, flips, and changes in
lighting [6]–[8]. In [3] the proposed FPHBN crack detector is
trained on the training set of the CRACK500 dataset and then
is tested on 5 bench-mark datasets, including the CRACK500.
In this research, since we choose the FPHBN as a primary
target for comparisons, we follow the same procedures as
in [3]. We construct a crack detector with training images
of the CRACK500 dataset using a better data augmentation
method.

B. DATA PREPROCESSING AND AUGMENTATION
The CRACK500 dataset contains 500 full images of size
around 2000 × 1500 pixels, split into 250 images of training
data, 50 images of validation data, and 200 images of test
data. Each crack image has a pixel-level annotated binary
map. Due to the limited number of images, Yang et al. [3] ini-
tially crop each image into 16 non-overlapped image regions
and the regions containing less than 1,000 pixels of crack are
rejected. The final dataset is comprised of 1,896 crops for
training, 348 for validation, and 1124 for testing. Once the
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FPHBN [3] is trained, it is tested on the test data and other
datasets for generalizability evaluation.

We use the same 250 full images for training, the same test
data (1124 cropped images), and the same number of crops
(1896 per epoch) in the training, but the cropping procedure
differs as explained below. Original crops from the dataset
can be successfully used to train a neural network as it is done
in [3]. But we prefer to create our own crops from full images
to make the training procedure more flexible and effective.
Also, since a manually annotated binary map is not very
accurate, we apply a soft labeling approach to make errors
at edges less valuable.

As crack images are invariant to shifts, rotation, stretch and
other geometrical transformations, we apply them all with
randomly uniform selected parameters:
• Horizontal and vertical flips with the probability of 0.5
• Rotation according to a central point from −90◦ to 90◦

• Translations up to 30% of height and width
• Scaling by coefficient in range of [0.5, 1, 5]
To avoid new edges appearing after transformations we

use a ‘‘mirror’’ filling method. Also to improve tolerance
to camera parameters and shooting conditions, we add some
color augmentation:
• Modify contrast up to 5%
• Modify brightness up to 5%
• Change hue no more than 5◦ (hue is measured from
0◦ to 360◦)

• Change saturation up to 5%
We also tried various noise/color jittering augmentation

and brightness gradient to simulate different ISO and lighting
conditions. We excluded it from the final solution as the
performance results became slightly lower. We propose the
following data selection algorithm:

1) Select a pair (I ,M ) of full-size image and correspond-
ing annotated binary map from the training dataset

2) SmoothM by 5 × 5 Gaussian blur filter
3) Select a random 512 × 512 size crop (I1,M1) from

(I ,M ). Calculate the sum of all values in M1. If this
number is less than Smin, then the chosen crop is
rejected (few crack pixels, too much background) and
we repeat the step. To avoid an infinite loop, we limit
the number of attempts to 1000.

4) Apply color and geometrical augmentations to (I1,M1)
5) Select random 256 × 256 size subcrop (I2,M2) from

(I1,M1). This time no additional limits on crack pixels.
6) Stack (I2,M2) into batches and train the network
Our crops are random compared with [3] and are obtained

online while training. It gives some advantages compared
to the static crops used in [3] since the data varies. Sub-
croping the crop that passed geometrical augmentations is
another feature of the proposed augmentation method that
had a positive effect on training. Geometrical augmentations
leave images with empty spaces that must be filled. By first
choosing a bigger crop and then selecting a subcrop we can
obtain an image that has less filled empty spaces.We also note

that after precomputing the integral of an image, step 3 can
be calculated in constant time.

C. LOSS FUNCTION AND PARAMETER OPTIMIZATION
We propose a two-stage training. In the first stage, we use
Focal Loss with Adam optimizer and cosine annealing
learning rate scheduler. Focal Loss [19] corrects a class
imbalance in classification tasks. For example, in the
CRACK500 dataset 99% is the background and only about
1% of pixels in ground truth are classified as cracks. Focal
Loss adds a modulating term to cross-entropy loss, focusing
learning on the hard rare class examples. The scaling factor is
reduced to zero as confidence in the dominating correct class
approaches 1. It automatically downscales simple examples
during training and focuses the model on complex examples.
Focal Loss multiplies the standard cross-entropy by a factor
−gt · α · (1− p)γ , where gt stands for ground truth, p for the
class probability, and α, γ are tunable parameters.

We use Adam optimizer, an adaptive learning rate opti-
mization algorithm introduced by Kingma and Lei Ba [20].
Adam quickly gained popularity, however, after a while
researchers noticed that despite superior training time, it does
not converge to an optimal solution for some tasks. Sev-
eral countermeasures were proposed. One popular approach
is presented in [21], where AdamW with weight decay is
introduced. AdamW is used in [6] for optimization of the
crack segmentation neural network. However, our experi-
ments show that the higher the decay, the less the overlap
area between the predicted and the ground truth cracks.
Loshchilov and Hutter [21] also propose AdamWR, an exten-
sion of AdamW by cosine annealing with restarts. Cosine
annealing is introduced in [22]. It quickly cools down the
learning rate according to a cosine schedule. Since our exper-
iments with AdamW don’t give satisfactory results, we apply
cosine annealing directly to Adam. We use cosine annealing
and also apply a linear warmup at the start of the training
process. At each iteration s we update the learning rate as
follows:

LR(s) =


LRwu + s ·

LRbase − LRwu
Swu

, if s ≤ Swu

1
2
· LRbase ·

(
1+ cos

(
π ·

s− Swu
Stot − Swu

))
,

otherwise

Swu denotes the number of warm-up steps Swu = Ewu × Se,
where Ewu is the number of warmup epochs and Se is the
number of steps per epoch. LRbase stands for learning rate
upper range, and LRwu for lower range. Stot denotes the total
number of steps Stot = Etot ·Se, where Etot is the total number
of epochs.

Focal Loss turns the model’s attention towards the rare
class and solves the problem of balance between positive and
negative examples, as well as the balance between easy and
hard examples. However, it makes predictions soft, the aver-
age prediction values become small. Also prediction peak
values for crack pixels vary. This makes the selection of the
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appropriate threshold a difficult task. To make the model
more confident in the predictions we propose a second stage.
In the second stage, we fine-tune the network using Dice
Loss [23] with the SGD optimizer, however here we use a
constant learning rate. Dice coefficient which is equivalent to
the F1 score is frequently used in crack segmentation models.
It is essentially a measure of overlap between predicted and
ground true samples. After applying Dice Loss, the network’s
confidence in prediction increases, and results become close
to 0, 1.

III. BENCHMARK RESULTS
We compare the proposed DAUNet with the FPHBN model
from [3]. We choose FPHBN because it is a recently pub-
lished state-of-the-art model, and its code and data are pub-
licly available. Since our model is also publicly available, fair
and transparent comparisons are possible. We use the same
datasets and same training settings as in [3].

A. DATASETS
CRACK500 is the dataset proposed in [3]. All models are
trained on CRACK500 training data. Testing is performed
on the CRACK500 test data and other datasets as described
below. German Asphalt Pavement Distress (GAPs) dataset is
presented in [24]. It includes a total of 1,969 gray valued
images, with various classes of distress including cracks.
Since the GAPs annotations are bounding boxes, they cannot
be used in pixel-wise crack prediction tasks. Yang et al. [3]
manually select 384 crack images from the GAPs dataset and
conduct pixel-wise annotation, creating GAPs384, which we
use for tests. Cracktree200 is the dataset presented in [25],
which includes 206 pavement images and has a pixel-wise
annotation. Another dataset that we consider is CFDproposed
in [12], consisting of 118 images and manually labeled crack
contours. The last dataset considered is AEL [3], which is
a combination of 3 small datasets, containing 58 pixel-wise
annotated crack images.

B. COMPARED METHODS
We choose FPHBN [3] as the primary target for comparison.
It is a state-of-the-art deep learning segmentation model pro-
posed recently. Other models include HED [4], RCF [26],
and FCN [27]. These are models used in [3] for comparison.
HED and RCF are state-of-the-art edge detection models.
FCN is a set of semantic segmentation models, from which
FCN-8s a high-performance model is chosen. FCN-8s com-
bines semantic information from a deep, coarse layer with
information from a shallow, fine layer to produce accurate
and detailed segmentations.

C. EVALUATION CRITERIA
We employ OIS, ODS, and AIU, the metrics used in [3].
We also propose sOIS and sODS which are simplified ver-
sions of OIS, ODS, correspondingly. OIS and ODS are
boundary evaluation metrics from [10]. OIS is the aggregate

F-measure on the data set for the best threshold in each
image. ODS is the best F-measure on the data set for a fixed
threshold. Since Yang et al. [3] didn’t present precise OIS
and ODS definitions for the crack case, and it took us a while
to figure out the implementation details, we give detailed
explanations of the metrics below.

Let Ig be a ground truth annotation and Is be a prediction
score of an image I . Let t ∈ [0, 1] be a threshold, and I tb be
a binary image obtained by thresholding Is using threshold t .
Let I

t
b and Ig be results of thinning of I tb and Ig respectively

to one pixel wide. We construct a minimum cost bipartite
graph and find correspondence between I

t
b and Ig (see [10]

for the details), where the weight between corresponding
pixels is proportional to their relative distance in the image
plane. Let N t

tp be the number of matched pixel pairs with
weight less or equal than dmax ∗ D, where D represents the
image size dimension and it is equal to the length of the
image diagonal. N t

tp represents the number of true positives
for the threshold t . Let N t

p be the number of all positives in
I
t
b, and N

t
g be the number of ground truth pixels in Ig. The

precision, recall, and F-measure computed for the threshold
t are defined as follows: Pr t = N t

tp/N
t
p, Re

t
= N t

tp/N
t
g,

F t = 2 Pr t ·Ret

Pr t+Ret The optimal F-measure for an image is
defined as Fopt = max

t
F t , t ∈ {0.01, 0.02, . . . , 0.99}. OIS

is the average of optimal measures of all images in the
dataset.

To define ODS we accumulate true positives, all positives
and ground truths for the whole dataset. Let S ttp be the sum
of N t

tp, S
t
p be the sum of N t

p and S
t
g be the sum of N t

g over all
the images. The aggregate precision, recall, and F-measure
are computed as follows: Pr∗t = S ttp/S

t
p, Re

∗t
= S ttp/S

t
g,

F∗t = 2 Pr∗t ·Re∗t

Pr∗t+Re∗t . ODS is defined as ODS = max
t
F∗t , t ∈

{0.01, 0.02, . . . , 0.99}.
The AIU is first introduced in [3] and is computed on

the prediction and ground truth without a thinning opera-

tion. The AIU of an image is defined as 1
Nt

∑
t

N t
pg

N t
p+N t

g−N t
pg

where Nt denotes the total number of thresholds t ∈
{0.01, 0.02, . . . , 0.99}; for a given threshold t , N t

pg is the
number of pixels of an intersected region between the pre-
dicted and ground truth crack areas; N t

p and N t
g denote the

number of pixels of predicted and ground truth crack regions,
respectively. The AIU of a dataset is the average of the AIU
of all images in the dataset.

The proposed new metrics sOIS and sODS are simpli-
fied versions of OIS and ODS, correspondingly. As in AIU,
we don’t perform thinning and pixel matching and compute
metrics directly on I tb and Ig images. For a given threshold t ,
we calculate N t

pg and define precision, recall, and F-measure
for an image as follows: Pr t = N t

pg/N
t
p, Re

t
= N t

pg/N
t
g,

F t = 2 Pr t ·Ret

Pr t+Ret The optimal F-measure for an image is

Fopt = max
t
F t and sOIS is the average of optimal measures

of all images in the dataset. The definition of sODS follows
similar steps. We calculate S tpg, which is the sum of N t

pg over
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the dataset. Then we calculate the aggregate precision, recal,
and F-measure, which leads us to sODS. Pr∗t = S tpg/S

t
p,

Re∗t = S tpg/S
t
g, F
∗t
= 2 Pr∗t ·Re∗t

Pr∗t+Re∗t , sODS = max
t
F∗t .

D. SCALING
Various datasets have various crack width ranges and image
resolution. Therefore, we can’t expect a good performance
of the CRACK500-trained neural network on other datasets.
Generally speaking, a network detects cracks with some
width range in pixels. In practical settings, shots are made
with fixed special resolution. Shooting conditions should be
adjusted to the training data’s shooting conditions, so the
range in pixels has tomatch the range of interest. To overcome
this problem, we propose a different scaling for each dataset.

We tried several approaches to find an optimal scaling
factor for each dataset. We computed the average crack width
for each dataset and determined the scale rate, but it didn’t
lead to improved performance. Scaling all datasets to have
the same average crack width is another approach, but it
only slightly improved performance. Negative results can be
explained by the fact that data distribution in real datasets
depends not only on the thickness of the cracks but also on the
image resolution, shooting conditions, camera parameters,
etc. For example, artifacts of compression algorithms may
appear and sharpness also can be lost at high magnifications.
However, the assumption that scale is important allowed
us to find a suitable scaling coefficient for each dataset.
Since we do not have a training set defined other than the
CRACK500 dataset, we select one representative image of
each dataset, and by varying the scale we determine appro-
priate coefficients according to model performance, as seen
in Fig. 1. For the performance measure, we use maxIoU =

max
t

N t
pg

N t
p+N t

g−N t
pg
. We choose maxIoU because it has higher

values and sharper peaks than AIU. The determined coeffi-
cients are shown in Table 1. For example, the scaling coef-
ficient of the CrackTree200 dataset is 1.4. That means we

FIGURE 1. MaxIoU over scale curves of four datasets.

TABLE 1. Scale coefficient for each dataset.

scale an input image by 1.4 (i.e. height and width increased
by 1.4), apply neural network and then scale back result
to original resolution. Scaling is performed using Lanczos
interpolation over 8 × 8 pixel neighborhood. We do not alter
the CRACK500 dataset, because the model is trained on its
training set and therefore its scaling factor is 1.

E. EXPERIMENTAL RESULTS
The proposed DAUNet is implemented on the widely used
TensorFlow open-source library. The first stage of training
is performed using 200 epochs, Focal Loss parameters are
set to α = 0.2, γ = 0.25. and learning rate parameters are
set as follows: LRbase = 0.001, LRwu = 0, Etot = 400,
Ewu = 10 and Se = 1896. During the first 10 epochs,
the learning rate increases after each batch linearly from 0 to
0.001. In the second stage, we fine-tune the network using
Dice Loss using 100 epochs with a constant learning rate
equal to 0.001. The augmentation parameter Smin is set to
3200000. Maximum tolerance allowed for correct matches of
prediction and ground truth is set to the same value as in [3],
dmax = 0.0075.

TABLE 2. Evaluation of Crack Detection Methods on the CRACK500 Test
Dataset.

Table 2 shows quantitative comparison results on the
CRACK500 test dataset. The proposed DAUNet achieves
the highest performance in all metrics. Relative to FPHBN,
DAUNet improves performance by more than 12% in all
metrics, and more than 14% in terms of AIU, sODS, and
sIOS. In Fig. 2, we can see that DAUNet gains visually much
precise crack detections than others.

From Table 3 we see that on the Cracktree200 dataset
DAUNet improves performance by more than 39% in all
metrics and outperforms FPHBN by more than 200% in AIU.

Table 4 shows results on the CFD dataset. Again
DAUNet achieves better performance on all metrics. DAUNet
improves more than 17% in all metrics and outperforms
FPHBN by 113% in AIU.

As shown in Table 5, DAUNet achieves the best perfor-
mance in terms of all metrics on the AEL dataset. From
Fig. 2, we note that DAUNet achieves the most complete
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FIGURE 2. Examples of crack detection of compared methods on five datasets.

TABLE 3. Evaluation of Crack Detection Methods on the
CrackTree200 Test Dataset.

TABLE 4. Evaluation of Crack Detection Methods on the CFD Test Dataset.

TABLE 5. Evaluation of Crack Detection Methods on the AEL Test Dataset.

crack detection results. DAUNet improves FPHBN by more
than 25% in terms of all metrics and increases AIU by 182%.

From Table 6 we see that the proposed DAUNet
outperforms FPHBN on the GAPs384 dataset. DAUNet
improves performance by more than 48% in all metrics.
However, the performance is much lower than on the
CRACK500 dataset. The GAPs384 dataset has a background
that is similar to a crack. In the last row of Fig. 2, a sealed
crack ismisclassified as a crack. Even though the ground truth
of GAPs384 is one or several pixels wide, the AIU value of
DAUNet has a 167% increase.

TABLE 6. Evaluation of Crack Detection Methods on the GAPs384 Test
Dataset.

To further compare the proposed and state-of-the-art meth-
ods, we follow [3] and conduct experiments on images with
a complex background, low illumination, and shadow. Fig. 3
shows results on the same images used in [3]. In low illumina-
tion condition (the second row of Fig. 3), all methods fail to
detect a crack. This is because there are no similar images
in the training data. On other images, we can see that the
proposed DAUNet yields a clearer result and produces much
fewer false positives.

Intersection over Union (IoU) curves of DAUNet and
FPHBN are shown in Fig. 4. We see that the proposed
DAUNet always has considerably higher IoU over various
thresholds, showing higher accuracy in detecting cracks.
We also apply image scaling approach to FPHBN. As we
can see from Fig. 4, scaling significantly improves FPHBN
performance on datasets where the model is not trained.
These results confirm the effectiveness of the scaling
approach. Despite significant improvements in FPHBN per-
formance, DAUNet still retains its overall superiority.

The proposed DAUNet achieves the highest AIU, sODS
and sOIS values on the CRACK500 dataset. This is because
this dataset is the one selected for training the model. But
at the same time, the cracks in them, as can be seen from
Fig. 2, are wider than in other datasets. Therefore, the prior
probability of getting a larger IoU by drawing a random crack
of the corresponding width is higher in that case. The same
applies to the sODS and sOIS metrics, which perform an
exact pixel-by-pixel comparison. In contrast to sODS and
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FIGURE 3. The visualization of detection results of compared methods on special cases, i.e., shadow, low illumination, and complex background.

FIGURE 4. Intersection over Union of compared methods on five datasets.

sOIS, ODS and OIS metrics turn out to become relatively
large on datasets with a small crack width. In our opinion,
the reason is the mechanism of the tolerance of annotation
inaccuracies. In other words, the predicted segmentation may
not intersect with the real one at all, but lie somewhere nearby
and have a different shape, but the matching will still be
established.

The performance on the CRACK500 dataset could be even
higher if the manually annotated maps were more accurate.
Some annotations are shifted compared to real cracks, both
in training and test subsets, and there are also some misinter-
pretations.

We also compare the inference execution speed of DAUNet
and FPHBNon the CRACK500 dataset. The execution is con-
ducted on GeForce GTX 1060 6GB. The average execution
time of FPHBN is 596ms, while DAUNet achieves 66ms, and
thus 9 times faster than FPHBN. The amount of parameters
in FPHBN is 44.7 million, and DAUNet has just 14.3 million
parameters.

IV. ABLATION STUDIES
We perform ablation studies of the proposed method on
the CRACK500 dataset to show how some features affect
the performance. Several experiments were carried out by

varying loss functions and training procedures. We select loss
functions that are popular in the crack segmentation task.
These are: Focal Loss (FL), Binary Cross-Entropy (BCE),
Dice Loss (DL), and Jaccard Loss (JL). We denote FL+DL
two-stage optimization proposed in this paper. We replace FL
by BCE, and consider BCE+DL. We also consider one-stage
optimization using only DL or JL. Each of the cases is
used in 5 different training procedures. We denote ‘‘Fine’’
a training process that uses the proposed augmentation and
data selection algorithm. ‘‘FPHBN’’ denotes a training pro-
cess that uses similar data preparation as in [3], however
the size of the crops are chosen closest to the size used
in [3] that satisfies requirements of U-Net. ‘‘FPHBN2’’ is the
same as ‘‘FPHBN’’ however crops are resized to 256 × 256.
‘‘NoInit’’ doesn’t use pre-trained weights, and ‘‘LR/10’’
denotes a similar strategy used in [3] that divides learning rate
by 10 after each 25% of iterations. Note that in each training
process non-mentioned parameters remain the same as in the
proposed method. The results are shown in Table 7, 8, and 9.
The results indicate that the main factor that affects the

performance is the proposed augmentation procedure. The
selection of the loss function has a much less effect on the
performance, but the best performance is achieved by two-
stage optimization.
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TABLE 7. AIU performance comparison between different training
strategies.

TABLE 8. ODS/OIS performance comparison between different training
strategies.

TABLE 9. sODS/sOIS performance comparison between different training
strategies.

FIGURE 5. Scaling effect.

Next, we show how scaling affects performance.
We already see in Fig. 4, that scaling significantly improves
FPHBN performance on datasets where the model is not

trained. As we can see from IoU curves of Fig. 5, removing
scaling from consideration worsens DAUNet performance.

V. CONCLUSION
In this paper, we put our efforts into the learning phase,
and by proposing a new augmentation strategy and care-
fully choosing loss function and learning rate scheduling we
develop a network (DAUNet) that impressively outperforms
the FPHBN crack detection method in terms of performance
and execution speed. We choose FPHBN [3] as the pri-
mary target for comparison since it is a recently published
state-of-the-art crack detection method and its code and data
are public. The proposed DAUNet is also publicly avail-
able. Therefore, all results are transparent and can be easily
confirmed.
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