IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 15, 2021, accepted August 25, 2021, date of publication September 9, 2021, date of current version October 19, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3111220

Frozen Cache: Mitigating Filter Effect and
Redundancy for Network of Caches

SAEID MONTAZERI SHAHTOURI“', MOSTAFA REZAZAD "2, AND
RICHARD T. B. MA 3, (Senior Member, IEEE)

! Ab Initio Software Company, Weybridge KT13 ONY, U.K.
2School of Computing, Institute for Research in Fundamental Sciences (IPM), Tehran 1953833511, Iran
3School of Computing, National University of Singapore, Singapore 117417

Corresponding author: Mostafa Rezazad (mostafa@ipm.ir)

ABSTRACT Information-Centric Networking (ICN) architecture leverages the network of caches’ idea to
bring content closer to consumers to ultimately reduce the load on content servers and prevent unnecessary
packet re-transmissions. Nevertheless, the performance of existing cache management schemes mainly
developed for a single cache is inadequate for a network of caches. There are many factors such as data
dependencies, data redundancy, the limited size of caches, poor replacement policies, and many other factors
that negatively impact a network of caches. Besides, traffic correlation among different caches on the network
influences the performance of the network of caches. One of the essential correlations is the edge filtering
effect. In the presence of data redundancy, the edge filtering effect even becomes more severe. The cache
filtering effect happens when all arriving requests inspect the first cache for data. Therefore, the subsequent
caches in the network receive only those requests that could not find data (cache-miss) from the edge
cache. In this paper, we propose Frozen-cache to mitigate the filtering effect. This policy repeatedly freezes
content in a cache to allow subsequent caches to receive popular content. A lightweight coordinated scheme
incorporated with Frozen-cache policy to cope with the data redundancy problem. Based on our experiments
obtained from realistic scenarios, the Frozen-cache idea highly outperforms state of the art caching schemes.
Depending on the network setup, this superiority varies from 25% to 700%.

INDEX TERMS Frozen-cache, network of caches, information centric networking, filter effect, locality of

reference, coordinated cache scheme, cache policy.

I. INTRODUCTION
Information-Centric Networking (ICN) [1] has gained con-
siderable attention in the current decade as the one idea which
has the potential for being the future of Internet architec-
ture. Although there are different proposals for ICN such as
NDN [2] and Netlnf [3], they all introduce the same concept
of in-network caching. Through in-network caching, each
router utilizes its memory buffer to store data packets that
pass through the router. This network of caches in a basic
form, caches everything at all nodes. That leads to a poor
performance in terms of the overall cache hit rate. The two
main reasons for this insignificant performance are filtering
effect and data redundancy [4].

A cache can be considered as a filter, i.e., the cache serves
the requests that generate cache-hit and forwards the requests

The associate editor coordinating the review of this manuscript and

approving it for publication was Nabil Benamar

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

that generate cache-miss. This filtering affects the pattern of
requests such that subsequent caches are unable to obtain a
high hit rate from the forwarded requests. Thus, the cache’s
performance at the core of the network depends on how the
edge routers perform and handle the traffic. If the edge router
has enough space for caching the most so-called *“popular
content,” then caching the same content at its core is futile.
To reduce the filtering effect, Busari and Williamson [4]
proposed heterogeneous replacement policies. Later,
Ari et al. [5] proposed Adaptive Caching using Multiple
Experts (ACME), which uses a neural network to find the
optimal combination of replacement policies. Although pre-
vious studies combined different replacement policies to
obtain a higher hit ratio at the core routers, their results reveal
that their solution does not entirely remove the filtering effect.
In this paper, by proposing Frozen-Cache policy, we tried
to reduce the cache dependencies between routers at different
levels to enhance the network of caches in terms of increasing

139725

https://orcid.org/0000-0002-7687-1561
https://orcid.org/0000-0001-8311-4553
https://orcid.org/0000-0002-9883-5844
https://orcid.org/0000-0002-1804-6977

IEEE Access

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

the durability of popular content in the network. This policy
is a two-state caching scheme where a node either behaves
like a traditional cache (content in the cache can be replaced)
or freeze the data in its cache for a specific period (frozen
content cannot be replaced). When the cache is in the frozen
state, it does not accept any data chunks. That gives some
time to the cached content to receive their potential hit. This
is a very desirable condition in a loaded network and one
of the key differences with other cache policies. To enhance
our policy, we suggested some modifications and presented
various versions of the Frozen-Cache policy.

The basic form of the policy is presented as FCO (Frozen-
Cache policy version zero), and we show that this version
of the proposed policy and the Least Recently Used (LRU)
replacement policy exhibit similar performance under Inde-
pendent Reference Model (IRM) [6] assumption. To further
enhance the performance of the caches, FC1 (Frozen-Cache
policy version 1) is proposed. Following that, the same algo-
rithm’s extensions can be derived (FC2 to FCn) to reduce the
filtering effect of edge routers. Through extensive simulations
on real traces, it is shown that FC2 can reach cache hit rate
very close to the optimal cache policy, and obtain a higher
cache hit rate than some of the selected prominent state of
the art cache policies.

Besides, to rectify the content redundancy problem, a coor-
dinated cache mechanism is introduced in this paper. In gen-
eral, in coordinated cache management, some information
from other nodes is required to decide which content to
be cached or to be evicted. In overall, there are two types
of coordinated caching schemes: explicit coordination and
implicit coordination schemes [7]. Coordination is explicit
when the caches share their state (or state summaries) with
each other [8]. The cost of communication to exchange the
state of caches is not insignificant. An implicit coordination
scheme, on the contrary, does not exchange information with
other nodes. These caching mechanisms such as [9]-[11],
might obtain some information from their local cache,
the position of the cache in the network, or small piggyback-
ing information from request and data packets. However, for
an accurate cache placement decision, the implicit coordi-
nated schemes may still suffer due to insufficient information
that they can obtain from the network.

The proposed coordinated cache scheme is integrated with
Frozen-Cache policy FCn (called CFCn) to boost cache hit
rate. We report two versions of the coordinated Frozen-Cache
policy in this paper (i.e., CFC1 and CFC2). The simulation
results from ndnSIM [12], [13] (a very well-known simu-
lation in this domain) demonstrate the effectiveness of both
versions. These techniques dramatically increase the cache
hit rate at the core and edge routers, while keeping communi-
cation overhead very low, which makes them able to work
at line-speed [14]. CFC2 gains a cache hit rate of 7 times
higher than the rival coordinated cache schemes. On top of
that, a comparison of CFC2 with the other proposed policies
reveal that it reduces traffic load by 3 order of magnitude.
On the other hand, CFC1 exhibits similar performance in

139726

terms of cache hit rate and traffic load to the state of the art
coordinated cache policies. However, it reduces the average
eviction rate per cache slot up to 4 order of magnitude. That
can be considered as a sign of a more energy savior scheme.

Unlike the other similar schemes that impose extra over-
head such as content popularity measurement [15] or sharing
information among neighboring caches [16] into packets,
CFCn (both version 1 and 2) coordinates caching nodes with
piggybacking information through three integer fields in the
request and the data packets.

The rest of this paper is organized as follows: A sum-
mary of the Named Data Networking paradigm is provided
in Section II. Section III describes the design of Frozen-
Cache policy and its variations for a standalone cache.
Section IV introduces the coordinated scheme that inte-
grates with Frozen-Cache. The evaluation of our coordinated
schemes is presented in Section V. Finally, Sections VI
and VII represent related work and concluding remarks.

Il. NAMED DATA NETWORKING SUMMARY
Named Data Networking (NDN) [17] is one of the well-
defined networking architectures that falls in Information-
Centric Networking (ICN) paradigm [18]. Giving a name
to content by ICN paradigms enables caching content at
the network level. Since then, various studies have been
conducted to optimize caching at the packet level in the
network. As a similar attempt, we try to improve the perfor-
mance of caches in the network in terms of cache hit rate
in this paper. The paradigm we used to implement Frozen-
Cache policy is the NDN paradigm and its infamous simula-
tion environment named ndnSim [12], [13], which is based
on NS3 simulator [19]. To be aligned with other related
works, we use the same terminology introduced in NDN
paper [17].

Content Store: the cache inside a router is called Con-

tent Store or CS.

Data Chunk: is the minimum size of the content that

can get an address (name). So, every file is divided into

several Data Chunks.

Interest Packet: is a request initiated by a client for a

specific Data Chunk.

Data Packet: is the packet carrying Data chunk in its

payload to respond to an Interest packet.

Content Publisher: is the source of a file, or the owner

of the content announces the availability of the file.

Admission Policy: is a scheme that determines which

Data Chunks should be admitted to be cached in a router.
The packet forwarding architecture of NDN is explained
in [2]. In this architecture, there are three main tables CS, PIT,
and FIB standing for Content Store, Pending Interest Table,
and Forwarding Information Base, respectively. An arrived
Interest packet to a router first investigates CS for a cached
copy of the requesting Data Chunk. In case the content is
available in CS, the Data Packet of the requesting Data Chunk
will be sent back to the requester through the arriving inter-
face of the Interest Packet. On the other hand, if data is not

VOLUME 9, 2021

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

IEEE Access

found from CS, an entry will be created in the PIT table
indicating the arrival interface of the requesting data’s name.
This entry will be used by Data Packet to find its way back to
the requester. If an entry for a name is in the PIT table, it will
be updated by adding the new interface. Later, the arrived
Data Packet for the same name will be forwarded to multiple
interfaces. The last table, FIB, provides routing information
to forward an Interest packet out toward the content publisher.
The default admission policy that NDN architecture is used
in its basic form [2] is Leave Copy Everywhere (LCE). This
admission policy admits all Data Chunks in every Data Pack-
ets that are passing by a router. NDN uses the Least Recently
Used (LRU) replacement policy to replace a data chunk that
recently has not received any hit in the cache with a newly
arrived data chunk to the CS.

Ill. STAND-ALONE FROZEN-CACHE

The Frozen-Cache policy is a solution for the cache filter-
ing effect in a network of caches. Therefore, in this section
first, the cache filtering effect is thoroughly described before
delving into the details of the Frozen-Cache policy and its
variations.

A. CACHE FILTERING EFFECT

Classical cache replacement policies, such as LRU (Least
Recently Used) and LFU (Least Frequently Used) were often
designed to maximize the hit ratio of a stand-alone cache.
Nevertheless, by capturing the most popular chunks from a
workload, they negatively impact the performance of their
subsequent caches and cause filter effect [4] in multiple levels
of caches. Some researchers [20] questioned the gravity of
this problem. The argument is that if the edge routers are suf-
ficient to respond to the popular content, the necessity of the
network of caches fades away. There are two main objectives
for attempts like this study to increase the performance of
caches at the core of the network: (I) the limited capacity of
a single cache (at the edge) cannot cope with the increasingly
high traffic flows, (II) there would be multiple copies of the
same popular content at the edge routers that could be served
with only one copy of the content at the core. We believe that
aredundant copy of data should only be placed in the network
for load balancing purposes.

To illustrate the filtering effect, the results of an experiment
on ndnSIM simulator [12], [13] with a simple topology are
presented in Figure 1. The catalog size (the maximum amount
of data in the network) in this simulation setup is set to 1000
Data Chunks, content popularity follows Zipf distribution
with parameter « = 1 and both routers have the same cache
size C varying within the range (0, 1000]. The client issues
traffic with an average rate of 10* requests/sec that follows
Poisson distribution. The simulation time is equal to 2 x 107
requests in each simulation run.

To display the importance of cache policy selection on the
system’s performance, the replacement policy of the cache
at the router 2 is fixed to LRU policy and the replacement
policy for the cache at router 1 is switched between LFU and

VOLUME 9, 2021

Consumers 1 2 Producer

FIGURE 1. A simple topology to illustrate the filter effect.

1

=== Cache 1 (LRU)
|=- =Cache 2 (LRU)

[]
0.8 H
L]
L]
o n
"g 0.6 :
o .
T 04 o
]
0.2 --“’00
0 ---IIIIIII----
10’ 10° 10°
Cache Size C

=== Cache 1 (LFU)
| = ==Cache 2 (LRU)

0.8
206
©
[
Z 04 K
‘0
*
0.2 ___,"
10’ 10° 10°
Cache Size C

FIGURE 2. Cache hit ratio for two consecutive caches when the
replacement policy for both caches are LRU (up) and when the first cache
uses LFU and the second cache uses LRU replacement policies (down).

LRU. Figure 2 shows the hit ratio of two caches when LRU
and LFU are used for the cache of router 1. One observation
is that, when the cache size is much smaller than the catalog
size (This is the area in the graph that is more realistic due
to the limitations of the current memory technologies [14],
[21]), the hit ratio of the cache at router 2 is in order of
magnitude lower than the hit ratio of the cache at router
1. Compared to LRU, LFU obtains a higher cache hit ratio
at router 1. Theoretically, LFU is an optimal strategy under
the Independent Reference Model (IRM) when the content
popularity remains constant [6].

Unlike LRU, which replaces cache content more aggres-
sively, LFU keeps a relatively stable working set of content
in a cache, which turns out from Figure 2 that it is more
beneficial for the performance of subsequent caches. Moti-
vated by this observation, we propose Frozen-Cache, a frame-
work to freeze caches, to improve the overall performance
of a network of caches when LRU replacement policy is
deployed. LFU is not a practical replacement policy due to its
high cost in implementation. It requires many counters (one
counter for each data chunk) to store the frequency of data’s
request.

139727

IEEE Access

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

all slots get updated

frozen period timer expiration

FIGURE 3. State diagram of a Frozen-Cache policy.

B. FROZEN-CACHE PoLICY
The idea of Frozen-Cache can be illustrated by the state
transition diagram in Figure 3. Based on this figure, a cache
can operate at either the Active state or the Frozen state. The
cache executes its regular cache policy when in the Active
state. The policy decides whether to cache the passing by
traffic or just pass it to the next node without caching it.

However, by the transition to the frozen state, the node
locks the content inside the cache (i.e., its content is frozen)
for a specific period (frozen period), during which no new
chunks get cached, and no existing chunks get evicted.

Under this framework, three design parameters need to be
specified:

o The length of the frozen period (7')

o The cache policy of the active state

o The condition that triggers the transition to the frozen

state.
The value of T mainly depends on traffic patterns, which

in turn depends on some network parameters such as user
demands, routing state, network topology, and some more.
Any change in these parameters might affect content popu-
larity. Therefore, this parameter is better set by the network
administrator when the network is in a stable condition. For
an unstable network, the idea of caching content at the net-
work level might not help much. A wrongly set T value might
have a great impact on the caching system’s performance.
Assume T is the proper frozen period for the current state
of the network but the administrator has set it wrongly to 7/
value. If 77 > T then content remains in the cache for a
longer time than it should be. Meaning, the caching system
reacts much slower to the changes of the content popularity.
When T/ < T, frozen cache policy fails to meet its objective
to keep a popular content long enough in the cache to give the
content enough time to reach its potential hit rate. We provide
some suggestions on how to determine the value of 7'. First
of all, caching unpopular content is futile. Hence, the caching
system is supposed to keep as many popular contents as pos-
sible. Assuming that the network, mainly the popular range
of the content passing through the network, changes every x
hours, the value of 7" should be set to a value less than x hours.
On the other hand, caching large popular content benefits
clients and ISPs more. Thus, one of the most critical targets
for network caching is video traffic, and it is shown in [22]
that the popularity of Video on Demand (VoD) content does
not change within a day. Moreover, it is stated in [23] that
routing tables are quite stable for at least 2/3 of the paths
on the Internet in a day. Therefore, the lengths of the frozen
period can be in the order of hours but less than a day.

139728

1 S
= RU o
& ool ===LFU :
o 0.8 :
2 1 FCO 3
8 U
O 0.6
o S e
= 0.4 K
g s \ o
o ww .
F0.2 \\\\\\‘““\“\\\\\\“\ “‘
oy -
smumun® .ot
-

10" 10° 10°

Cache Size C

FIGURE 4. Hit ratio of cache 2 under LRU when cache 1 is managed by
LRU, LFU and FCO.

The design space of cache policies and triggering con-
ditions for freezing caches are wide open. At the baseline,
a cache is assumed to be empty when entering the active
state. Transitioning the cache to the frozen state has already
cached C distinct newly arrived data chunks. This baseline
mechanism is named FCO (Frozen-Cache version 0). When
a node is in the Active state, the LRU replacement policy is
used as it is the widely accepted policy in practice.

Considering the simple topology in Figure 1 with 7 equals
to the arrival time of 5 x 10* requests, a comparison plot of
hit ratio of cache 2 when LRU manages cache one, LFU, and
FCO cache policies are provided in Figure 4. It is shown that
FCO outperforms the other two policies when the cache size
is small compared to the catalog size. One important reason
is that FCO reduces the filter effect for the incoming request
to the cache of router two compared to the other two policies.
When cache size is small, maybe even the optimum cache
policy cannot perform well as the data inside the cache does
not stay long enough inside the cache to get hit.

Although LFU, in general, outperforms both LRU and
FCO for stationary traffic, the cost of its implementation is not
negligible. Moreover, it fails to adapt itself with a high rate
of change in content popularity. Nevertheless, because of its
high-performance profile, we will compare its performance
with our general design of the Frozen-Cache algorithm in a
later section and show they are comparable.

For further explanation on the effectiveness of Frozen-
Cache on the hit rate of subsequent caches, we investigate
one of the structural characteristics of the inbound traffic, i.e.
reuse distance [24] on cache 2. Reuse distance is defined as
the number of distinctive requested data chunks between two
consecutive requests of the same data chunk. If the number of
requests defines the notation of time, reuse distance naturally
measures the temporal locality of reference of data chunks.

From Figure 5, FCO has smaller average reuse distance
compared to LRU and LFU, especially when C is smaller
than the catalog size N. Intuitively, Frozen-Cache keeps a
stable working set of content and bypasses some popular
content for the subsequent cache. Consequently, it makes
the reuse distance of the outbound workload smaller and,
therefore, provides a more substantial locality of reference
for the subsequent cache’s inbound workload.

VOLUME 9, 2021

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

IEEE Access

700
=| RU

==sLFU
i FCO

Cache Size C

FIGURE 5. Comparison of the reuse distance of cache 2's inbound
workload when cache 1 uses LRU, LFU and FCO.

C. FROZEN-CACHE VERSION ONE

In the baseline mechanism, FCO changes the cache state from
active to frozen state when C distinct data chunks arrive.
However, there is a concern when round trip time (RTT)
between the cache and the content provider is not negligible.
We need to reserve slots for the first C distinct requested
content such that a newly popular content gets into cache
before the cache goes to the frozen state because RTT passes
before a newly popular content (not present in the cache)
gets received by the cache. This constraint might be unfair
and prioritize content closer to the consumers over content
located at further nodes. To rectify the problem, FC1 makes
sure that it has the original C distinct requested content and
then transitions to an active state.

The same simulation setup in Figure 1 assesses the algo-
rithm with dynamic content popularity. The popularity index
is changed every X random amount of time. X is an exponen-
tial random variable with a mean 50 seconds. The change of
popularity rank (1 to the catalog size 1000) is determined by
a geometric random variable with mean 20 (p; = 0.05). The
analysis is based on the stand-alone cache, and the experiment
ran 10 times, each lasts for 2 x 10° seconds.

Figure 6 shows the cache hit ratio under LRU, FCO and
FC1 when the RTT varies along the x-axis. The cache size
equals to 50 and 100 in the up and down sub-figures, respec-
tively. We observe that all three policies achieve the same
cache hit ratio under zero RTT. When RTT increases, the hit
ratio under LRU sharply drops till RTT is smaller than the
cache characteristic time [25], which is defined as the maxi-
mum interarrival time between two consecutive requests for
a chunk without a cache miss. Although the hit ratio under
FCO increases with small RTTs, as RTT advances, it sharply
drops. The analysis of the two sub-figures reveals that with
smaller cache sizes, the performance of the cache is more
susceptible to larger RTTs. Nonetheless, with FC1 the cache
hit ratio is not sensitive to RTT variation.

D. FROZEN-CACHE THAT FILTERS ONE-TIME REQUESTS

FC1 caches the first C distinct requested chunks regardless
of their RTTs, and therefore, it adapts to the popularity
changes. Nevertheless, prior works studying web [26] and

VOLUME 9, 2021

0.7
= RU
== =FCO
0.6 i FC
‘I..
2osf e
RN N NN R R RN R RN R R R RN RN RN RN AR
' b~.
% 0.4 N ’~.
..
L
0.3}
0.2
© 02 04 06 08 1
RTT (sec)
(a) Cache Size C' = 50
0.7
T LLET o8
060 e e
¥ ~'~..
Sos5 e
c .
F04
= RU
0.3} = =FCO
i FC1
0.2
()} 02 04 06 08 1

RTT (sec)
(b) Cache Size C' = 100

FIGURE 6. Cache hit ratio for LRU, FCO and FC1 under various RTTs.

(a) FC2 without feedback (b) FC2 with feedback

FIGURE 7. State transition diagram of the FC2 policy.

video workload [27] show that up to 50% of the data appear
only once during a caching period. Hence, caching them is
futile.

To filter out these one-time requests, we add a rule
in FC1 policy to cache C district hit chunks rather than
requested chunks to create version two of our policy (FC2).
FC2 guarantees that any chunk cached in the frozen state had
received a couple of requests during the previous active state.
Thus, the frozen chunks are not one-timers.

An intermediate stage is added to the system to achieve
the goal. In Figure 7, a cache makes the transition to stage
As when all cached data chunks receive at least one request.
By the second request, the cache transitions to the frozen state
(i.e., with one request stage of the active state changes and
with another request (hit), the state transitions from active
to frozen). To support the idea, the replacement policy is
modified only to evict data chunks that have received zero
requests.

Figure 7 illustrates two variations of the state transition dia-
gram of the FC2 policy. The one on the right has a feedback
transition from stage A, back to stage A;. This feedback is to
reset the system’s active state, which is triggered by a time-out

139729

IEEE Access

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

10 10 10
Cache Size C

(a) 0% one-timer requests.

1
===LRU
+ FC1
0.8f O FC2

* FC3 0#
06LFu %

Hit Ratio of Cache 1

10 10 10
Cache Size C

(b) 25% one-timer requests.

FIGURE 9. Comparison of the hit ratio of cache 1 when cache 1 is
managed by LRU, LFU, FC1, FC2 and FC3.

event similar to the triggering condition from the frozen state
to the active state. The version with feedback can be seen
as a generalization of the version without feedback. When
the time-out value is set to infinity, the two versions become
equivalent. The system without feedback gets stuck in stage
A, for too long before capturing C hit chunks and entering
the frozen state. To make the cache policy adaptable to the
variation of content popularity, the same period of T is set for
the time-out from stage A to Aj.

In general, FC2 can be extended to a policy that maintains
n stages in the active state, as shown in Figure 8. In particular,
FC1 can be regarded as a special case where the active state
only maintains a single stage; and therefore, we call such a
policy that maintains 7 stages in the active state as policy FCn.
The same experimental settings described in Section III-C is
used to assess FCn. Figure 9 plots the hit rate of the first cache
managed by LRU, LFU, FC1, FC2 and FC3 under various
cache size C. It shows that FC2 and FC3 obtain a higher hit
rate than LRU, FC1, and LFU. These results indicate that
FC2 can capture popular chunks and adapt to the changes

139730

-==LRU I
S osf * FCl 40!
< O FC2 @ !
506 % FC3 S
““““ @
,6 o L
-20.4 \\\\\\\\\\\\\ .|. ® N
g \\\\\\\\\\\\\ ® B
= 0 e +.||F" o
::0.2.; \\\\\\ * +;w R
Q 90..---"'--
G 1------- 2 3
10 10 10
Cache Size C
(a) 0% one-timer requests.
1
===LRU
~ gl * FC1
2 %8 o Fc2
Q
o4 ® FC3
O 061, LFu
<]
204
@©
o
£o.

0
Cache Size C
(b) 25% one-timer requests.

FIGURE 10. Comparison of the hit ratio of cache 2 when cache 1 is
managed by LRU, LFU, FC1, FC2 and FC3.

in the traffic pattern. Moreover, the figure shows that increas-
ing the number of stages of n from 1 to 2 effectively improves
the cache hit rate. However, this improvement is negligible
by further increasing n to higher values. Another observation
is that increasing the number of one-timer requests reduces
the overall performance of the network of caches. Besides,
as mentioned earlier, Frozen Cache policy reduces the incom-
ing rate of the data packet to the cache, and that specifically
helps when the size of the caches is small.

Figure 10 plots the cache hit rate under LRU at the second
cache while the first cache is managed by LRU, LFU, FCl1,
FC2, and FC3. It shows that the second cache obtains the
highest hit rate when the cache policy of the first cache
is LFU. Since LFU does not perform well when content
popularity is changed, some popular content is captured by
LRU at the second cache.

E. IMPLEMENTATION HIGHLIGHTS

To capture the first C distinct data chunks passing by a router,
one extra bit, called Reference Bit (RB), is required per cache
slot. RBs are all unset at the beginning. When a data chunk
at a cache slot gets hit, its corresponding RB will be set. Like
Clock (second chance) replacement policy, newly arrived data
chunks can be replaced only with the slots whose reference
bits are unset. As a result, to move forward from one stage of
active state to another stage, the triggering condition is to have
all the RBs set. RB in FCO is set, when writing new content,

VOLUME 9, 2021

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

IEEE Access

Producerl

E Producer2

Consumers2

Consumers3

FIGURE 11. Definition of closeness based on various paths.

or when the content in slot hits. In FC1, the reservation is
made only by one counter set to zero when a cache transits
to the active state. Whenever a request gets missed, and it is
forwarded to the content provider or when the content in a slot
with an unset RB gets hit, the counter gets increased until it
reaches C. After that, the cache only sets a slot RB by writing
content. This implementation is sufficient for FC1, but for
more intermediate stages, every cache slot needs [log(n)] + 1
bits to implement FCn. The value of extra bits of each slot
indicates the number of cache hits for the slot.

IV. COORDINATED FROZEN CACHE
As stated in Section III, frozen cache policy enhances the
cache hit rate of subsequent caches. However, a local cache
management in a network of caches increases the redundant
copies of data chunks at different nodes. Data redundancy
wastes the overall cache space in the network so that the
hit rate of the network of caches drops. To overcome the
problem, a lightweight coordinated scheme is introduced in
the following subsections. It is shown that the coordinated
scheme, together with FCn, highly improves the performance
of the network.

To introduce the policy, first, some notions need to be
defined:

Path: is a set of routers and links to connect a consumer
group to a content producer (or content publisher).
Closeness: is [Tiop distance ,; e comsumer]+ 1 is calculated
by the arrival of a request at a router. The higher the
number, the closer the router to the consumer.
Redundant Data: is the presence of multiple instances

of a data chunk alongside a Path.

For instance, there are three distinct paths in Figure 11
illustrated by different patterns and colors. Pathl consists
of routers {1,3,4} that connects consumersl to the pro-
ducer2. Path2 involve with routers {2, 3 and 4} to connect
consumers2 to the same producer2. The final path, path3,
is the opposite of pathl and connects consumers3 to the
producerl through routers{4,3,1}.

Closeness for every path that a router belongs to should be
calculated. For example, the closeness of router 4 regarding
path3 is 1 while this value is % concerning pathl and path2.

Redundant data is usually considered a waste of caching
space unless the same copies of data are cached at different
Paths. For instance, upon requests from consumers 1 and 2
for data X at producer2, the data is cached at all four routers
in Figure 11. In this example, the copies of the data at routers

VOLUME 9, 2021

1 and 2 are not Redundant Data as they are at different paths
and can be used by a different set of consumers. However,
the other two copies of X at routers 3 and 4 are redundant.
Because all of the requests generated by consumers 1 and 2
are served by routerl and 2, respectively. We try to reduce the
wasteful data redundancy.

A. DESIGN GOAL AND PRINCIPLE

The primary goal of the coordinated caching policy is to
remove Redundant Data in a path. In this regard, the coor-
dinated policy must ensure that only one router in the path
between the requester and the source of the content caches
the data chunk. Equally important, the policy should decide
on the location where the data chunk should be cached.
Intuitively, to meet the users’ expectation, content should be
cached at the closest router to the consumers. However, as the
cache space is extremely limited at each router compared
to the catalog size of data passing by a router, the design
principle is to increase the probability of caching popular
content at the routers with higher closeness. Recall that under
the FCn framework, each data chunk in a cache has to pass
through n stages before getting frozen, and this is equivalent
to get n requests/hits. Thus, from any router’s perspective,
the instantaneous popularity of a requested chunk can be
measured by its current state, i.e., the number of hits accu-
mulated in the active state. If a router is at stage i in the active
state, to proceed further into stage i + 1 or eventually the
frozen state, this router wants to cache content chunks that are
popular enough for it, i.e., chunks that have been requested for
at least i times, possibly from other routers in a coordinated
environment.

Based on the above design goal and principle, Algorithm 1
describes an implementation of the coordinated scheme. The
algorithm is used by a router to process arriving requests
of data chunks. The router, first, looks up its cache for the
name of the data chunk (a.k.a. X). The return value from the
cache is either a hit or a miss. In case of a miss, a message
is added to the request packet indicating that the router will
cache the data chunk if the data chunk at its origin is in
stage A; (i.e., has received j hits). The origin can be a cache
of another router or the content publisher. The value of j
reduces as the closeness of the router in the path decreases.
For instance, at the edge router with FCn policy, only contents
with j = n are cached; while, the last router in the path (next
to the content publisher) caches content with j = 1. After the
message is prepared, the request will be forwarded according
to the routing information provided in the FIB table.

If the outcome of searching the cache is a hit, the data
chunk will be returned to the requester using the information
of that packet in the PIT table. However, to eliminate data
redundancy, the router checks if another router in the return
path is willing to cache the content. It is done by matching
the hit value of the content in the cache against requested
Aj values for the routers in the message. If such equality
exists, the data chunk evicts from the cache of the current
router.

139731

IEEE Access

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

Algorithm 1 Coordinated Caching Scheme

Result: Send Data x if Hit, Forward msg if Miss

msg < Request for Data x is arrived;

if x is not in current Cache then

msg < msg + This router will cache x if it has got
A;j hits;

Path < FIB(msg.address);

Send(msg, Path);

else
Path < PIT(msg.address);
routersToCache «— msg.ToCache;
msg <Data(x);
if routersToCache != empty then
hit < Data(x).numberOfHits;
if Max(routerToCache.hit < hit) # 0 then
Evict(x);
msg.ToCache < Ap;s;

end if
end if

Send(msg, path);
end if

B. FCn WITH COORDINATION

With coordination, candidates to cache a content add
extra information (current active stage of their cache) in
the requested packet’s header. Based on this information,
the router or the content publisher that serves the request
specifies which router should cache the content. Augmenting
coordination into FCn, requires an extra vector of n Boolean
fields A =< A1, A, ..., A, > inthe header of the requesting
packets. Initially all elements of the vector are reset to 0
(A1 = Ay = ... = A, = 0). A request packet along the path
toward the content publisher might visit a router that does not
have the cache’s content but is willing to cache it when a data
packet arrives. Such a router sets the value of A; that matches
the active stage of its cache to one. The router that sets a
field of the vector is called marker. The action of changing
the field is called marking a request. When a request packet
reaches the content publisher or arrives at a router with the
content in its cache, the vector A will be investigated for non-
zero fields. Among them, the field with the most significant
Jj value, which is smaller than the current active stage of the
router’s cache, will be selected as the proper caching node
for the content. The reason is explained through an example
below:

Suppose when a router receives a request packet, its cache
is in stage A,,. Let say j is the smallest index of vector A that
has been marked, i.e.,j = min{i : A; > 0}. The request packet
might either get its data from cache or not (hit or miss):

« Cache Miss (Marking Rules) Depends on the value of
J» the router might react differently:

Jj = 0: the vector is in its initial stage. Thus, none of the

routers in the path before the current router are

interested in caching this content. Therefore,

139732

this is the closest router to the consumer that
might cache the content.

Jj > m: there is at least one router with higher closeness
value in the path that is interested in caching the
content if and only if the content has received
A; hits at its origin. So, if the content is not
popular enough to satisfy the upstream route
requirement, this router can cache it. The cur-
rent router marks the request packet and leaves
the decision of where the content should be
cached to the destination node.

Jj < m: there is another router with higher closeness
value that is interested in caching the content.
Therefore, the current router gives up caching
the content due to its less closeness rank and

forwards the packet unchanged.
Marking rule has an inherent characteristic that the

marker, which marks a higher A; field, has higher close-
ness value.

o Cache Hit (Caching Rules) FCn operates normally if
the request hits the content in the router. Thus, the state
of the content becomes A+ 1. To prepare the data packet,
the node that will cache the content should be deter-

mined at this stage.
Jj = 0: the vector is in its initial stage. Thus, none

of the routers in the path before the current
router are interested in caching this content.
The content would not be evicted from the
current cache.

j > m+ 1. the content in the cache has not received
sufficient hits (i.e., it is not popular enough)
for any routers in the path. Consequently,
the router returns the data packet and keeps
the content in its cache. None of the routers
will cache this content along the reverse
path.

Jj <m+ 1: there exists a router that accepts the content
to cache when it is at stage A, 1. In this case,
to avoid data redundancy, this router evicts
the cache’s content even if it is in the frozen

state.
When the request reaches the content publisher, and assum-

ing the content at the publisher is always at the initial active
stage A1, the stage of the content is set to A;.

V. PERFORMANCE EVALUATION

We implemented the frozen cache with coordination in
NDNsim [12], [13] simulator to evaluate and compare it
with other well-known caching schemes. This section first
explains the simulation setups, including traffic generation,
metrics, and topology. The section follows the simulation
results and their analysis.

A. EXPERIMENTAL SETTING

1) BENCHMARK SCHEMES

The performance of Coordinated Frozen Cache policy is eval-
uated using five real and well-known cache policies which

VOLUME 9, 2021

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

IEEE Access

are: Leave Copy Down (LCD), Move Copy Down (MCD),
Leave Copy Everywhere (LCE), CCndn and UNI. They all
are applicable in the ICN context and representatives of a
wide range of existing schemes. In LCD [28], a data chunk
on its way back to the consumer is written only into the first
cache after the node that it gets hit. LCD is a representative
for [11] because it writes the missed content in the network
to the farthest router from consumers and moves the content
toward the consumers. Similar to LCD, MCD writes the
content only into the very first cache in the return path,
but it evicts the content from the origin cache. Therefore,
MCD reduces data redundancy compared to LCD. LCE is
universal caching, and due to its simplicity it is used as the
baseline of comparison by many schemes [11], [29], [30].
The main idea behind CCndn (CCndnS) is to spread every
data object in the routing path between the consumer and the
producer. CCndn breaks data into several segments to place
each segment in one router. Since the algorithm at the content
publisher determines which segment(s) should be cached in a
router, searching other routers’ cache for the segment can be
escaped with CCndnS. CCndn tries to increase data diversity
at each node and engage the core routers more in the caching
process by letting them cache a piece of some popular data
object. Thus, like most of the cache policies, every piece of
data definitely will be cached somewhere in the network with
CCndn. However, all nodes might be at freezing state with
the frozen-cache policy when some data chunks pass through
them, and these data never placed in the network. Besides,
the frozen-cache policy is not a deterministic caching scheme,
and data cannot be assumed to be cached in any specific node
(unlike CCndnS). Moreover, with frozen-cache policy each
router individually determines which data should be cached
at the router based on its current state. Whilst, this is the
content publisher for CCndn that determines which router
is responsible to cache which data chunk based on its hop
distance to the requesters. Finally, UNI used in [11], which
caches each content with a probability inversely proportional
to the number of hops between the consumer and the cur-
rent location of the content. The UNI is a representative of
schemes, such as [29], that writes a missed content only in
one of the routers on the return path to the consumers.

2) PERFORMANCE METRICS
There are 6 performance metrics used in this study to cover
different perspectives from consumers to ISPs.

[i] System perspective metrics, represent the performance
of the network in its entirety:

1) Overall hit ratio, H, is defined as H = g"r’;q,
where Y req is the total number of requests entered
the network and Nj;; (i.e., Network hit) is the total
number of cache hits from all routers,

2) Hp, average edge routers hit rate,

3) Hc, average core routers hit rate.

[ii] Consumer perspective metric, is related to content
access time:

VOLUME 9, 2021

4) Average content download time, D, that represents
the average latency that consumers experience in
downloading contents.

[iii] ISP perspective metrics, are related to traffic intensity
and cost:

5) Traffic reduction ratio, y, is defined as y =
%, the fraction of traffic with and without
caching capacity in the network.

6) Average eviction rate per cache slot, 8, is defined
as f = ﬁ where E is the total number of
evictions in the network, S is the total number of
cache slots in the network and T, is the duration
of simulation time. 8 can be a good estimation of
the energy consumption of caching components in
the network.

B. ISP TOPOLOGY CAPTURED BY RocketFuel - REQUEST
GENERATION

AboveNet, an extensive transit ISP with 6461 Autonomous
Systems, is the topology used to assess the performance of
the CFCn algorithm. This ISP has 25 edge routers and 77 core
routers. All 25 edge routers and 25 of the randomly selected
core routers are connected to the content publishers (sources
of data). There are three different traffic types generated in
this network: i) Video Streaming, ii) Web, and iii) file sharing.
The size of each traffic pattern is set based on predicted future
traffic [31]. The average size of video streaming is set to
2000 data chunks; the web traffic has the average content
size of 100 data chunks; file-sharing has an average content
size of 600 data chunks. All of the content sizes are generated
based on the geometric distribution [32]. That makes the cat-
alog size of the network around 2 x 107 data chunks in total.
The consumers generate content requests based on Poisson
distribution with an average rate of 250 requests per second.
Prior work [33] has shown that the session level of Internet
traffic is well modeled by Poisson distribution. Moreover,
a window-based request generation at the packet level on the
consumer side is used. In this window-based system, request
generation starts with w = 1 and uses TCP rules, such as
linearly increasing the window size by receiving a data packet
and dividing window size by half for each packet loss. The
popularity of the content follows the Zipf distribution with a
slope of one (¢ = 1). The index of file popularity changes
with rate A, = 0.00066 (period of 1500 seconds) and it is
determined by a geometric random variable with mean 20
(ps = 0.05). Doing that, the location of the popular files
dynamically changes through time. The simulation time is set
to 6000 seconds, and we run each simulation setup ten times.
The frozen period T for both CFC1 and CFC2 is 700 seconds.

1) PERFORMANCE UNDER VARIOUS CACHE SIZES

Hit Ratio: Figure 12 shows that in general, CFC2 has the
highest overall hit ratio of H. Because CFC2 obtains the
highest hit ratio Hg at the edge routers and has a compara-
ble hit rate of Hc at core routers. CFC2 outperforms LCD

139733

IEEE Access

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

0.45 0.2
0.4 0.18
0.35 0.16
0.3 0.14
0.25 o 0.12
s B
0.2} T oo01f
0.15¢ 0.084" f//%'
0.1] 0.06‘{/)5
Ry
0.05%" g 0.04:¢
0 5000 10000 0 5000 10000 0.02 5000 10000
Cache size (number of slot) Cache size (number of slot) Cache size (number of slot)
LCE — CFC2 - CCndn LCE — CFC2 - CCndn LCE — CFC2 - CCndn
MCD -~ CFC1 ---- MCD -~~~ CFCl ---- MCD -~~~ CFCl ----
UNI LCD e UNI LCD e UNI LCD e
FIGURE 12. Overall hit ratio (H), average edge hit ratio (Hg), average core hit ratio (Hc).
0.64 10— 10
0.62 Ny e
o 09} e
0.6 ES 1™ - —
0.58%. 08F - "
[a) N Q. >
0.56 0.71
0.54
0.6F
0.52 ,
B .
L & L — - - -
05 5000 10000 0.5 5000 10000 0.001 5000 10000
Cache size (number of slot) Cache size (number of slot) Cache size (number of slot)
LCE — CFC2 -~ CCndn —— LCE — CFC2 - CCndn —— LCE —+— CFC2 --0--- CCndn —e—
MCD -~ CFC1 ---- MCD - CFC1 ——-- MCD --x-- CFCl —#--
UNI LCD - UNI LCO - UNI ¥ LCD =0

FIGURE 13. Average content download time (D), packet reduction ratio (), eviction rate per slot (y).

because it brings data closer to the consumers (i.e., prioritizes
routers with higher closeness). In Figure 11, the edge router
4 caches more content from path three than the other paths
under CFC2.

One important result from Figure 12 is that, CFC2 obtains
the highest cache hit rate under small cache sizes, regardless
of whether it is an edge router or a core router. This area of the
curve is more interesting, as catalog size passing by a router
increases rapidly while the cache size remains constant. The
cache hit rate at core routers drops for CFC2 is that the fixed
frozen period of 700 seconds is insufficient to stabilize the
cache state when the cache size increases.

Comparing the proposed algorithm with CCndn - the
newest cache policy compared to the other policies - shows
the superiority of CFC2 over CCndn and all other policies
when the overall hit rate is considered. However, CCndn
is performing slightly better than the rest of the policies
at the core of the network. Unlike the other policies that
significantly improve the performance of the edge routers, for
CCndn there is no difference between edge and core routers,
and the slight improvement at the core routers is due to the
more significant number of traffic passing through the core
routers.

Average Content Download Time and Traffic Reduction
Ratio: Figure 13 shows that CFC2 significantly reduces con-
tent download time and provides the traffic volume reduction

139734

around 30%, more than other schemes. MCD shows the least
improvements in these regards as it removes the popular
content from the router that could be an edge router for other
consumers. CCndn improves the performance of the core
routers, and that is the reason it is more successful than other
policies (except CFC2) to reduce traffic load.

Average Eviction Rate Per Slot: Figure 13 also shows that
as a trade-off, by using CFC1, the average eviction rate can
be decreased up to 4 orders of magnitude, which could help to
save the energy consumption in ICN routers. In CFC2, each
cache keeps replacing the contents until capturing C contents
that get at least one hit. On the other hand, each cache in
CFCl1 can stop replacing after capturing the first C distinct
contents (either they get hit or not). Therefore, CFC2 replace
more content but obtains more popular content compared to
CFCl1. Since CCndn considers only a fraction of content to
cache at each router, the router’s catalog size is smaller, and
the incoming data rate to the router is less than most of the
algorithms. Therefore, the data eviction rate for that is lower.

2) PERFORMANCE VERSUS POPULARITY OF CONTENTS

To test the performance of the frozen cache under vari-
ous content popularity, we also use a constant cache size
of 1000 chunks and change the « parameter of the Zipf
distribution from 0.7 to 1.2. Figure 14 depicts a similar trend

VOLUME 9, 2021

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

IEEE Access

0.3
0.14} 0.14}
0.251 0.12} 0.12}
0.2} 0.1} 0.1} A
- oisl w 0.08} o 008} JPtae
0.06- 0.06 -7 ,
0.1t .]
0.04|- 0.04|- ~ - =
0.05¢ 0.02F=.= 0.02p -~ -~ T e
- ‘ ‘ ‘ ‘ e
00. 00.7 0.8 0.9 1 1.1 1.2 00 7 0.8 0.9 1 1.1 1.2
a(zipf distribution slope) a(zipf distribution slope) a(zipf distribution slope)
LCE —— CFC2 - - - CCndn —— LCE —— CFC2 - - - CCndn —— LCE —— CFC2 - - - CCndn ——
MCD - .- CFCl -— .- MCD - .- CFCl -— .- MCD - .- CFCl -— .-
UNI LCOD — - UNI LCD — - UNI LCD — -

FIGURE 14. Overall hit ratio (H), average edge hit ratio (Hg), average core hit ratio (Hc) when o varies.

under these scenarios. As CCndn promised, it improves the
core routers performance whilst, CFC2 wins overall network
hit rate.

VI. RELATED WORKS

Caching at Application-level, to reduce traffic load on the
links, and to lessen content access time for clients, has
been studying and developing for many years [34]. How-
ever, Content-Centric Networking [2], [35] was one of the
pioneers to propose a practical scheme to utilize cache at the
network level. This networking paradigm has been growing
vastly in terms of applications such as, smart homes [36],
ad-hoc networks [37], [38], vehicle applications [39]-[41],
wireless sensor networks [42], [43], IoT (Internet of Things)
[44]-[49], connectivity of mobile networks [50], [51], etc.
However, the main advantage of CCN or, later, NDN (Named
Data Networking) [17] lies in its compatibility with the cur-
rent infrastructure. A tunneling method to run NDN on top of
TCP/UDP protocols is proposed in [52].

Since then, one crucial trend of studies is measuring and
improving the performance of a network of caches working at
network level.! One reason NDN’s default en-route caching
strategy leaves the core caches cold lies in the lack of cache
diversity, i.e., the core contains copies of the content at the
edge. One way to reduce this redundancy is for the caches
to run some coordination protocol [34], [53]. The coordi-
nation may require the measurement of content popularity
[54]-[56]. Such schemes increase traffic overheads, add com-
plexity to the routers, and may not adapt fast enough to
changes in popularity.

We classify ICN coordinated caching schemes in two cate-
gories. The first category either imposes high overhead such
as measuring the frequency or makes impractical assump-
tions, such as having a holistic view of the network. Although
these works give us a better understanding, they are not practi-
cal due to the technology’s current limits, such as lack of fast,
inexpensive, and plentiful memories. For instance, algorithms
proposed in [16], [57] change the default route of requests by
looking at the state of the neighboring caches. Therefore, each

! The main difference between caching at Application-level and Network-
level is in the formation of the topology. Unlike Network-level caching,
Application-level caching can define an arbitrary topology.

VOLUME 9, 2021

cache must maintain extra information about its neighbors’
content to update them about how its cache state changes
periodically. The updating communication overhead depends
on the cache update rate, which is high due to the small cache
size of an ICN router compared to the total content available
on the Internet. Breadcrumb is a well-known idea that is used
to find the best location of the cached node [58]. Still, this
approach requires extra memory to track the history to find a
node with the content.

As another attempt to reduce the complexity of off-path
caching, OpenCache [59] reduces the domain of the cache
collaboration into a smaller group of nodes to share the
most popular content among them. In an innovative study,
a routing algorithm is used to retrieve a copied data in one
of the routers in [60]. Their proposed scheme searches for a
copy of the requested data using probe packets. The probe
packet searches the routers to find the data. However, this
idea works well when there are enough resources in the
network to cache most of the data in many close nodes to the
requesters.

Other coordinated caching schemes with communication
overhead, even with on-path caching, are [15], [61], [62].
In an on-path caching, only nodes on the routing path
from content publishers toward consumers are considered for
caching content.

We are looking for a scheme to improve the performance
without adding extra traffic overhead and expect minimum
additional complexity at routers. Ideas like those presented
in [9], [10], [62] require each router to measure the access
frequency, which imposes processing overhead to the ICN
router.

The second category has low overhead and does not
rely on impractical assumptions. For example, [11], [29]
proposed easy-to-implement coordinated caching schemes.
WAVE, the scheme proposed by [11], determines the number
of packets that should be cached by measuring the content
popularity in the producers. However, measuring popularity
at the producer may not be very accurate because of inter-
mediate caches. On the other hand, the authors in [29] pro-
pose a probabilistic in-network caching scheme. The scheme
considers three parameters to calculate the probability to let
the content be accepted in a cache: the total cache size in the
path from consumer to producer, the number of hops from

139735

IEEE Access

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

the previous location of the content, and the number of hops
to the consumer. Their idea for probabilistic caching could
be useful, but their evaluation is limited to the hierarchical
topologies.

Although it is widely believed that popular content must
be cached at the edge of the network and less popular at
the core routers [63], the introduction of an optimal cache
allocation in [64] defies this belief. Wang et al. formulated
the problem as a linear program to maximize the benefit
of caching, equivalent to hop distance minimization. Their
finding emphasis that for a heterogeneous topology, a system
tends to cache content at core routers, and for a homogeneous
topology, content is pushed more toward the edge routers.
In this regard, studies like [63], [65], [66] illustrate the benefit
of distributing an object through multiple caches and reducing
the download time by a parallel download scheme. These are
the most relevant studies to our proposal regarding reducing
content correlation among routers. However, there are some
subtle differences. First they do not consider content popular-
ity in their caching. Frozen-cache assumes that LRU captures
the popular file during the active state of the cache. Second,
the frozen-cache idea does not force content in a cache to be
replaced when the cache is in the frozen state. Third, frozen-
cache improves the performance of the edge router which is
very precious to the end-users. Besides, our scheme achieves
the same distribution goal with a minimum required explicit
coordination.

Using local content popularity with pre-filter queues to
filter out popular content is proposed in [67]. Since measuring
popularity at a local node is a waste of resources, a global
popularity measurement is proposed in [68]. Although they
have an excellent idea of caching the most popular content at
the core router where they can get more hits from more poten-
tial requesters, using Zipf distribution at all routers to assess
content popularity seams, not a right approach. As mentioned
earlier in this paper, cache hits at downstream routers change
the popularity patterns at upstream routers.

In another popularity-based approach to reduce redun-
dancy that is inspired by web caching, an age-based coop-
erative caching scheme is proposed in [15]. In their design,
popular content that is cached in routers closer to requesters
receive larger age values. In this way, they push the popular
content closer to the clients. Like the other caching proposals,
measuring popularity is not a straightforward task. Another
example of measuring popularity with breadcrumbs is pre-
sented in [58]. The paper uses the content popularity to cache
them closer to the requester and cache less popular content
further from the clients. Caches are using the Betweenness
Centrality idea to determine whether to cache content or
not. This paper not only has the limitation of an impractical
way of popularity measurement, but the cost of calculating
betweenness centrality is not negligible. As examples of
other researches that cannot be applied here are: Multifactor
replacement [69] that uses semantic information provided
in the packets to find proper data for a request. Aiming at
the ToT domain, a request can be satisfied by other data

139736

with some errors. In an off-path caching, data can be cached
anywhere in the network. Ideas like using hash function
[70]-[72] to find a proper cache to locate the content, inter-
feres with the default routing algorithm of NDN and decou-
ples it from TCP/IP. A similar trend that requires modifying
the routing algorithm is proposed in [73]. The paper proposes
a controller to rout packets toward the content. In another
approach, Xiaoyan et al., in [74] network coding idea along
with multipath routing to locate and find data in an off-path
router. However, using multipath routing in this way increases
the traffic load of the network. A similar idea of network
coding for multipath off-path caching is presented in [75].

An application specific caching scheme is proposed
in [76]. The algorithm targets the Video caching application
for the purpose of energy efficiency in cognitive content
centric networking.

VIi. CONCLUSION AND FUTURE WORKS

We proposed frozen cache policy a new way to manage a
network of caches to achieve a high cache hit rate and reduce
the filtering effect. We achieved those goals by uniformly
distributing requests to all caches. In our proposal, content
in a cache is frozen to prevent them from being replaced.
That forces the other content to be cached in another node
and gives them a chance to cache some popular content.
We showed that our basic idea of frozen cache policy has
the same hit ratio as LRU, which can be modified for a
higher hit ratio, and can be used in a coordinated fashion for
a network of caches. Our coordinated frozen cache scheme
obtains an improvement of 7 times of overall hit ratio for
small cache sizes and up to 25% for large cache sizes, and
decreases the average number of evictions per cache slot by 4
orders of magnitude. Besides, our scheme reduces the average
content download time up to 10%, traffic reduction ratio
up to 26% compared to existing coordinated schemes with
low overhead. Future directions include the design of new
triggering conditions for frozen cache for new objectives such
as minimizing the Inter-ISP traffic and combining our scheme
with the works that consider the content in the neighbors’
caches. We believe frozen cache policy suits such schemes
as it needs minimal cache updates.

REFERENCES

[1] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D. Saucez,
T. Schmidt, and M. Waehlisch, “Information-centric networking (ICN)
research challenges,” Internet Res. Task Force (IRTF), Tech. Rep. rfc7927,
2016.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, ‘“Networking named content,” in Proc. 5th Int. Conf.
Emerg. Netw. Exp. Technol. (CoNEXT), 2009, pp. 1-12.

[3] B. Ahlgren, M. D’ Ambrosio, M. Marchisio, I. Marsh, C. Dannewitz,
B. Ohlman, K. Pentikousis, O. Strandberg, R. Rembarz, and V. Vercellone,
“Design considerations for a network of information,” in Proc. ACM
CoNEXT Conf., 2008, pp. 1-6.

[4] C. Williamson, “On filter effects in web caching hierarchies,” ACM Trans.
Internet Technol., vol. 2, no. 1, pp. 47-77, 2002.

[5] 1. Ari, A. Amer, and R. Gramacy, “ACME: Adaptive caching using multi-
ple experts,” in Proc. WDAS, 2002, pp. 143-158.

[6] J. E. G. Coffman and P. J. Denning, Operating Systems Theory.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1973.

VOLUME 9, 2021

IEEE Access

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

[7] E. J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, best-effort [31] Cisco Visual Networking Index, ““Cisco visual networking index: Forecast
content location in cache networks,” in Proc. IEEE 28th Conf. Comput. and methodology, 2011-2016,” Cisco, Tech. Rep., 2012.

Commun. (INFOCOM), Apr. 2009, pp. 2631-2635. [32] P.Gill, M. Arlitt, Z. Li, and A. Mahanti, ‘“Youtube traffic characterization:

[8] X. Tang and S. T. Chanson, “Coordinated en-route web caching,” IEEE A view from the edge,” in Proc. 7th ACM SIGCOMM Conf. Internet Meas.,
Trans. Comput., vol. 51, no. 6, pp. 595-607, Jun. 2002. New York, NY, USA, 2007, p. 15.

[9]1 A. Toannou and S. Weber, “Towards on-path caching alternatives in [33] E. Chlebus and J. Brazier, ‘“Nonstationary Poisson modeling of web
information-centric networks,” in Proc. 39th Annu. IEEE Conf. Local browsing session arrivals,” Inf. Process. Lett., vol. 102, no. 5, pp. 187-190,
Comput. Netw., Sep. 2014, pp. 362-365. May 2007.

[10] J.Ren, W. Qi, C. Westphal, J. Wang, K. Lu, S. Liu, and S. Wang, “MAGIC: [34] W.Wong, L. Wang, and J. Kangasharju, ‘“Neighborhood search and admis-
A distributed MAx-gain in-network caching strategy in information- sion control in cooperative caching networks,” in Proc. IEEE Global
centric networks,” in Proc. IEEE Conf. Comput. Commun. Workshops Commun. Conf. (GLOBECOM), Dec. 2012, pp. 2852-2858.

(INFOCOM WKSHPS), Apr. 2014, pp. 470-475. [35] N.Lal, S. Kumar, G. Kadian, and V. K. Chaurasiya, ““Caching methodolo-

[11] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “WAVE: gies in content centric networking (CCN): A survey,” Comput. Sci. Rev.,
Popularity-based and collaborative in-network caching for content- vol. 31, pp. 39-50, Feb. 2019.
oriented networks,” in Proc. IEEE INFOCOM Workshops, Mar. 2012, [36] S.H. Ahmed and D. Kim, “Named data networking-based smart home,”
pp. 316-321. ICT Exp., vol. 2, no. 3, pp. 130-134, Sep. 2016.

[12] S.Mastorakis, A. Afanasyev, and L. Zhang, ““On the evolution of ndnSIM: [37] R. A.Rehman, J. Kim, and B.-S. Kim, “NDN-CRAHNs: Named data net-
An open-source simulator for NDN experimentation,” ACM SIGCOMM working for cognitive radio ad hoc networks,” Mobile Inf. Syst., vol. 2015,
Comput. Commun. Rev., vol. 47, no. 3, pp. 19-33, Jul. 2017. pp. 1-12, 2015.

[13] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, ‘“ndnSIM 2: An [38] Y. Thomas, N. Fotiou, S. Toumpis, and G. C. Polyzos, “Improving mobile
updated NDN simulator for Ns-3 [R],” UCLA Los Angeles, Los Angeles, ad hoc networks using hybrid IP-information centric networking,” Com-
CA, USA, Tech. Rep. NDN-0028, Rev. 2, 2016. put. Commun., vol. 156, pp. 25-34, Apr. 2020.

[14] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design [39] X.Liu, M.J. Nicolau, A. Costa, J. Macedo, and A. Santos, “A geographic
and implications,” in Proc. Re-Architecting Internet Workshop (ReARCH), opportunistic forwarding strategy for vehicular named data networking,”
New York, NY, USA, 2010, p. 6. in Intelligent Distributed Computing IX. Springer, 2016, pp. 509-521.

[15] Z. Ming, M. Xu, and D. Wang, “Age-based cooperative caching in [40] A. Boukerche and R. W. L. Coutinho, “LoICen: A novel location-based
information-centric networks,” in Proc. IEEE INFOCOM Workshops, and information-centric architecture for content distribution in vehicular
Mar. 2012, pp. 268-273. networks,” Ad Hoc Netw., vol. 93, Oct. 2019, Art. no. 101899.

[16] S. Guo, H. Xie, and G. Shi, “Collaborative forwarding and caching in [41] M. Chen, T. Wang, K. Ota, M. Dong, M. Zhao, and A. Liu, “Intelligent
content centric networks,” in Proc. 11th Int. TC Conf. Netw. (IFIP), Prague, resource allocation management for vehicles network: An A3C learning
Czech Republic. Berlin, Germany: Springer-Verlag, 2012, pp. 41-55, doi: approach,” Comput. Commun., vol. 151, pp. 485-494, Feb. 2020.
10.1007/978-3-642-30045-5_4. [42] M. Amadeo, C. Campo, A. Molinaro, and N. Mitton, “Named data net-

[17] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley, working: A natural design for data collection in wireless sensor networks,”
C. Papadopoulos, L. Wang, and P. B. Zhang, “Named data networking,” in Proc. IFIP Wireless Days (WD), Nov. 2013, pp. 1-6.

SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 6673, Jul. 2014. [43] G. Jaber and R. Kacimi, “A collaborative caching strategy for content-

[18] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, centric enabled wireless sensor networks,” Comput. Commun., vol. 159,
X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, ““A survey of information- pp- 60-70, Jun. 2020.
centric networking research,” IEEE Commun. Surveys Tuts., vol. 16, no. 2, [44] M. A. Hail, M. Amadeo, A. Molinaro, and S. Fischer, “Caching in named
pp. 1024-1049, 2nd Quart., 2014. data networking for the wireless Internet of Things,” in Proc. Int. Conf.

[19] G. Carneiro, “NS-3: Network simulator 3,” in Proc. UTM Lab Meeting Recent Adv. Internet Things (RloT), Apr. 2015, pp. 1-6.

April, vol. 20, 2010, pp. 4-5. [45] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and

[20] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen, H. Mathkour, “Least fresh first cache replacement policy for NDN-based
B. Maggs, K. Ng, V. Sekar, and S. Shenker, ‘““Less pain, most of the gain: 10T networks,” Pervas. Mobile Comput., vol. 52, pp. 60-70, Jan. 2019.
Incrementally deployable ICN,” in Proc. ACM SIGCOMM Conf. (SIG- [46] M. A. Bouras, A. Ullah, and H. Ning, “Synergy between communication,
COMM). New York, NY, USA, 2013, p. 147. computing, and caching for smart sensing in Internet of Things,” Proc.

[21] D. Rossi and G. Rossini, “On sizing CCN content stores by exploit- Comput. Sci., vol. 147, pp. 504-511, Jan. 2019.
ing topological information,” in Proc. IEEE INFOCOM Workshops, [47] A.Djama, B. Djamaa, and M. R. Senouci, “Information-centric network-
Mar. 2012, pp. 280-285. ing solutions for the Internet of Things: A systematic mapping review,”

[22] J. Choi, A. S. Reaz, and B. Mukherjee, “A survey of user behavior in Comput. Commun., vol. 159, pp. 37-59, Jun. 2020.

VoD service and bandwidth-saving multicast streaming schemes,” IEEE [48] I.U.Din, S. Hassan, A. Almogren, F. Ayub, and M. Guizani, “PUC: Packet
Commun. Surveys Tuts., vol. 14, no. 1, pp. 156-169, 1st Quart., 2012. update caching for energy efficient IoT-based information-centric network-

[23] H. Madhyastha, E. Katz-Bassett, and T. Anderson, ‘“‘iPlane nano: Path ing,” Future Gener. Comput. Syst., vol. 111, pp. 634-643, Oct. 2020.
prediction for peer-to-peer applications,” in Proc. NSDI, Apr. 2009, [49] H. Asmat, I. U. Din, F. Ullah, M. Talha, M. Khan, and M. Guizani, “ELC:
pp. 137-152. Edge linked caching for content updating in information-centric Internet

[24] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation of Things,” Comput. Commun., vol. 156, pp. 174-182, Apr. 2020.
techniques for storage hierarchies,” IBM Syst. J., vol. 9, no. 2, pp. 78-117, [S0] E R. C. Araujo, A. M. de Sousa, and L. N. Sampaio, “SCaN-mob:
1970. An opportunistic caching strategy to support producer mobility in named

[25] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems: data wireless networking,” Comput. Netw., vol. 156, pp. 62-74, Jun. 2019.
Modeling, design and experimental results,” IEEE J. Sel. Areas Commun., [51] R. Ullah, M. A. U. Rehman, M. A. Naeem, B.-S. Kim, and S. Mastorakis,
vol. 20, no. 7, pp. 1305-1314, Sep. 2002. “ICN with edge for 5G: Exploiting in-network caching in ICN-based

[26] A. Mahanti and C. Williamson, ““Traffic analysis of a web proxy caching edge computing for 5G networks,” Future Gener. Comput. Syst., vol. 111,
hierarchy,” IEEE Netw., vol. 14, no. 3, pp. 16-23, May/Jun. 2000. pp. 159-174, Oct. 2020.

[27] S. Mitra, M. Agrawal, A. Yadav, N. Carlsson, D. Eager, and A. Mahanti, [52] J. Shi. (2017). Tunnel Ethernet Traffic Over NDN. [Online]. Available:
“Characterizing web-based video sharing workloads,” ACM Trans. Web, https://yoursunny.com/t/2017/tunnel-Ethernet-over-NDN/
vol. 5, no. 2, pp. 1-27, May 2011. [53] L. Dong, D. Zhang, Y. Zhang, and D. Raychaudhuri, “Optimal caching

[28] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mechanisms in with content broadcast in cache-and-forward networks,” in Proc. IEEE Int.
information-centric networking,” IEEE Commun. Surveys Tuts., vol. 17, Conf. Commun. (ICC), Jun. 2011, pp. 1-5.
no. 3, pp. 1473-1499, 3rd Quart., 2015. [54] J. Li, H. Wu, B. Liu, J. Lu, Y. Wang, X. Wang, Y. Zhang, and

[29] 1. Psaras, W. K. Chai, and G. Pavlou, ““Probabilistic in-network caching L. Dong, “Popularity-driven coordinated caching in named data network-
for information-centric networks,” in Proc. 2nd Ed. ICN Workshop Inf.- ing,” in Proc. 8th ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS),
Centric Netw. (ICN), 2012, pp. 1-6. Oct. 2012, pp. 15-26.

[30] Y. Mordjana, M. R. Senouci, and A. Mellouk, ‘‘Performance analysis of [55] H.Wu,J.Li, Y. Wang, and B. Liu, “EMC: The effective multi-path caching

caching and forwarding strategies in content centric networking,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2017, pp. 1-6.

VOLUME 9, 2021

scheme for named data networking,” in Proc. 22nd Int. Conf. Comput.
Commun. Netw. (ICCCN), Jul. 2013, pp. 1-7.

139737

http://dx.doi.org/10.1007/978-3-642-30045-5_4

IEEE Access

S. M. Shahtouri et al.: Frozen Cache: Mitigating Filter Effect and Redundancy for Network of Caches

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

C. Bernardini, T. Silverston, and O. Festor, “MPC: Popularity-based
caching strategy for content centric networks,” in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2013, pp. 3619-3623.

Y. Wang, K. Lee, B. Venkataraman, R. L. Shamanna, I. Rhee, and S. Yang,
“Advertising cached contents in the control plane: Necessity and feasibil-
ity,” in Proc. IEEE INFOCOM Workshops, Mar. 2012, pp. 286-291.

Y. Hayamizu, A. Shibuya, and M. Yamamoto, ‘‘Effective new cache deci-
sion policy for breadcrumbs in content-centric networking,” in Proc. IEEE
Int. Workshop Tech. Committee Commun. Qual. Rel. (CQR), May 2017,
pp. 1-6.

Y. Yang, T. Song, and B. Zhang, “OpenCache: A lightweight regional
cache collaboration approach in hierarchical-named ICN,” Comput. Com-
mun., vol. 144, pp. 89-99, Aug. 2019.

I. V. Bastos and I. M. Moraes, “A diversity-based search-and-
routing approach for named-data networking,” Comput. Netw., vol. 157,
pp. 11-23, Jul. 2019.

V. Sourlas, P. Flegkas, and L. Tassiulas, “A novel cache aware rout-
ing scheme for information-centric networks,” Comput. Netw., vol. 59,
pp. 44-61, Feb. 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1389128613004039

J. Li, B. Liu, and H. Wu, “Energy-efficient in-network caching for content-
centric networking,” IEEE Commun. Lett., vol. 17, no. 4, pp. 797-800,
Apr. 2013.

M. Rezazad and Y. C. Tay, “Decoupling NDN caches via CCndnS: Design,
analysis, and application,” Comput. Commun., vol. 151, pp. 338-354,
Feb. 2020.

Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie, “Optimal cache alloca-
tion for content-centric networking,” in Proc. 21st IEEE Int. Conf. Netw.
Protocols (ICNP), Oct. 2013, pp. 1-10.

V. Sourlas, P. Georgatsos, P. Flegkas, and L. Tassiulas, ‘Partition-
based caching in information-centric networks,” in Proc. IEEE Conf.
Comput. Commun. Workshops (INFOCOM WKSHPS), Apr./May 2015,
pp. 396-401.

M. Rezazad and Y. C. Tay, “CCndnS: A strategy for spreading content
and decoupling NDN caches,” in Proc. IFIP Netw. Conf. (IFIP Netw.),
May 2015, pp. 1-9.

D. Man, Q. Li, Y. Wang, Y. Wu, and X. Du, “An adaptive cache man-
agement approach in ICN with pre-filter queues,” Comput. Commun.,
vol. 153, pp. 250-263, Mar. 2020.

V. Young, C.-C. Chou, A. Jaleel, and M. Qureshi, ““Ship++: Enhancing
signature-based hit predictor for improved cache performance,” in Proc.
Cache Replacement Championship (CRC) Held Conjunct Int. Symp. Com-
put. Archit. (ISCA), 2017.

L. Dong and R. Li, “A novel multi-factored replacement algorithm for in-
network content caching,” in Proc. Eur. Conf. Netw. Commun. (EuCNC),
Jun. 2019, pp. 246-251.

S. Wang, J. Bi, and J. Wu, “Collaborative caching based on hash-routing
for information-centric networking,” in Proc. ACM SIGCOMM Conf.
SIGCOMM, Aug. 2013, p. 535.

K. Hasan and S.-H. Jeong, “Efficient caching for delivery of multimedia
information with low latency in ICN,” in Proc. 11th Int. Conf. Ubiquitous
Future Netw. (ICUFN), Jul. 2019, pp. 745-747.

L. Saino, I. Psaras, and G. Pavlou, ‘““Hash-routing schemes for information
centric networking,” in Proc. 3rd ACM SIGCOMM Workshop Inf.-Centric
Nemw. (ICN), 2013, pp. 27-32.

E. Aubry, T. Silverston, and I. Chrismen, “Implementation and evaluation
of a controller-based forwarding scheme for NDN,” in Proc. IEEE 31st Int.
Conf. Adv. Inf. Netw. Appl. (AINA), Mar. 2017, pp. 144—-151.

X. Hu, S. Zheng, L. Zhao, G. Cheng, and J. Gong, “Exploration and
exploitation of off-path cached content in network coding enabled named
data networking,” in Proc. IEEE 27th Int. Conf. Netw. Protocols (ICNP),
Oct. 2019, pp. 1-6.

139738

[75] X.Hu,S.Zheng, G. Zhang, L. Zhao, G. Cheng, J. Gong, and R. Li, “An on-
demand off-path cache exploration based multipath forwarding strategy,”
Comput. Netw., vol. 166, Jan. 2020, Art. no. 107032.

[76] M. Zhang, B. Hao, F. Song, M. Yang, J. Zhu, and Q. Wu, “Smart col-
laborative video caching for energy efficiency in cognitive content centric
networks,” J. Netw. Comput. Appl., vol. 158, May 2020, Art. no. 102587.

SAEID MONTAZERI SHAHTOURI received the
B.Sc. degree in computer engineering from Isfa-
han University of Technology, in 2002, the M.S.
degree in computer engineering from Iran Uni-
versity of Science and Technology, in 2005, and
the Ph.D. degree in computer science from the
National University of Singapore, in 2015. He is
currently an Internal Consultant with Ab Ini-
tio Software. His research interests include net-
work of caches, distributed systems, and big data
processing.

MOSTAFA REZAZAD received the B.Sc. degree
in computer hardware from Azad University,
Tehran, Iran, in 2000, the M.Sc. degree in com-
puter architecture from Sharif University of Tech-
nology, Tehran, in 2004, and the Ph.D. degree in
computer science from the National University of
Singapore, Singapore, in 2015. After his Ph.D.
and before joining IPM, he was a Postdoctoral
Researcher at Singapore University of Technol-
ogy and Design (SUTD). He is currently a Senior
Researcher with the School of Computer Science, Institute for Research in
Fundamental Sciences (IPM). At the same time he teaches graduate and
under-graduate level courses, such as network security, advanced networks,
and operating systems at Sharif University of Technology. In addition to
many years working experience as a Network Administrator and a Computer
Consultant, he opened his own start-ups in Iran, in 2000 and 2004, working
on wireless telecommunication IP-based systems.

RICHARD T. B. MA (Senior Member, IEEE)
received the B.Sc. degree (Hons.) in computer
science and the M.Phil. degree in computer sci-
ence and engineering from The Chinese University
of Hong Kong, in 2002 and 2004, respectively,
and the Ph.D. degree in electrical engineering
from Columbia University, in 2010. During the
Ph.D. degree, he was a Research Intern with IBM
T. J. Watson Research Center, Yorktown Heights,
NY, USA, and Telefonica Research, Barcelona.
He is currently an Assistant Professor with the Department of Computer
Science, National University of Singapore. His current research interests
include distributed systems and network economics. He was a co-recipient
of the Best Paper Award in the IEEE Workshop on Smart Data Pricing 2015,
the IEEE ICNP 2014, and the IEEE IC2E 2013.

VOLUME 9, 2021

