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ABSTRACT Asthma is a symptom of tracheal obstruction caused by bronchospasm, and it is among themost
prevalent chronic obstructive pulmonary diseases. Auscultation is the most commonly used approach for
the clinical diagnosis of asthma. However, recognizing wheezes through auscultation requires experienced
physicians, and this approach is not sufficiently objective. Therefore, developing a method for recognizing
wheezes objectively is crucial. Most studies have used the spectral features of lung sounds to detect
wheezes; however, they have not achieved sufficiently high performance owing to the poor discrimination of
spectral features. Several studies have attempted to extract wheezing features from lung sound spectrograms;
however, their approaches were easily affected by variations in the wheezing frequency and background
noise. The present study proposes a novel automatic wheeze detection algorithm for extracting lung sound
features in the time–frequency domain and automatically detecting wheezes. The proposed algorithm
applies canonical correlation analysis to successfully detect wheezing features in a lung sound spectrogram.
Moreover, a neural network technique is used to effectively classify healthy and wheezing sounds. The
experimental results indicated that the proposed algorithm showed excellent performance in detecting
wheezing.

INDEX TERMS Asthma, wheezes, canonical correlation analysis, neural network.

I. INTRODUCTION
Asthma frequently presents as airflow obstruction, short-
ness of breath, and intermittent wheezing during infancy or
childhood [1]. It is a highly prevalent chronic obstructive
lung disease and associated with a heavy burden of health-
care costs, and it is among the top 20 chronic conditions
globally for disability-adjusted life years in children [2].
From 1990 to 2015, the worldwide prevalence of asthma
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increased by 12.6% to 358.2 million individuals [3], and in
2014, approximately 334 million people had asthma world-
wide [2]. In clinical practice, wheezing is defined as a
type of continuously abnormal lung sound with a specific
tone [4], and it can be considered indicative of the degree
of airway obstruction [5]. Asthma typically presents with
a high-pitched whistling (wheezing) sound. When asthma
becomes severe, it may result in dyspnea, asphyxia, or other
life-threatening situations [6]. Therefore, investigating meth-
ods for evaluating the asthma state is crucial. However,
the diagnosis of the asthma state is generally based on the
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auscultation method that depends on the expertise of the
physicians [7], and an objective judgment to evaluate the
asthma state remains lacking [8].

Studies have proposed time-domain, frequency-domain,
and spectrogram approaches for analyzing the abnormal
lung sounds of patients with asthma. Regarding time-domain
approaches, in 1977, Murphy et al. examined lung sounds by
using a time-expanded waveform analysis and identified the
time-domain waveform feature to distinguish different respi-
ratory diseases [9]. Kiyokawa et al. obtained hourly nocturnal
wheezing count (NWC) patterns by recording intermittent
tracheal sounds to detect bronchoconstriction during sleep.
They revealed that NWC was positively correlated with the
severity of wheezing and could be used to evaluate the level
of bronchoconstriction [10].

Concerning frequency-domain approaches, in 1984, Cohen
and Landsberg obtained the linear prediction coefficients of
the lung sound power spectrum and the ratio of the peak value
to the root mean square value in the lung sound envelope to
classify normal and abnormal breathing sounds [11]. In 1995,
Malmberg et al. used the peak frequency and median fre-
quency of the lung sound spectrum to investigate the lung
characteristics of patients with chronic obstructive pulmonary
disease (COPD) [12]. In 2004, Corbera et al. proposed a local
adaptive wheeze detection algorithm for detecting wheez-
ing features during forced exhalation from the lung sound
spectrum [13]. However, the relatively low distinguishability
between the peak and the median frequencies of normal and
abnormal lung sounds usually reduces the efficiency of such
approaches. In 1985, Fenton et al. estimated the spectral
features of wheezing and used the ratio of the wheezing
duration to the inspiration and expiration duration to evaluate
the severity of bronchial obstruction [14]. However, the vari-
ation of wheezing features easily affected the reliability of
the estimated wheezing duration. In 2011, Jin et al. extracted
spectral derivative (SD) features from a lung sound spectro-
gram to estimate the duration and frequency of wheezing
sounds [15]. However, SD features were easily affected by
background noise, resulting in errors in distinguishing mild
wheezing sounds from normal respiratory sounds. In 2020,
Habukawa et al. developed a rule-based wheeze recognition
algorithm for children. This algorithm monitors whether the
local maximum fast Fourier transform values continue for
more than 100ms [16]. However, its results are easily affected
upon inputting respiratory sounds with an unstable volume.

Regarding spectrogram approaches, in 2009, Riella et al.
used digital image processing techniques to extract spec-
tral projections from a lung sound spectrogram to identify
wheezing sounds [17]. However, the use of two-dimensional
convolution masks increased the background noise in the
spectrogram and thus affected the correctness of the extracted
features, especially in patients with mild asthma. Lin et al.
extracted several features from a spectrogram and used them
as inputs in a back-propagation neural network for automatic
wheeze detection [18]. Their automatic wheeze detection sys-
tem uses the order truncate average (OTA)method to suppress

noise and strengthen wheezing signals. However, the OTA
method has a very high computational cost. In 2019, Shi et al.
proposed a deep learning approach that combines the VGGish
network with a bidirectional gated recurrent unit neural net-
work to recognize lung sounds [19]. In 2019, Demir et al. pro-
posed an efficient convolutional neural network (CNN)-based
approach for classifying lung diseases [20]. They combined
the CNN with a support vector machine (SVM) classifier to
classify the spectrogram of lung sounds. In 2020, Sadi and
Hassan proposed a deep learning approach that combines
a CNN model with the Mel-frequency cepstral coefficient
to classify wheezes and crackles [21]. The aforementioned
deep learning approaches [19]–[21] have great potential for
classifying images created from visual representations of
audio. However, they require large quantities of training data
to increase their precision and overall accuracy. Insufficient
data may produce unsatisfactory results [19]–[21].

To overcome these limitations, the present study proposes
a novel automatic wheeze detection algorithm. To reduce
the influence of noise and background lung sounds and the
variation of wheezing features in the lung sound spectrogram,
the canonical correlation analysis (CCA) technique, a sta-
tistical method for determining the underlying correlation
between two datasets, is used to examine the continuity of
wheezing features in the lung sound spectrogram to effec-
tively extract wheezing information. Finally, a neural network
is used to classify the wheezing and normal lung sounds from
the extracted lung sound features. The experimental results
revealed that the respiratory rate, sound index, breathing cycle
period, inspiratory duration, expiratory duration, maximum
peak frequency, wheezing duration, and wheezing frequency
could exactly reflect the wheezing characteristics of children
with asthma; moreover, the proposed system showed excel-
lent performance in wheeze detection.

II. METHODS
A. DESIGN OF LUNG SOUND RECORDER
In this study, a self-assembled lung sound recorder
was designed and implemented to collect lung sounds.
Fig. 1 presents the recorder’s system architecture and pho-
tograph. It mainly comprises a stethoscope bell, microphone,
and wireless signal acquisition module. The stethoscope bell
(3M Littmann Master Classic II 2146, 3M, Maplewood,
MN, USA) collects lung sounds, which are converted into
electrical signals through the microphone (JL-0627C, Jeou
Luen Technology Co., Taiwan). Next, the lung sound signals
are amplified, filtered, and digitized using the wireless signal
acquisition module, and they are then wirelessly transmit-
ted to the back-end host system via Bluetooth (RN4678,
Microchip Technology, Taiwan). In this study, the gain of
the used amplifier was set to 390 V/V with a frequency
band of >150 Hz, and the sampling rate of the analog-
to-digital converter built into the microprocessor (RX210,
Renesas, Japan) in the module was set to 2 kHz. A lung sound
monitoring program built into the back-end host system was
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FIGURE 1. Basic scheme and photograph of self-assembled lung sound
recorder.

designed to receive, display, and store the received lung sound
signals in real time; it can also enable the user to play the
recorded lung sounds in real time.

B. AUTOMATIC WHEEZE DETECTION ALGORITHM
A wheezing sound is a continuous adventitious lung sound
caused by airway obstruction, and it can be observed in
patients with asthma or COPD. The wheezing feature has a
time-varying narrow line pattern (from 250 to 800 Hz), and
its duration may exceed 250 ms in a lung sound spectro-
gram [22], [23]. The proposed automatic wheeze detection
algorithm (Fig. 2) was designed to extract wheezing fea-
tures from a lung sound spectrogram and to detect wheezing
sounds. Accordingly, in the algorithm, the breathing cycles
must be segmented first. The raw lung sound is preprocessed
using a bandpass filter (150–1000Hz) to preservemeaningful
lung sound features and to reduce the influence of the heart,
blood, and muscle sounds. The sound is then rectified and
integrated to obtain the envelope of the lung sound. Next,
the local minima of the lung sound envelope are estimated,
and the segment between the two nearest local minimums
is considered a breathing cycle. Next, the lung sound fea-
tures, including the respiratory rate, breathing cycle period,
inspiratory and expiratory durations, sound index, maximum
peak frequency, and wheezing feature duration and frequency
in the lung sound spectrogram are extracted. In this study,
the respiratory rate was defined as the number of breathing
cycles within 1 min. The breathing cycle period was defined
as the period between the onset point and the offset point in
a breathing cycle. The sound index, related to the lung sound
power, was defined as the sum of the absolute amplitudes of
the lung sound within a breathing cycle.

For wheezing feature detection in the algorithm, the CCA
technique [24], [25] is used to estimate the continuity of
the wheezing feature in the lung sound spectrogram. This

FIGURE 2. Flowchart of proposed automatic wheeze detection algorithm.

technique affords a powerful feature analysis for determining
and quantifying the maximum correlation between multi-
channel samples in the time-frequency domain. Before short-
time Fourier transform is used to obtain the lung sound
spectrogram, additive white Gaussian noise must be applied
in the raw lung sound to disrupt the continuity of the normal
lung sound feature and to highlight the wheezing features in
the spectrogram. Assume that the lung sound spectrogram
Sls = (S1,S2, . . . ,Sk , . . . ,SN ) contains N power spectral
density (PSD) vectors; here, Sk denotes the PSD vector
obtained from the kth time interval. The total covariance
matrix Mtc_SkSk+1 between Sk and Sk+1 can be expressed as
follows:

Mtc_SkSk+1 =

[
MSkSk MSkSk+1
MSk+1Sk MSk+1Sk+1

]
(1)

where MSkSk and MSk+1Sk+1 are the within-set covariance
matrices of Sk and Sk+1, respectively, and MSkSk+1 =

MT
Sk+1Sk is the between-set covariance matrix. The canonical
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FIGURE 3. Lung sound spectrograms and CCA temporal profiles for
(a) wheezing and (b) normal lung sounds.

correlations between Sk and Sk+1 can be obtained by solving
the eigenvalue equations:M

−1
SkSk

MSkSk+1M
−1
Sk+1Sk+1

MSk+1SkV̂Sk = λ2
kV̂Sk

M−1Sk+1Sk+1MSk+1SkM
−1
SkSk

MSkSk+1V̂Sk+1 = λ2
kV̂Sk+1

(2)

where the eigenvalues λ2
k are the square canonical correla-

tions and the eigenvectors V̂Sk and V̂Sk+1 are the normal-
ized canonical correlation basis vectors [25]. The maximum
canonical correlation ρk between Sk and Sk+1 can then be
defined as the maximum value of λk , and it should exhibit a
relatively stable and high value for wheezing sounds owing
to the continuity of the wheezing feature in a lung sound
spectrogram, as displayed in Fig. 3. In Fig. 3(a), the wheezing
sound presents a time-varying narrow line pattern in the lung
sound spectrogram, and its frequency range is 250–400 Hz
and duration is approximately 750 ms. Moreover, the maxi-
mum canonical correlations at the segment of the wheezing
sound are shown to be higher than others. If these correlations
are continuously higher than the given threshold for over
100ms, then they are considered to reflect awheezing feature.
In this study, the given threshold was defined as the sum of
the average and standard deviation of all maximum canonical
correlations within a breathing cycle. After the detection of
the wheezing feature, its duration and frequency in the lung
sound spectrogram could be estimated.

A radial basis function neural network (RBFNN) affords
advantages such as a simple structure, fast training process,
and excellent approximation capability. Accordingly, it is
applied in the algorithm to classify normal lung sounds and
wheezing sounds. The RBFNN structure contains three lay-
ers: input (N0 neurons), hidden (N1 neurons), and output

FIGURE 4. Basic structure of RBFNN.

(one neuron) layers, as illustrated in Fig. 4. In this study,
a k-means clustering algorithm [26] and normalized least
mean square algorithm [27] were used to train the center
vectors in the hidden neurons and the weight vector between
the hidden neurons and the output neuron, respectively. In the
training procedure, the desired RBFNN outputs for wheezing
and normal sounds were set to 1 and 0, respectively. If the
RBFNN output was larger than the given threshold, it was
classified into the wheezing sound group; otherwise, it was
classified into the normal lung sound group.

C. EXPERIMENTAL DESIGN
This study enrolled 95 children (aged 0 to 11 years) from
Kaohsiung Chang Gung Memorial Hospital (CGMH) as par-
ticipants. Of these children, 63 were healthy (40 boys and
23 girls) and 32 were patients with asthma (23 boys and
9 girls). In clinical diagnosis, the wheezing grade is usually
used to evaluate the asthma state. The patients with asthma
were classified into three groups according to their asthma
states: level 1 (4 people), level 2 (17 people), and level 3
(11 people). The experimental protocol of this study was
approved by the Institutional Review Board (IRB) of Kaohsi-
ung CGMH, Taiwan (IRB number: 104-2415B). The parents
of all participants provided informed consent. In this experi-
ment, the self-assembled lung sound recorder was placed on
the first intercostal space of the upper right anterior chest to
collect lung sounds for 20 s. Analysis of variance was used
to analyze the significance of differences, and statistically
significant differences were defined as p < 0.05.

III. RESULTS
A. LUNG SOUND FEATURES CORRESPONDING TO
DIFFERENT GROUPS
First, the segmentation performance for breathing cycles was
evaluated. Accordingly, 500 breathing cycles were randomly
selected from the database for testing. The segmentation
accuracy for breathing cycles was approximately 99.6%.
Subsequently, the lung sound features corresponding to the
various study groups were investigated. The respiratory rate,
sound index, breathing cycle period, inspiratory duration,
expiratory duration, and maximum peak frequency for the
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various groups are presented in Figs. 5(a)–5(f). The respi-
ratory rates and sound indices for the asthma groups were
significantly higher than those for the healthy group, and
the value of the sound index increased with the wheezing
grade. The breathing cycle periods for all asthma groups were
significantly shorter than those for the healthy group. The dif-
ference between the inspiratory durations of different groups
was nonsignificant. The expiratory durations for all asthma
groups were significantly shorter than those for the healthy
group. The maximum peak frequencies in the lung sound
spectra for all asthma groups were also significantly higher
than that for the healthy group. However, the differences
between all lung sound features of the level 3 asthma group
and level 1 and 2 asthma groups were nonsignificant. Figs.
6(a) and 6(b) display the duration and frequency of thewheez-
ing features in the lung sound spectrogram corresponding to
different groups, respectively. The differences between the
wheezing durations of the level 3 asthma group and the level
1 and 2 asthma groups were nonsignificant. The differences
between the wheezing frequencies of the level 3 asthma group
and the level 1 and 2 asthma groups were significant.

B. PERFORMANCE OF RBFNN FOR DETECTING
WHEEZING SOUNDS
The performance of the RBFNN in classifying lung sounds
in the asthma groups (levels 1, 2, and 3) and healthy group
was investigated. Accordingly, significant lung sound fea-
tures, including the respiratory rate, sound index, breathing
cycle period, expiratory duration, maximum peak frequency,
wheezing duration, and wheezing frequency, were used as the
input of the RBFNN. The number of hidden neurons was set
to 16, 32, 64, and 128, and the thresholds were from 0.1 to
0.9. To evaluate the performance of the RBFNN in classifying
lung sounds, several binary classification parameters must be
defined first: true positive (TP), meaning that the wheezing
sound was correctly classified as a wheezing sound; false
positive (FP), meaning that the normal lung sound was incor-
rectly classified as a wheezing sound; true negative (TN),
meaning that the normal lung sound was correctly classified
as a normal lung sound; and false negative (FN), meaning
that thewheezing soundwas incorrectly classified as a normal
lung sound. The F-measure, which is the harmonic mean of
precision (positive predictive value, PPV) and recall (sensi-
tivity, also called TP rate, TPR), was used to determine the
optimization threshold. It can be calculated as follows:

F−measure = 2 ·
precsion× recall
precision+ recall

(3)

The experimental results revealed that the RBFNN exhib-
ited optimal performance in classifying lung sounds when
the hidden neuron number and threshold were set to 64 and
0.3, respectively: F-measure = 95.2%, PPV = 96.8%,
sensitivity = 93.8%, and accuracy = 96.8 % (Table 1).
Fig. 7 shows the RBFNN outputs for the various groups. The
difference between the RBFNN outputs for the healthy group
and asthma groups was significant.

FIGURE 5. (a) Respiratory rate, (b) sound index, (c) breathing cycle
period, (d) inspiratory duration, (e) expiratory duration, and (f) maximum
peak frequency corresponding to different groups.
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FIGURE 5. (Continued.) (a) Respiratory rate, (b) sound index, (c) breathing
cycle period, (d) inspiratory duration, (e) expiratory duration, and
(f) maximum peak frequency corresponding to different groups.

TABLE 1. Optimal performance of RBFNN in classifying lung sounds.

IV. DISCUSSION
Asthma is caused by chronic inflammation of the bronchi
and bronchioles. This leads to the increased contractility
of the surrounding smooth muscles, in turn leading to air-
way stenosis and typical symptoms such as wheezing [28].
Asthma is usually associatedwith anxiety, dehydration, infec-
tion, and other disturbances [29], and it manifests through
increased shortness of breath, cough, chest tightness, or some
combination of these symptoms [30]. Therefore, breathless-
ness might be a major factor causing the higher respira-
tory rates and shorter breathing cycle periods for all asthma
groups, as presented in Fig. 5. The inspiratory durations
for all asthma groups were nonsignificantly higher than
those for the healthy group; however, the expiratory dura-
tions for all asthma groups were shorter. This might be
because patients with asthma easily encounter the problem
of conspicuous inspiratory airflow limitation [31], [32] and
require a sufficient inspiratory time and a shorter expiratory
time to exchange sufficient fresh oxygen. Moreover, airway
obstruction caused by narrowing bronchial airways leads to
hyperventilation and a considerable increase in airflow sound
intensity, as reflected by the increase in the sound index.
Previous studies [33]–[36] have indicated that wheezing was
unequivocally associated with airway obstruction, and the
relationship between the severity of asthma and the breath-
ing airflow was significant [37]–[40]. In the present study,
the increase in breathing airflow and the narrowing trachea
resulted in the higher maximum peak frequency in the asthma
groups and even produced specific high-frequency tones for
longer than 100 ms (Fig. 6) [41]. The wheezing frequency of
the asthma level 3 group was significantly higher than those
of the asthma level 1 and 2 groups. This reflects the relation-
ship between asthma severity and the increasing airflow and
narrowing trachea.

FIGURE 6. (a) Duration and (b) frequency of wheezing features in lung
sound spectrogram corresponding to different groups.

FIGURE 7. RBFNN output for different groups.

Previous studies have proposed several wheeze detection
methods. Table 2 presents a comparison of the proposed algo-
rithm with these other methods. In 2015, Wiśniewski et al.
proposed an acoustic sound analysis approach for recogniz-
ing asthmaticwheezing sounds [42]. In this study, the changes
in the audio spectral envelope (ASE) and tonality index (TI)
were defined as the spectral features of lung sounds. Here,
TI indicated the flatness of the lung sound spectrum, and
it was used to quantize wheezes in the spectrum. In the
approach proposed by Wiśniewski et al., an SVM with a
polynomial kernel is used as a classifier, and its recog-
nition rate (accuracy) was approximately 93%. However,
the ASE feature for single-tone wheezes was easily affected
by background breathing sounds. In 2016, Lozano et al.
used ensemble empirical mode decomposition (EEMD) and
the Hilbert transform to differentiate continuous adventitious
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TABLE 2. Comparison between proposed method and other wheeze detection algorithms.

sounds (wheezes and rhonchi) from respiratory sounds [43].
Specifically, they used EEMD to decompose the respiratory
sounds into several signal components and the Hilbert trans-
form to calculate the instantaneous phase of these signal
components. Next, the instantaneous frequency and envelope
were calculated from the obtained instantaneous phase to pro-
vide more detailed information about the sound vibrations.
The instantaneous frequency and envelope were used as the
SVM input, and the accuracy of the SVM was approximately
94.6%. In 2017, Oletic and Bilas. used a hidden Markov
model forward–backward algorithm to estimate the occur-
rence probabilities of wheezing in a lung sound spectrogram
and then used a sequential hypothesis testing method to
estimate the beginning and ending times of wheezing [44].
The accuracy of this method was nearly 93.4%. However,
the sensitivity of the sequential hypothesis testing method to
wheezes was easily affected by background breathing sounds.
In this study, each breathing cycle could be automatically
segmented, and several lung sound features in the time and
frequency domains and wheezing features in the lung sound
spectrogram could be extracted. Moreover, in contrast to
the aforementioned methods, the influence of background
breathing sounds and environmental noise on the perfor-
mance of the algorithm in extracting wheezing features from
the lung sound spectrogram could be effectively reduced by
using the CCA technique. The accuracy of the proposed
automatic wheeze detection algorithm was over 95%.

V. CONCLUSION
In this study, a novel wheeze detection algorithm was
developed for automatically extracting lung sound features
and recognizing the wheezing sounds of children with
asthma. Compared with other wheezing analysis methods,
the CCA technique could effectively reduce the influence of
environmental noise and background breathing sounds and
detect wheezing features in a lung sound spectrogram. The
experimental results indicate that except for the inspiratory
duration, most of the lung sound features for all asthma
groups, including the respiratory rate, sound index, breathing
cycle period, expiratory duration, maximum peak frequency,
wheezing duration, and wheezing frequency, were signifi-
cantly different from those of the healthy group. Moreover,
the RBFNN with extracted lung sound features exhibited
excellent performance in classifying normal lung sounds
from wheezing sounds (accuracy = 96.8%). Therefore, the
proposed algorithm can enable efficient wheeze detection in
children with asthma and has potential for use in evaluating
the severity of wheezing in the future.
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