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ABSTRACT Compared with traditional fire refining to remove impurities, the vacuum distillation method
has the advantages of simple steps, high direct yield and no pollution to environment. The vacuum furnace,
as the main equipment of vacuum distillation method, is widely used in resource regeneration and new
material fabrication. To solve the engineering problems that the temperature control system of internal
heating vacuum furnace has large time delay and real time temperature is hard to be measured precisely,
the paper proposes an approach to model and calculate the temperature values for each node in the furnace
at no-load. A disturbance model for the temperature field of the system by the vacuum furnace itself is
developed. This methodology is useful for modeling the temperature field and the temperature control when
implementing the experiment such as the vacuum reduction of MgO or the vacuum evaporation of Pb-Sn
alloy using this furnace. To verify the effectiveness of the proposed method, experimental equipment is set
up and experiments are done on the heating process of the internal heating vacuum furnace. Compared
with the simulation results, the experimental results verify the correctness of the numerical modeling
approach. In addition, a hybrid controller with Smith’s predictive proportion integral differential (PID) based
on particle swarm optimization (PSO) algorithm is developed. The simulation results show that the controller
has the advantages of no overshoot, short rise time and adjustment time compared with the conventional
controller. It solves the pure delay for this temperature control model effectively.

INDEX TERMS Hybrid controller, internal heating vacuum furnace, temperature control model.

I. INTRODUCTION
The internal heating vacuum furnace is one of the main
equipment of the vacuum distillation method, which has wide
use in the regeneration of secondary resources, extraction of
precious metals from binary alloys, and development of new
materials [1], [2]. In industrial production, the temperature
in the furnace is difficult to measure when it is in operating
mode, and the temperature control model has the character-
istics of model uncertainty and serious time-delay [3], [4].
Hence, it is hard to reach the control accuracy by traditional
control methods. PID control algorithm is widely used in
industry. The optimal PID parameter self-tuning controller
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has the advantages of good robustness, high reliability, and
simple algorithm [5]. However, due to the limitations of the
PID controller structure, the control effect of conventional
PID controllers cannot be satisfied with large time-delay
systems [6].

Most researchers often use the Smith predictor method to
solve the time-delay system, but Smith predicts controller’s
parameters are too sensitive, and therefore its anti-jamming
ability and robustness [7]. It is found that the problem of
nonlinearity, strong inertia, time-varying, and pure delay for
electric vacuum furnace could be effectively solved by PID
genetic algorithm [8]. Particle Swarm Optimization (PSO)
is a global optimization algorithm based on group intelli-
gence and works well for the optimization of continuous
systems [9]. Shi and Eberhart [10] introduce the concept of
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inertia weight to the original version of PSO, in order to
balance the local and global search during the optimization
process. Mausri Bhuyan et al. [11] have compared the system
robustness for PID controllers tuned with sine-cosine algo-
rithm (SCA) and PSO algorithms in a power coordination
application to hybrid microgrids and found that the former
outperformed the latter. Ratnaweera and Halgamuge [12]
introduces a novel parameter automation strategy for PSO
and two further extensions to improve its performance after
a predefined number of generations. Nevertheless, the tradi-
tional particle swarm optimization algorithm is easy to fall
into the local optimum and cannot achieve the optimization
goal in time, it cannot ensure the PID model to achieve the
best performance. Guimin Chen [13] proposes to use the con-
cave function for learning factors improvement. The purpose
of this method is to speed up the change of c1c1 and c2 at
early time so that the algorithm can get to the local search
faster, and the experimental results prove that the method is
feasible. However, these methods lack diversity and tend to
converge on local extremes too early, and the optimization
effect is not obvious. Therefore, the development of a hybrid
controller based on the PSO algorithm to tune the PID con-
troller parameters is important for the dead-time system [14].
The main contributions for this paper are as follows:

(1) Use the internal heating vacuum furnace (see Figure 1)
to implement the experiment whichmeasures the temperature
of representative positions inside the furnace.

(2) Model the temperature process with the measured tem-
perature data.

(3) Design PSO-based hybrid controllers and explore vari-
able learning factors of PSO for local models to improve the
overall performance.

The paper is organized as follows. In Section 2, the phys-
ical model and experimental modeling for the internal heat-
ing vacuum furnace are introduced, and a hybrid controller
based on the PSO algorithm is designed. In Section 3, tem-
perature measurement experiments are established to verify
the correctness for the numerical modeling approach. The
effect of the hybrid controller with different learning fac-
tors is explored using MATLAB (MathWorks, Natick, Mas-
sachusetts, USA, Nagasaki Institute of Applied Science
purchased the license). Finally, the conclusion is given
in Section 4.

II. NUMERICAL MODELING AND HYBRID CONTROLLER
A. STRUCTURE AND WORKING PRINCIPLE OF INTERNAL
HEATING VACUUM FURNACE
The furnace is mainly composed of Q235 steel shell, evapo-
ration pan, graphite condenser, graphite heating column, and
water-cooling system (see Figure 1).

The graphite electric column in the furnace core is used
for heating element. In the reaction process, the phase trans-
formation of metal is carried out from top to bottom by the
evaporation pan. That is, the metal turns into metal vapor
at the evaporation dish, which turns from gas to liquid as
it flows to the condensation lid. Finally, it flows along the

FIGURE 1. The schematic diagram of the induction heating system
(1-observation hole; 2-graphite cover; 3-cold water furnace cover;
4-condensation cap; 5-thermal shroud; 6-crucible; 7-Electric pillar;
8-open-top container; 9-water-cooled electrode bar; 10-vacuum pump).

condensation lid to the liquid collector [15]. The flowing
steam not only increases the evaporation surface but also
enhances the thermal efficiency by increasing the churning of
the fluid and decreases the phase transition temperature. The
entire smelting process is short, does not require the addition
of chemical reagents, does not pollute the environment, has
a high metal recovery rate, and has low capital investment
and processing costs. Compared with the electrolytic separa-
tion of alloys, this furnace has obvious economic and social
benefits.

The water-cooling system plays an extremely important
role in the whole smelting process. It not only keeps the fur-
nace body at a relatively low temperature but also makes the
furnace temperature difference between the top and bottom
so that the metal molecules evaporated can be enriched on
the container to achieve the binary metal separation.

B. MODELING PROCESS
As it is difficult to measure the internal temperature during
reaction stage with a working vacuum furnace, we tried to
solve the problem by numerical modeling approach. We sim-
ulated and analyzed the vacuum furnacemodel using ANSYS
(software copyrighted by Guangxi Ship Digital Design and
Advanced Manufacturing Engineering Technology Research
Center) [16]. Due to the main view of the vacuum furnace
is axisymmetric, the right half of the front view is mod-
eled for simulation. The dimension diagram for the vacuum
furnace (see Figure 2). The main material properties and
parameters related to each part of the vacuum furnace are
given (see Table 1). T1, T2 and T3 are the positions where
the thermocouple sensors will be installed in the subsequent
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FIGURE 2. Dimension drawing of vacuum furnace and thermocouple
(Right half front view, mm).

TABLE 1. Material parameters of the vacuum furnace.

experiments. They are also the isothermal surfaces to be
calculated in the numerical modeling.

For the purpose of describing the temperature field distri-
bution inside the furnace during the whole heating process
and simulating the general work conditions, some assump-
tions are fixed.
• As preliminary research, this paper only experiments on
the internal heating multi-stage continuous vacuum fur-
nace under no-load condition, so the graphite crucibles
are removed during the experiment.

• Assuming that the height of the graphite electric col-
umn in the vacuum furnace is equal to the height of
the condensation hood, and the angular coefficient of
radiative heat transfer between the graphite column and
the furnace wall is considered equal everywhere.

• The interior of the vacuum furnace is in a micro vacuum
state, so only the thermal radiation between the electric
pillar, thermal shroud and the water-cooling furnace
cover are considered.

• The rarefied air in the reaction zone is evenly distributed.
• Set the simulation environment pressure to 80Pa.
The thermal conductivity of Q235 steel differs at different

temperatures, so when setting the material parameters of
furnace shell, the partial value of the Q235 steel thermal
conductivity (see Table 3) within the heating up stages in
vacuum furnace [17].

The simulation steps are as follows: First, in ANSYS,
the parameters (see Table 1) and (see Table 3) are set for
the vacuum furnace model (see Figure 2). Then, divide the
mesh, define the cell division size as 0.005. Third, apply the
temperature load and solve. The initial environment temper-
ature is set at 25◦C, the water-cooling system temperature
at 70◦C, and the maximum temperature of the heating ele-
ment at 1500◦C, respectively. Applied emissivity load: 0.97
for graphite electric column and 0.75 for Q235 steel,
respectively. Applied temperature load: heating element for
T0 = 1500◦, the water-cooled wall for T1 = 70◦C, respec-
tively. Define the Stephen Boltzmann constant as 5.669e-8,
the temperature offset TOFFST = 273, define the conver-
gence tolerance of 0.01 in the radiation solution option,
select the iterative solution algorithm, and define the angle
coefficient solution option (select plane analysis), respec-
tively [18]. Set the number of iterations to 1000. Because
the default maximum number of iterations in ANSYS is 25,
and the calculation will end when there is no convergence
after 25 iterations, so it is necessary to increase the iterations
number. Then save the disk and solve the problem. Finally,
there is the post-processing for the results. The obtained
results are processed to obtain the simulated temperature field
distribution when the steady-state is reached, and the temper-
ature distribution for the simulation calculation results is (see
Figure 3). The temperature is mapped along the furnace x =
200mm direction path, picking up the axial three equal nodes
(see Figure 3a). Extract and display the temperature values
of three nodes on this path, nodes T1, T2, T3 simulation cal-
culation results (see Figure 3b). The temperature distribution
cloud chart for thermal radiation shows that the temperature
distribution in furnace decreases radially from the electric
pillar to the furnace cover, and the temperature decreases
from top to bottom. The simulation results of nodes T1,
T2 and T3 in the insulation stage are 873.234◦C, 826.477◦C
and 792.306◦C respectively (see Figure 3b).

In order to validate the numerical modeling, we executed
thermometry experiments for the vacuum furnace. Installa-
tion dimensions of the thermocouple sensors (see Figure 2),
and 3-D layout (see Figure 4).

15 high-temperature thermocouples of dual platinum-
rhodium are installed in the vacuum furnace, with a total of
three layers. Each layer is composed of one thermocouple
close to the graphite column and four thermocouples on the
concentric circle (see Figure 4). Besides, a feedback ther-
mocouple is assembled at the bottom to provide feedback
signal. After the thermocouple is fixed, the wounds are sealed
with high-temperature rubber sealing hedge, which ensures
the sealing of the wound under the negative pressure. The
experimental vacuum furnace is connected to three-phase
AC power supply by the thyristor. Temperature controller sys-
tem is to control the heating electric power by controlling the
thyristor’s energizing time, thus changing the heating electric
power and controlling the temperature rise. The controller
input is the temperature deviation value, the output is the
on-time for the thyristor. Set the upper limit of power output
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FIGURE 3. Thermal radiation simulation diagram of vacuum furnace model (Right half front view, ◦C).

FIGURE 4. Schematic diagram of thermocouple position in furnace.

is 50%. The Siemens S7-300 controller is used for real-time
temperature acquisition, and the temperature data measured
by 15 high-temperature thermocouples are obtained from 0 to
112 minutes, recorded every two minutes.

To obtain the real-time changes for the temperature field in
furnace and reduce themeasurement error, so take the average
values of thermocouples in the furnace vertical direction
(see Figure 5). The average temperature value curve of the
four thermocouples show that the measured temperature val-
ues are relatively stable over 48-66 minutes. Considering
that the four thermocouple groups are installed at the same
isothermal surface, and the temperature curves trend are
consistent in general. The vacuum furnace enters the heat
preservation stage at about 48 minutes. The thermocouples
are in the relatively stable period of the heat preservation stage
at 50-58 minutes. Therefore, take the average curve of the
four groups with temperature values from 0 to 65 minutes as
the heating process.

The isothermal surface measured temperature curve
(see Figure 5) shows that: during 48-66 minutes, the

FIGURE 5. The average temperature curve of thermocouple group (X2, X8,
X13), group (X3, X9, X14), group (X1, X5, X10), and group (X6, X11, X16)
measured in the vacuum furnace within 0-112 minutes.

temperature for the reaction area in the furnace chamber
is relatively stable, taking into account the four groups of
thermocouples installed in the same isothermal surface, and
the temperature curve is approximately the same direction,
so it can be considered that the vacuum furnace in about
48 minutes into the insulation stage. Within 50-58 minutes,
it is in a relatively stable holding period. The temperature data
for three sets of thermocouples are (see Table 2).

C. PSO-BASED HYBRID CONTROLLER
The paper uses the step response method to identify the
temperature control system of the internal heat multi-stage
continuous vacuum furnace. The temperature curves
(see Figure 5) measured by the four group thermocouples
is approximately the same direction, and the simulation
has been proved to be correct by the experiment. There-
fore, take the mean temperature values measured by the
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TABLE 2. Partial temperature data measured by thermocouples.

four group thermocouples. In addition, the heating, rise
and heat preservation values are taken and normalized
(see Figure 6).

FIGURE 6. Normalized temperature rise curve in vacuum furnace.

The slope of the unit step response for the vacuum furnace
temperature object (see Figure 6) is approximately 0 when
t= 0, and the slope gradually increases as it increases. When
it is greater than 32 minutes, the slope gradually decreases.
Therefore, the system can be described by using first-order
inertia plant with time delay model

K0 =
y (∞)− y (0)

1u
=

900− 50
0.5

= 1700, (1)

where K0 is the static amplification factor. When the input
signal is unit step signal, the solution of y∗(t) is

y∗ (t) =

{
1− e−

t−τ
T0

0

(t ≥ τ)
(t < τ)

. (2)

Then, t1 and t2 corresponding to different time y∗(t1) and
y∗(t2) are selected for simultaneous solution (see Figure 6),
T0 and τ are determined as

y∗ (t1) = 1− e−
t1−τ
T0

y∗ (t2) = 1− e−
t2−τ
T0

 , (3)

When t2 > t1 > τ , taking the natural logarithm of both
sides for Equation (3), we get

T0 =
t2 − t1

ln [1− y∗ (t1)]− ln [1− y∗ (t2)]

τ =
t2
[
1− y∗ (t1)

]
− t1ln

[
1− y∗ (t2)

]
[1− y∗ (t1)]− ln [1− y∗ (t2)]

 , (4)

After calculation and verification, the transfer function is
identified as

G (s) =
K0e−τ s

T0s+ 1
=

850e−156s

936s+ 1
. (5)

Equation (5) represents the temperature control model dur-
ing no-load operation of the internal heating vacuum furnace.
The control process is a non-linear, with large inertia and
large time-delay [19].

The main drawback for traditional PID tuning is that the
overshoot is relatively large, the response speed is also slower,
the self-adaptive ability is poor, and the control effect is still
not ideal. In dynamic process, due to these characteristics, the
output lags behind input, and it is impossible to completely
follow the input change. Aiming to solve these problems,
we developed a hybrid controller with Smith’s predictive PID
based on PSO algorithm (see Figure 7). The hybrid controller
requires pre-tuning PID individual parameters under Smith’s
predictive control structure. The blue area (see Figure 8)
presents setting the optimization-seeking bounds for the
PID parameters in PSO algorithm to reduce the computation
time and improve the optimization quality.

PSO is a random search algorithm based on group col-
laboration developed by simulating birds foraging for food.

VOLUME 9, 2021 126769



Y. Wang, Z. Liu: Development of Numerical Modeling and Temperature Controller Optimization

TABLE 3. Thermal conductivity of Q235 steel at different temperatures.

TABLE 4. Measured and simulated values of three isothermal surfaces.

FIGURE 7. Schematic diagram for the hybrid controller based on Smith
predictor and PSO algorithm.

FIGURE 8. Flowchart for the hybrid controller based on PSO algorithm.

The algorithm uses the velocity-position model, and the par-
ticle swarm velocity-position update formula is as follows

vid = w ∗ vid + c1r1 (pid − xid )+ c2r2
(
pgd − xid

)
, (6)

xid = xid + vid , (7)

where r1 and r2 are two separately generated uniformly dis-
tributed random numbers in the range [0,1], c1 and c2 are
learning factors[20]. The algorithm repeats the velocity and
position of the new particles according to Equation (7) and (8)
until the maximum number of cycles is reached, or a predeter-
mined minimum fitness threshold is satisfied, at which point
the result is the optimal solution. According to Equation (6),
the particle velocity update is mainly determined by three
components.

The first part of Equation (6) is the inertia, which reflects
the motion habit of the particle and represents the tendency of
the particle to maintain its previous velocity. The second part
is cognitive, which reflects the memory of the particle’s his-
torical experience and represents the tendency of the particle
to approach the best position in its history [21]. The third part
is social cognition, which responds to the group-historical
experience of collaborative cooperation and knowledge shar-
ing among particles and represents the tendency of particles to
approach the best position in the group or threshold history.
Therefore, the learning factors c1 and c2 in PSO reflect the
information exchange between particle populations [22].

Although the PSO algorithm converges quickly and has
low computational complexity, it is prone to diversity loss
and falls into local optimum [23]. With the traditional PSO
algorithm, the learning factor is set to c1 = c2 = 2. For
the purpose of enriching particle diversity and improving
the case of overripening and falling into local extremes,
we tried to design the equal random learning factor improve-
ment approach to obtain better convergence [24]. Therefore,
the relatively better search results are selected as the random
interval for the learning factor. The novel PSO is implemented
in Equation (6), the values of c1 and c2 are randomly taken
from 0.5 to 2.0, respectively. The equations are as follows

c′1 = c′2 = 1.3+ (2.0− 1.3) rand () , (8)

Take Equation (8) into Equation (6) and get

vid = w ∗ vid + c′1r1 (pid − xid )+ c
′

2r2
(
pgd − xid

)
. (9)
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TABLE 5. PID controller parameters under different algorithms.

where Equation (9) and Equation (7) together form the
equal random learning factor PSO algorithm in this paper.
We performed this novel PSO based on the designed PSO-
Smith-PID (PSO & Smith predictive control & PID control)
hybrid controller to explore whether it contributes to the
optimization of PID parameters. To obtain optimal control
results, the novel algorithm optimizes the PID parameters
when the ITAE standard is reached (see Figure 8).

The paper performs simulation experiments on the temper-
ature control model for the internal heating vacuum furnace.
Firstly, the PID parameters are pre-tuned to reduce the PSO
algorithm’s optimizing range for the PID parameters. Then,
the PSO learning factors (e.g. 0.5, 1.7 and 2.0) generated by
Equation (9) are optimized to determine the optimal param-
eter values for Kp, Ki and Kd of the PID controller in real-
time until it reaches the ITAE standard (see Table 5). Finally,
the optimized PID parameters are assigned to the hybrid
controller in Simulink.

III. RESULTS AND DISCUSSION
To validate the numerical modeling approach, the
temperature values measured from the experimental results
in Part II B (see Table 2) are extracted for the period
48-66 minutes, where the temperature in the reaction zone
is stable. The equipment for the experiment mainly includes
the internal heating vacuum furnace system and the control
system (see Figure 9).

To reduce the error, the curve is selected in the relatively
smooth 50-58 min period, and the 12 data groups correspond-
ing to the three nodes are averaged. The relative error is
calculated using Equation (10). The measured and simulated
values for the three isothermal surfaces (see Table 6).

σe =
Tm + TC − TS

Tm + Tc
(10)

where σe denotes relative error, Tm denotes measured value,
TC denotes correction value, TS denotes simulation value.

The maximum relative error between the simulated tem-
perature values and the experimentally measured values at the
three isothermal surfaces (see Table 6) is 3.696%, the min-
imum relative error is 0.506%, and the average relative
error is 1.909%. Among them, at the isothermal surfaces T2
and T3, the error between the simulated calculated values
and the measured values is larger than at T1. The reason for
the larger values here is that the four thermocouples installed
on the isothermal surfaces of T2 and T3 may be inserted

FIGURE 9. Internal heating vacuum furnace system and control system
for experiment.

TABLE 6. Measured and simulated values of three isothermal surfaces.

too shallowly in the actual measurement and deviate from
the coordinate position, causing the measured temperature
value to be lower compared with the expected value. How-
ever, considering that the error of the average temperature
is within the acceptable range, and each group temperature
curve of thermocouples is nearly the same. Therefore, the data
measured in the experiment are reliable.

Then, we simulated the hybrid controller for different
learning factors of the PSO algorithm and obtained the step
response curves (see Figure 10). For the temperature control
model under no-load, usingMATLAB to experiment with the
PSO-Smith-PID hybrid controller and the optimal learning
factor is c1 = c2 = 0.5, and the PID parameter values
(see Table 5).

The step response curves for the several controllers
(see Table 7) shows that the rise time of PSO-Smith-PID
(c1 = c2 = 0.5) controller is 834.3s shorter than Smith-PID
controller. Except for the PID controller, which produces
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FIGURE 10. Step response of five controllers in the vacuum furnace
model.

TABLE 7. The dynamic performance indexes for different temperature
control systems.

a steady-state error of 1.4◦C, none of the controllers pro-
duces steady-state errors. The overshoot is 8.7% for the
PID controller, 4.4% for the Smith-PID controller, and no
overshoot for the three PSO-Smith-PID controllers. The
shortest adjustment time for PSO-Smith-PID (c1 = c2 = 0.5)
is 704s, and the longest adjustment time for Smith-PID con-
troller is 4716s.

Hence, Smith predictor-based PID controller reduces the
overshoot compared to conventional PID controller, but
the former requires a longer adjustment time. Note
that the PSO-optimized hybrid controller both eliminates
overshoot and significantly reduces the rise time. This indi-
cates that the PSO algorithm has a significant improve-
ment on the time-lagged system and effectively improves
the dynamic control of the system. Although this paper
adopts pre-tuned PID parameters to reduce the optimiza-
tion time and shrinks the search range, PSO optimization
still consumes a longer time compared to the conventional
controller.

Overall, the PSO algorithm could effectively improve the
control quality for Smith predictive PID controller. However,
it was found that improving the learning factor of PSO,
although it can further optimize the PID parameters, has
little meaningful impact on practical engineering. In addi-
tion, the temperature inside the furnace is difficult to detect
accurately in real time owing to the requirement of ensuring

a vacuum at approximately 80Pa when the vacuum furnace
is in work. The temperature field of the experimental vacuum
furnacewas simulated usingANSYS and the temperature val-
ues were obtained for all space locations inside the furnace.
Then, in order to measure the temperature inside the furnace
accurately, we drilled holes in the experimental furnace at
the calibrated position and inserted 15 platinum rhodium
high temperature thermocouples to measure the tempera-
ture values at the calibrated position inside the furnace. The
comparison shows that the simulation results are basically
consistent with the experimental test results, with a relative
error between 2.5% and 3.7%.

IV. CONCLUSION
In the working process of vacuum furnace, because of the
different types of smelting alloys, the operating conditions
are not constant and the model parameters may fluctuate.
By obtaining the perturbation of the temperature field by
the vacuum furnace itself, the accuracy of the tempera-
ture field obtained when the furnace is performing different
operations is improved. These problems were solved using
numerical modeling approach. Then, the feasibility for the
numerical modeling approach was validated by experiments:
the maximum relative error between the simulated temper-
ature values and the experimentally measured values at the
three isothermal surfaces was 3.696%; the minimum rela-
tive error was 0.506%, and the average relative error was
1.909%, with errors within the engineering allowable range.
In addition, a hybrid PSO-Smith-PID controller was devel-
oped to optimize the control quality after the identification
for temperature control system of internal heating vacuum
furnace, and the simulation experiment results showed that
PSO-Smith-PID hybrid controller shortened the rise time up
to 834.3◦C, the steady-state error and overshoot were negligi-
ble, and the adjustment time was shortened up to 4011.5 sec-
onds. The control quality was significantly improved. Our
work may provide new temperature detection methods for
the smelting of different alloys. Using numerical modeling
approach to research the temperature field distribution when
smelting different alloys with the vacuum furnace, as there
are many engineering challenges to be solved, is also our
next major work. The heat transfer mode for vacuum fur-
naces is different from the normal furnace. It is of practical
significance to study how to improve the uniformity for the
temperature distribution and how to measure the distribution
of the temperature field in the furnace.
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