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ABSTRACT Automatic defect detection of light guide plates (LGPs) is an important task in the manufacture
of liquid crystal displays. During thermo-printing, defects of tag lines on LGPs may occur easily, and these
defects are of two categories: bubbles and missing tag lines. These defects lack salient visual attributes, such
as edge-based and region-based features, and as such, traditional methods fail to detect them. To address
this, we propose a Dense-bilinear convolutional neural network (BCNN), an end-to-end defect detection
network, utilizing Dense-blocks (Huang et al., 2017), Bilinear feature layers (Lin et al., 2015), and squeeze-
and-excitation blocks (Hu et al., 2018). Our network exploits fine-grained texture features, which leads to
parameter reduction and accuracy enhancement. We validate our network on our LGP dataset containing
5,860 images from three cases: bubbles, tag line existence, and tag line missing. Our network outperforms
AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and Zisserman, 2014) and ResNet (He et al., 2016),
on both the public and our LGP datasets with less GPU memory consumption.

INDEX TERMS Defects detection, texture classification, bilinear convolutional neural networks.

I. INTRODUCTION
In recent years, liquid crystal displays have become increas-
ingly thinner, and owing to this, the demand for high quality
light guide plates (LGPs), which are core components of the
backlight module, has increased. Defect detection of LGPs
is an essential requirement in liquid crystal displays and can
be performed using machine vision. Specifically, the task of
LGP defect detection is categorized into three types, bub-
bles (i.e., defects), tag lines missing (i.e., defects) and tag
lines existence (i.e., Normal), as shown in Fig. 1. However,
to save cost, industrial detection systems are usually equipped
with low-cost cameras and cheap GPUs with small memory
sizes. Therefore, defect detection is mostly performed using
gray-level cameras and simple image processing algorithms.

Traditional detection methods usually involve image pre-
processing for the extraction of edges or regions of LGPs
for locating the tag line. However, LGPs have good light
transmittance, which causes the image edges to blur and
the regions to become inconsistent. This renders the tradi-
tional image preprocessing and defect detection algorithms
ineffective. As shown in Fig. 2(a), we test the Canny edge
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detector [7], Gabor filters [8] and OTSU [9] and Partial
adaptive threshold methods [10] using LGP images. As can
be seen, it is difficult to distinguish the line with no lines
and bubbles based on the results of these methods. Fig. 2(b)
illustrates the result of tag line detection based on high-order
polynomial coefficient line fitting and Gaussian elimination
methods [11]. From Fig. 2, we can find that traditional
image preprocessing methods and line detection methods
are sensitive to blurred edges and inconsistent regions of
LGPs. Moreover, detecting bubbles using these methods is
challenging. Traditional machine-vision methods are unable
to ensure such flexibility as features must be hand-crafted to
suit the particular domain. Thus, traditional machine-vision
methods conflict the trend moving towards generalization of
the production line. Deep learning-based methods provide
flexible solutions that can be quickly adapted to new types
of products, only using the appropriate number of training
images [12]

To address the challenges associated with the defect detec-
tion of LGPs using the traditional methods, we herein use
texture features that provide rich information for defect
classification. Our detection method is mainly based on
image texture classification, where the texture features pro-
vide the context about the image for inference, and often,
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FIGURE 1. Detection of tag line existence (called ‘‘NG-0’’ below), tag line
missing (called ‘‘NG-1’’ below), and bubbles (called ‘‘NG-2’’ below).
(a) Line without pollution, i.e., defect-free (called ‘‘OK’’ below). (b) Line
with pollution at different levels, i.e., ‘‘NG-0.’’ (c) and (d) Line missing,
i.e., ‘‘NG-1.’’ (e) Bubble defect, i.e., ‘‘NG-2.’’

the richer the features, the better is the inference. Sev-
eral studies have focused on designing an optimal filter to
extract texture features with high discriminability. Sophis-
ticated hand-designed features cannot be automatically and
directly extracted from large datasets. The recent impressive
results of deep learning-based methods in machine vision
applications have opened up new possibilities for the research
and industrial communities. This success can be attributed
to the fact that these methods can learn data-driven features,
and as such, hand-craft features are not required in such
methods. Moreover, deep neural networks are trained end-
to-end directly on raw image pixel values. Recently, bilinear
convolutional neural networks (BCNNs [2]) were proposed to
build orderless texture representations and can be trained in
an end-to-end manner. The original BCNNs are based on the
VGG [5] backbone. Essentially, the bilinear feature generated
by BCNNs can be considered equivalent to the Gram matrix
representation, which is a well-known classical two-order
texture descriptor. Inspired by BCNNs and to ensure cost-
effectiveness (i.e. GPU memory size is a dominant factor of
GPU price), we improve BCNNs by reducing the number of
parameters achieved by a hybrid framework of BCNNs and
Dense-blocks, and boosting the performance of the network
with the use of squeeze-and-excitation (SE) blocks.

The main contributions of this work are two-fold:

• We perform defect detection of LGPs using improved
BCNNs by replacing the VGG backbone with
Dense-blocks and SE-blocks. To the best of our knowl-
edge, few studies have proposed the use of bilinear
features for defect detection with potential for practical
application. Our method outperforms the state-of-the-art
CNNs on our LGP dataset.

• We build an LGP dataset, which is a special type of
dataset that we use for defect detection. To the best of
our knowledge, there is no publicly available dataset for
the automatic defect detection of LGPs. We annotated

FIGURE 2. Failures of traditional methods. Red lines in (b) are detected as
tag lines, which apparently deviate the true tag line.

5,860 images, based on the three main categories of LGP
defects.

Our method only requires gray-level images as input and
very few parameters, which significantly increases its appli-
cability in the industry as cheap GPUs can be used. In the
remainder of the paper, we first discuss related work, then
introduce our method, and finally evaluate and compare it
with the state-of-the-art methods.

II. RELATED WORK
Studies concerning defect detection for industrial inspection
are scarce. We now review the relevant literature.

A. HAND-CRAFTED FEATURES METHODS
Traditional defect inspection methods usually involve image
acquisition, image preprocessing, defect region segmenta-
tion, feature extraction, and defect classification. Among
these steps, defect region segmentation and feature extraction
are the most critical in defect classification. Bi et al. [13],
Gan and Zhao [14] used region-based and modified region-
based segmentation methods to detect Mura defects. Li and
Tsai [15] proposed a hough transform-based line detection to
identify low-contrast defects in unevenly illuminated images.
Lu and Tsai [16] detected scratch and fingerprint defects
based on a global image reconstruction scheme using the
singular value decomposition method. However, as the afore-
mentioned methods are sensitive to noise and uneven back-
ground, they are incapable of detecting various types of
defects. Texture-based models are more robust and natural to
defect classification. It is generally agreed that the extraction
of powerful texture features lead to reliable classification
results. The study of texture analysis can be traced back to
the earliest work of Julesz [17], who suggested that texture
can be modeled using k th order statistics of pixels, also called
the cooccurrence statistics. Gray level cooccurrence matrix
(GLCM) [18] method was developed based on the cooc-
currence statistics. Jiang et al. [19] performed weld defect
classification using GLCM. Approaches using filters such as
the Gabor filter were widely used for texture representation
in the early years [8]. Li et al. [20] analyzed the texture
information of woven fabric using Gabor filters.
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However, in a traditional machine-vision fashion, features
have to be hand-crafted to suit the particular application.
In the final stage, a decision is thenmade using a hand-crafted
rule-based approach or using learning-based classifiers such
as support vector machines (SVMs), decision trees, or kNN.
Since such classifiers are less powerful than deep-learning
methods, the hand-crafted features become very important.
In the past, much effort has been made to extract optimal
features manually.

B. CNN-BASED METHODS
With the advent of neural networks, it is now possible to
perform defect inspection using convolutional neural net-
work (CNN) based methods. CNNs improve flexibility of
feature extraction since they are data-driven. The developed
methods can be quickly adapted to new types of prod-
ucts and defects by only changing training images. Li [21]
used neural networks to learn and detect different types of
Mura defects. However, his method requires that the fringe
images be enhanced before being learned by neural net-
works. In fact, popular generic CNN Models can serve as
good choices for feature extraction, including AlexNet [4],
VGG [5], GoogleNet [22], ResNet [6] and DenseNet [1].
AlexNet was the first to be proposed for this purpose, and
the ones proposed later on are deeper and more complex
than AlexNet. Deep-learning methods began being applied
more often to defect classification problems shortly after
the introduction of AlexNet. Masci et al. [23] showed their
deep-learning approach based surface-defect classification
can outperform classic machine-vision approaches where
hand-engineered features are combined with SVMs. They
achieved excellent results; however, their work was limited to
a shallow network (a CNN with five layers), as they did not
use ReLU and batch normalization. Faghih-Roohi et al. [24]
used a similar architecture for the detection of rail-surface
defects. They used ReLU activation function and evalu-
ated several networks for the problem of classifying rail
defects. Weimer et al. [25] evaluated several deep-learning
architectures with varying depths of layers for surface-
anomaly detection. Some surface-anomaly detections can be
addressed as binary-image-classification problems. There-
fore, DeepLabv3+ [26] and U-Net [27], normally used for
the semantic segmentation, are also applied to defect detec-
tion task. However, some defect detections are difficult to
recognize using semantic segmentation methods. Recently,
Gatys et al. [28] showed that theGrammatrix representations
extracted from various layers of a VGG can be inverted for
texture synthesis. BCNNs [2] yield a pooled outer product of
features from two CNNs, identical to Gram matrix represen-
tations, i.e., in the 2nd order statistics of pixels. The bilinear
pooling of CNN features was proved to be advantageous for
texture recognition by Lin and Maji [29].

We reformulate our defect detection into a fine-grained
texture recognition problem. Fine-grained texture recognition
is a challenging problem and has recently emerged as an
active topic, due to the diverse appearance and complex struc-

ture of texture, high intra-class variability and small inter-
class differences. Similar to the traditional texture methods,
the bilinear feature vector is an orderless representation of the
input image and is therefore suitable for modeling textures.
Compared to the related methods, the approach proposed in
this paper follows an end-to-end design with the DenseNet
network and the Bilinear network. Our method is evaluated
and compared with the state-of-the-art methods. The results
provide an insight in the complexity of different industrial
defects recognition tasks.

III. METHOD
A. OVERVIEW OF THE NETWORK
As discussed in Section I, GPU cost and performance are
critical aspects that need to be considered for industrial
defect detection. A drawback of the bilinear features is the
memory overhead of storing the high-dimensional features.
Thus, our method is based on DenseNet, which requires less
parameters and does not suffer from the problem of gradi-
ent vanishing, thereby meeting the economic requirement.
For detection accuracy, we use BCNNs to extract orderless
texture features and augment the networks using SE-blocks
that strengthen their representational power by adaptively
recalibrating channel-wise feature responses. Therefore, our
proposed network meets the requirements of cost and perfor-
mance for industrial applications.

Fig. 3 illustrates the architecture of our network for LGP
defect detection. The design of the defect classification net-
work follows two important principles. First, the appropri-
ate capacity for large complex appearances is ensured by
using several layers of convolution and bilinear modules. This
enables the network to capture not only the local texture
features, but also the global ones that span a large area of the
image. We also consider features between channels and use
SE-blocks to improve the quality of representations produced
by the network by explicitly modeling the interdependencies
between the channels of its convolutional features. Second,
our network should reduce the overfitting to the large number
of parameters. We employ Dense-blocks which introduces
a shortcut that the network can use to avoid using a large
number of feature maps, if they are not needed. In our
network, we use five Dense-blocks, four SE-blocks, and a
Bilinear feature layer in the end; there are therefore a total
of 118 convolution layers. We also employ transition layers;
1 × 1 conv and 2 × 2 average pooling by stride 2. The
main difference between DenseNet and our network is that in
our network, the final feature passes through a pooled outer
product, thereby leading to the generation of an orderless tex-
ture feature. In the experiments, we find that our architecture
achieves higher precision than VGGs based BCNNs.

B. OUR METHODS
1) FEATURE FUNCTIONS AND LOSS
The bilinear feature (or the Gram matrix form) is a type
of orderless representation of an image and is therefore a
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FIGURE 3. Architecture for implementing our approach. It is based on DenseNet backbone, to which SE-blocks and Bilinear feature layers are added.
Input is a gray-level image, and output is the class, similar to the bubble defect, tag line existing, and tag line missing.

decent texture descriptor. The simplest bilinear feature layer
can be implemented using a pooled outer product of fea-
tures derived from two identical convolutional features. The
bilinear layer is closely related to the Second-Order Pooling
approach [30]. However, more studies show that the bilinear
feature is generic, and several texture representations can be
written as bilinear features. The paper [2] has shown that
various orderless texture descriptors can be written in the
bilinear form and derive variants that are end-to-end trainable.
Moreover, bilinear layers can be easily plugged into existing
CNNs or domain-specific fine-tuning for transfer learning.
Our loss function is the cross-entropy cost function for clas-
sification. The feature outputs are given by the sum of the
pooling of the outer products of features from the last Dense-
block.

In the classification task, the BCNN model B is defined
as quadruple B = (fA, fB,P, C), where fA and fB are two
CNN feature function, P is a pooling function, and C is a
classification function. This BCNN extracts deep visual φ for
image I as below:

φ (I ) =
∑
l∈L

bilinear (l, I , fA, fB) (1)

where bilinear (l, I , fA, fB) = fA (l, I τ ) fB (l, I ) is the bilinear
feature combination of fA and fB at each location l ∈ L. The
mapping function f : I×L→ Rc×D outputs a feature vector
of size c×D for image I at location L. For the classification
task, function C is trained using image features φ. Note that
φ is a high-dimensional feature vector.

In our network, we implement B by concatenating the fea-
ture output fromH (·) into a vector and feeding it into an outer
product. Fig. 4 and Fig. 5 provide the details of implementing
B and H (·). Our network comprises 100 convolution layers,
9 connected layers, and 115 ReLUs and batch normalization
layers. Table 1 shows that the use of the bilinear feature layer
leads to a significant improvement in accuracy and loss.

To exploit the discriminability of BCNNs, we employ the
SE-blocks and Dense-blocks. These blocks can improve the
quality of representations produced by a network by explic-
itly modeling the interdependencies between the channels of
its convolutional features. Our ablation study demonstrates
the effectiveness of using SE-blocks and Dense-blocks for
the precision and recall of the network. Dense-blocks help the

FIGURE 4. Architecture of the Dense-block. Dense-block 1-4 consist of
four H(·) functions, while Dense-block 5 has 32 H(·).

FIGURE 5. Detailed configuration of the H(·) function.

FIGURE 6. Statistics of the LGP dataset: (a) Tag lines existing with
different levels of polluted backgrounds. (b) Disappearance of tag lines
caused by different levels of print contamination. (c) Defects obtained by
varying sizes of bubbles.

network converge to a low loss, and SE-blocks can achieve
high precision on the validation set.

2) END-TO-END TRAINING
Compared to existing methods, we do not have to trans-
fer weights from pre-trained weights to initialize BCNNs.
We directly train our network from scratch in an end-to-end
manner; consequently, we find that our training converges
fast.

IV. EXPERIMENTS AND ANALYSIS
The proposed network is extensively evaluated on the defect
detection of LGPs and objects classification. This section first
presents the details of the dataset and then presents the details
of the evaluation and its results.We implement our end-to-end
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FIGURE 7. Instances of the LGP dataset.

FIGURE 8. Visual explanations generated by our method on LGP images
with bubbles and the tag line. The heatmaps provide insight into what the
network focused on: bubbles or tag lines.

architecture with Tensorflow and run it on an i5-10400F CPU
with an NVIDIA Geforce RTX3060 12GB.

A. LGP DATASETS
The LGP dataset comprises 4 categories and 3,969 gray-
level images, each of 448 × 448 pixels and captured
using industrial CMOS cameras. Note that we perform
data augmentation on categories of ‘‘NG-0,’’ ‘‘NG-1,’’ and
‘‘NG-2’’ by flipping images horizontally and vertically.
Finally, we obtain 6,905 images, comprising 1,419 images of
‘‘NG-0,’’ 889 images of ‘‘NG-1,’’ 2,097 images of ‘‘NG-2,’’
and 2,500 images of ‘‘OK.’’ Fig. 7 presents instances of
different types in the LGP dataset. The corresponding statis-
tics of the LGP dataset are shown in Fig. 6. We split the
LGP dataset into a train set (5,594 images), validation set

(620 images) and test set (691 images). Fig. 6 illustrates the
distribution of the bubble sizes, tag line pollution levels, and
contamination levels. Small bubbles, heavy pollution, and
heavy contamination are also identified, and they occupy a
certain portion; these can be regarded as hard samples.

B. OPTIMIZATION USING RECTIFIED ADAM
Now, an adaptive learning rate is used to accelerate the
optimization of the deep learning model, which is the main
method for developing the optimizer. Many optimization
methods have been proposed, such as the adaptive gradient
algorithm, Adadelta, Adamax, root mean square propaga-
tion, adaptive moment optimization (Adam), or Nesterov
adaptive moment optimization. Rectified Adam is one of the
most progressive algorithms, which was developed by [31].
It improves the generalization, and introduces a term to rec-
tify the variance of the adaptive learning rate by applying
warm up with a low initial learning rate. Rectified Adam has
been confirmed in project research and achieved success [32].

Computing the weights according to the Adam optimizer:

Wt = Wt−1 − η
m̂t
√
υ̂ + ξ

(2)

The first moving momentum:

mt = (1− β1)
t∑
i=0

β t−i1 gi (3)

The second moving momentum:

υt = (1− β2)
t∑
i=0

β t−i2 g2i (4)

The bias correction of the momentums:

m̂t =
mt

1− β t1
(5)

υ̂t =
υt

1− β t2
(6)

Adding the rectification term in Equation (1), the recent
variant of the Adam optimization, named rectified Adam
(RAdam), has the form:

Wt = Wt−1 − η
m̂t
√
υ̂

(7)

where the step size, η, is an adjustable hyperparameter and
rectification rate is:

rt =

√
(pt − 4)(pt − 2)p∞
(p∞ − 4)(p∞ − 4)pt

(8)

with

pt = p∞ −
2tβ t2
1− β t2

and p∞ =
2

(1− β t2)
− 1

When the length of the approximated simple moving aver-
age is less than or equal to 4, the variance of the adaptive
learning rate is deactivated. Otherwise, the variance rectifica-
tion term is calculated and parameters are updated with the
adaptive learning rate.
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TABLE 1. Our method vs. popular methods on the LGP without noise
using 10-fold cross-validation.

TABLE 2. Our method vs. popular methods on the LGP with Gaussian
noise (σ = 0.1) using 10-fold cross-validation.

TABLE 3. Our method vs. popular methods on the LGP with Gaussian
noise (σ = 0.5) using 10-fold cross-validation.

C. RESULTS ON THE LGP DATASET AND PUBLIC DATASETS
In this section, we evaluate our method first on public datasets
and then on the LGP dataset containing images that have
Gaussian noise in them. In Table 1, we compare our method
with popular classification CNNs, such as AlexNet, VGG16,
BCNN based on VGG backbone, ResNet with 101 layers,
ShuffleNet (version 2), Mobilenet (version 3), and DenseNet
on public datasets. Ourmethod (herein, referred to as ‘‘BCNN
+ SE+Dense,’’ where ‘‘SE’’ and ‘‘Dense’’ means SE-blocks
and Dense-blocks, respectively) achieves the best perfor-
mance on most of the metrics, and outperforms most of the
aforementioned methods significantly. Although our method
is slightly inferior to BCNN based on DenseNet backbone,
the STD of 10-fold in terms of accuracy shows that our
method is more stable. Note that accuracy, recall, precision,
and STD in Table 1 to Table 7 are the mean of four categories.

To further evaluate our method, we add Gaussian noise on
the LGP images and test our network using ResNet and Shuf-

TABLE 4. Our method vs. popular methods on the LGP with Gaussian
noise (σ = 1.0) using 10-fold cross-validation.

TABLE 5. Our method vs. popular methods on the LGP with 5% salt and
pepper noise using 10-fold cross-validation.

TABLE 6. Our method vs. popular methods on the LGP with 10% salt and
pepper noise using 10-fold cross-validation.

TABLE 7. Our method vs. popular methods on the LGP with 20% salt and
pepper noise using 10-fold cross-validation.

fleNet. Table 2 to Table 7 reports that our network is robust
to different levels of noise. Although, in the case of Gaussian
noise ranging from σ = 0.1 to σ = 1.0, the accuracy of our
network drops slightly, our network has smaller STD in terms
of accuracy than most of other methods at all levels of noises.
Similarly, we achieve good performance in the case of salt
and pepper noise ranging from 5% to 20%.Moreover, we find
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TABLE 8. Comparisons with popular methods in terms of parameter,
training time, and inference time.

that our method is better in terms of recall. Note that recall is
significant in industrial defect detection.We note that Alexnet
and VGG16 achieves better performance except in terms of
recall for heavy salt and pepper noise. These old networks
may shed light on how a network robust against noise attacks
can be designed.

Table 8 reports GPU memory usage as well as training and
inference time for different methods. We observe that our
method provides a good balance between network parame-
ters, training time, and inference time. Our network consumes
less GPU memory, and achieves fast inference. However, our
training time is slightly longer than that of other methods.
Nevertheless, it is acceptable for industrial applications.

We also provide a visual explanation for the output of our
last convolutional layer in Fig. 8.We observe that the position
of the highest responses of our network can efficiently locate
the defect areas. Our network can capture the features of
bubbles and the tag line.

D. ABLATION STUDY
To investigate the behavior of our proposed method, we con-
duct several ablation studies. First, we investigate the effect
of bilinear layers. To do this, we compare DenseNet with
BCNN with Dense-blocks; we observe that the latter is
superior to DenseNet, as listed in Table 1. To validate the
effect of the SE-blocks, we compare BCNNwith and without
SE-blocks; we find that SE-blocks lead to improvement in
most cases, as listed in Table 1. Even for Gaussian and
salt and pepper noise, we can still make improvements with
SE-blocks, as listed in Table 2 to Table 7. Furthermore,
we present the Precision–Recall curves of four alternatives,
including BCNN, BCNN with Dense-blocks, BCNN with
SE-blocks, and BCNN with SE-blocks and Dense-blocks.
As shown in Fig. 9, we observe that SE-blocks and Dense-
blocks improve the performance significantly, while achiev-
ing higher AUC values. The results on the Precision–Recall
curves are consistent with our results in Table 2 to Table 7.
Moreover, Fig. 10 and Fig. 11 shows that our network con-
verges faster during training.

E. INDUSTRIAL SCENARIOS TEST
We also conduct a realistic test of our method using LGP
images captured from a production line. Fig. 12 illustrates our

FIGURE 9. Precision-recall curves of our approach and other alternatives.
(a), (b), (c) and (d) show precision-recall curves and AUCs. The curve with
high AUC value represents its method has good classification
performance.
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FIGURE 10. Ablation study on the LGP by comparing our approach in
terms of recall with two alternatives: DenseNet with and without
SE-blocks.

FIGURE 11. Ablation study on the LGP by comparing our approach in
terms of precision with two alternatives: DenseNet with and without
SE-blocks.

FIGURE 12. Our LGP defect detection system. Industrial CMOS camera is
facing the conveyor belt, and it automatically captures the LGP images.
Our network is being run on a GPU in the backend.

industrial set up, which includes an industrial CMOS camera
and some software modules. The camera captures the LGP
images and sends them to our network via backend. Our net-
work runs on a GPU and is capable of processing images with
a speed of approximately 66 FPS. Since our network requires
an exceptionally lowGPUmemory footprint (63.29MB), our
method can also be run on a cheap GPUwith a small memory,
which is advantageous for the industrial community.

We compare our method with the traditional method,
our method achieves a high true/false positive, and its per-
formance has also been verified in a real production line.
Notably, traditional image processing algorithms are not
robust to noise and regional inconsistency as well as not
flexible to new task.

We also present the confusion matrix of our method
in Fig. 13. Our algorithm yields an extremely high true
positive and extremely low false positive and negative. Our

FIGURE 13. Confusion matrix of our algorithm. Yellow indicates 1.0 and
purple indicates 0.0.

method demonstrates good discrimination ability and less
confusion between different classes.

V. CONCLUSION AND DISCUSSION
In industrial processes, one of the most important tasks is
defect detection, which ensures the quality of the finished
product. Often, quality control is carried out manually and
workers are trained to identify complex defects. Such control
is, however, very time consuming, inefficient, and results in
a serious limitation of the production capacity.

This paper explored a deep-learning approach to surface-
defect detectionwith a texture classification network from the
point of view of specific industrial application. We propose a
novel end-to-end LGP defect detection network based on an
improved version of BCNNs. Specifically, we aim to detect
three types of cases: tag line existence, tag linemissing defect,
and bubble defect. To address the challenges associated with
noise and regional inconsistency in images, we introduce
Dense-blocks and SE-blocks to the BCNNs to improve the
classification discriminability of defects texture. Our method
achieves the best performance compared to AlexNet, VGG,
ResNet, ShuffleNet, Mobilenet and DenseNet. Furthermore,
our network requires less parameters and is suitable for appli-
cation in cheap GPUs with less memory for industrial inspec-
tion. We also verify our method in real industrial scenarios
and confirm that it achieves superior performance for use by
the industrial community. In future work, we will focus on
acquiring new complex datasets based on real-world visual
defects inspection problems, where deep-learning (and other)
methods could be realistically evaluated in full extent; the
dataset presented in this paper is a first step in this direction.
Our CNN model still can be optimized further in terms of
inference and training time.
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