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ABSTRACT Radar detection of small drones in presence of noise and clutter is considered from a
differential geometry viewpoint. The drone detection problem is challenging due to low radar cross section
(RCS) of drones, especially in cluttered environments and when drones fly low and slow in urban areas.
This paper proposes two detection techniques, the Riemannian-Brauer matrix (RBM) and the angle-based
hybrid-Brauer (ABHB), to improve the probability of drone detection under small sample size and low signal-
to-clutter ratio (SCR). These techniques are based on the regularized Burg algorithm (RBA), the Brauer
disc (BD) theorem, and the Riemannian mean and distance. Both techniques exploit the RBA to obtain
a Toeplitz Hermitian positive definite (THPD) covariance matrix from each snapshot and apply the BD
theorem to cluster the clutter-plus-noise THPD covariance matrices. The proposed Riemannian-Brauer
matrix technique is based on the Riemannian distance between the Riemannian mean of clutter-plus-noise
cluster and potential targets. The proposed angle-based hybrid-Brauer technique uses the Euclidean tangent
space and the Riemannian geodesical distances between the Riemannian mean, the Riemannian median and
the potential target point. The angle at the potential target on the manifold is computed using the law of
cosines on the manifold. The proposed detection techniques show advantage over the fast Fourier transform,
the Riemannian distance-based matrix and the Kullback-Leibler (KLB) divergence detectors. The validity
of both proposed techniques are demonstrated with real data.

INDEX TERMS Differential geometry, Burg algorithm, Brauer disc theorem, Riemannian mean and
distance, Toeplitz Hermitian positive definite covariance matrices.

I. INTRODUCTION
Radar target detection in the presence of clutter and noise
under low signal-to-noise ratio (SNR) is an important and
evolving problem in signal processing [1]. Specifically,
the detection of small drones presents more challenging fac-
tors, such as low radar cross section (RCS), low altitude
flying in cluttered environment and slow flying in urban
areas. These factors reduce the SNR and limit the number
of received radar snapshots and result in low probability of
detection.

The associate editor coordinating the review of this manuscript and

approving it for publication was Seung-Hyun Kong .

The drone detection problem has been studied by many
researchers. The detection technique introduced by [2]
exploits a passive coherent location (PCL) radar system for
the detection of the micro-Doppler signature induced by the
blades of the drone. The micro-Doppler characteristics of
the drone are extracted from the cross-ambiguity function
map. Another drone detection technique presented by [3] is
based on an ultra-wide band sensing system and advanced
signal processing methods. This technique has many advan-
tages, such as sensing small drones built from heterogeneous
materials and detecting a drone’s movements in out of sight
scenarios.

Current signal processing techniques may be inadequate to
reliably capture small or mini drones because they do move
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very fast. The amount of data available for processing may
be very small and therefore some advanced signal processing
techniques may be in order. The probability of drone detec-
tion can be improved with sophisticated signal processing
algorithms. Classical detection schemes like the fast Fourier
transform (FFT) constant false alarm rate (CFAR) [4] detector
suffer from performance degradation due to small number of
snapshots and poor Doppler resolution. Target detection with
small amount of data can be approached from the geometrical
point of view. In particular, differential geometry can be
used to provide better detection performance by exploiting
distance and angle metrics [5], [6].

Information geometry constitutes a framework that consid-
ers probability densities as structure of differential geometry
[5]. Specifically, in Riemannian geometry [7], each density
function parameterized by a Toeplitz Hermitian positive def-
inite (THPD) covariance matrix representing a point on the
statistical Riemannian manifold [8], [9]. Using the Karcher
Barycenter [10], the Riemannian (geometric) mean of THPD
covariance matrices can be calculated and the Riemannian
distance between two THPD covariance matrices, which is
the shortest distance between two points of the manifold, can
be computed.

There are many methods such as the Burg algo-
rithm (BA) and the regularized Burg algorithm (RBA) [11],
the atomic-norm minimization [12] and the nuclear-norm
minimization [13] that can be used to estimate the THPD
covariance matrix using a single snapshot. Both the
atomic-norm and the nuclear-norm minimizations use the
sample covariance matrix as an estimate for the covariance
matrix and may suffer degradation when the number of snap-
shots are very limited. On the other hand, BA estimates
the reflection coefficients by minimizing the average of the
forward and backward linear prediction errors with high res-
olution. The RBA has a regularization parameter that adds
more stability, provides better estimates of the reflection
coefficients and guarantees a THPD covariance matrix. The
RBA can be exploited to estimate the reflection coefficients
for every snapshot of the radar observation data. From the
reflection coefficients, one can estimate the THPD covariance
matrix for each radar snapshot.

The Toeplitz structure of the covariance matrices are usu-
ally generated from a uniform linear array configuration [14],
which can be exploited in improving target detection in the
Riemannian space. There are many spectral properties that
can be exploited in processing Toeplitz covariance matrices.
Other array configurations may generate non-Toeplitz covari-
ance matrices. While RBA estimates a THPD covariance
matrix for every snapshot regardless of the antenna configu-
rations, considering a uniform linear array for target detection
may be a natural choice as covariance estimates of uniform
linear array configuration are naturally THPD. This paper
focuses only on uniform linear array configuration.

Localization of eigenvalues for square matrices can be
used to establish a cluster bound around the maximum eigen-
values. Many eigenvalue inclusion techniques, such as the

Gershgorin disc (GD) theorem [15], [16] and the Brauer
disc (BD) theorem [17], [18], have been proposed to establish
inclusion regions for the eigenvalues of square matrices. For
THPD covariance matrices, all Gershgorin and Brauer discs
have the same disc centre and generate overlapping discs
with the largest eigenvalue associated with the largest GD
and BD discs. The BD theorem is based on both the row and
column summations, which provides a tighter disc bound on
the eigenvalues in comparison with the GD theorem [18].

Signal detection based on information geometry was first
introduced in 1989 and highlighted the importance of man-
ifold theory in statistical information [5], [19] where the
hypothesis testing problem was explained using a statistical
manifold [6]. A novel signal detector based on a Riemannian
manifold of Hermitian positive definite matrices, also known
as the Riemannian distance (RD) based CFAR detector (RD-
CFAR), was proposed by [20]–[23]. The RD-CFAR detector
is based on the Riemannian mean or the Riemannian median
of the reference covariance matrices around the covariance
matrix under test. The Riemannian distance is computed
between the covariance matrix under test and the Rieman-
nian mean or median and then compared to a set threshold.
Although, the RD-CFAR detector outperforms the traditional
FFT-CFAR detector [24], it has two major drawbacks: the
number of Riemannian mean or median computations is
proportional to the number of snapshots and the Riemannian
mean and median are not robust to outliers [25]. Another Rie-
mannian geometry detection method was proposed in [25],
[26] based on the Kullback-Leibler (KLB) divergence. The
KLB technique performs better than the RD-CFAR detector
and adaptive matched filter CFAR detectors, however the
KLB mean and median are also not robust to outliers [26].

Two new detectors, the Riemannian-Brauer matrix (RBM)
CFAR and the angle-based hybrid Brauer (ABHB) CFAR
detectors are proposed in this paper. Both detectors have
two stages in their implementation. RBM-CFAR and
ABHB-CFAR detectors exploit the BD theorem to establish
BD cluster bound for the clutter-plus-noise THPD covariance
matrices and identify potential target points. In addition, they
take advantage of the Riemannian metrics, such as distance
and angle, and the Euclidean tangent space at potential THPD
target point to improve the probability of detection. The
proposed CFAR detectors provide 2–5 dB signal-to-clutter
improvement over the FFT-CFAR, the RD-CFAR and the
KLB-CFAR detectors when tested on simulated and real
data.

The rest of the paper is organized as follows. Section II for-
mulates and explains the radar detection problem. Section III
provides a brief background on the Burg algorithm and the
Riemannian space of THPD covariance matrices. Section IV
presents the Gershgorin disc theorem and the Brauer disc
theorem. Section V is devoted to the new proposed detection
techniques, which are the primary contributions of this paper.
Section VI and VII provide results obtained through simula-
tions and real data analysis. Finally, Section VIII concludes
the paper and gives some direction for future work.
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II. DETECTION PROBLEM FORMULATION
The received complex radar data for an N element snapshot
can be written as x = (x0, . . . , xN−1) and is realized as a
multivariate stationary complex Gaussian process with zero
mean, x ∼ CN (0,R), which can be written as

P(x|R) =
1√

πNdet(R)
exp(−xHR−1x) (1)

where P(x|R) is the probability density function (pdf) of a
circular Gaussian random vector andR is a THPD covariance
matrix.

In general, the detection problem can be formulated as the
binary hypothesis testing problem [27], [28]

{
H0 : x = n+ c
H1 : x = s+ n+ c

(2)

where s is a complex Gaussian random signal, n is complex
Gaussian noise and c is complex valued Weibull clutter. As a
special case, the Weibull clutter has a Gaussian PDF when
the skewness parameter is 2 [29]. Under the null hypothesis
H0, the received snapshot consists of only noise-plus-clutter
and under the alternative hypothesisH1, the received snapshot
contains the target in addition to the noise and clutter. The
covariance matrix of the snapshot x can be determined using
the Burg algorithm discussed in the next section.

III. REGULARIZED BURG ALGORITHM AND SPACE OF
POSITIVE DEFINITE COVARIANCE MATRICES
Burg’s method for maximum entropy spectral analysis plays
a key role in spectral estimation, speech processing and radar
covariance matrix estimation [11], [30]. The RBA will be
exploited to estimate the reflection coefficients for every
snapshot (range cell) of the radar observation data. From the
reflection coefficients, one can estimate the THPD covari-
ance matrix for each radar snapshot. Each THPD covariance
matrix represents a convex cone residing on the Rieman-
nian manifold, which can be manipulated using Riemannian
metrics.

A. REGULARIZED BURG ALGORITHM
The regularized Burg algorithm is an alternative Bayesian
composite model approach to spectral estimation. The reflec-
tion coefficients are based on autoregressive model order and
minimizing the sum of mean squared values of the forward
and backward prediction errors. This algorithm maintains a
lattice structure, which provides robustness against coeffi-
cient value perturbation and less round-off noise [22]. The
RBA is shown in Algorithm 1 [11], [21], [31], where ψ1 is
the regularization parameter andN is the number of reflection
coefficients and autoregressive model order.

The reflection coefficients µk are used to calculate the rk ,
which are the elements of the THPD covariance matrix R of

Algorithm 1 Regularized Burg Algorithm [20]
Initialization

f0(k) = x(k), k = 0, . . . ,N − 1,

b0(k) = x(k),

P0 =
1
N

N−1∑
k=0

|x(k)|2

for n = 1 to N − 1 do

µn = −

2
N−n

∑N
k=n+1 fn−1(k)b̄n−1(k − 1)+ δn

1
N−n

∑N
k=n+1

{
|fn−1(k)|2+|bn−1(k−1)|2

}
+δd

,

with

ν
(n)
k = ψ1(2π )2(k − n)2,

δn = 2
n−1∑
k=1

ν
(n)
k a(n−1)k a(n−1)n−k ,

δd = 2
n−1∑
k=0

ν
(n)
k |a

(n−1)
k |

2

and
a(n)0 = 1,

a(n)k = a(n−1)k + µnā
(n−1)
n−k , k = 1, . . . , n− 1

a(n)n = µn{
fn(k) = fn−1(k)+ µnbn−1(k − 1),
bn(k) = bn−1(k − 1)+ µ̄nfn−1(k).

end for

snapshot x written as

R =



r0 r̄1 · · · r̄N−1
r1 r0 · · · r̄N−2
...

. . .
. . .

...

rN−2
. . .

. . . r̄1
rN−1 · · · r1 r0

 . (3)

where r̄1 denotes the complex conjugate of r1. The rk are
computed using [20]

r0 = P0, r1 = −P0µ1 (4)

rk = −Pk−1µkαTk−1Jk−1R
−1
k−1αk−1, 2 6 k 6 N − 1 (5)

where

αk−1 =

 r1
...

rk−1,

 , J0 = 1, J1 =
[
0 1
1 0

]
,

Jk−1 =


0 0 · · · 1
0 · · · 1 0
· · · · · ·

1 · · · 0 0

 ,
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Rk−1 = R(2 : k, 1 : k − 1), Pk−1 = P0
k−1∏
i=1

(1− |µi|2).

B. SPACE OF POSITIVE DEFINITE COVARIANCE MATRICES
The space of positive definite covariance matrices, also
known as a Riemannian manifold, consists of a topological
space with some similarity to a Euclidean space. Every point
on the Riemannian manifold has a neighbourhood for which
there exists a homeomorphism. A Riemannian manifold is a
differentiable manifold in which each tangent space has an
inner product that varies smoothly from point to point [32],
[33]. Each point on the Riemannian manifold is a THPD
covariance matrixR that belongs to a convex symmetric cone
M residing on the manifold

M = {R | R ∈ P,R � 0} (6)

where� denotes positive definite matrix, P =
{
R,RH

= R
}

denotes the space of all Hermitian matrices and the quadratic
form of R is aHRa > 0,∀a ∈ Cn. The process of acquiring
a Riemannian mean (geometric) of K THPD matrices is an
iterative gradient algorithm also known as Karcher Barycen-
ter algorithm [31], which is based on the Jacobi field and
exponential map

At+1 = A1/2
t exp

{
ε

K∑
k=1

logm(A−1/2t RkA
−1/2
t )

}
A1/2
t (7)

where t is the iteration index, ε is the step size, logm is the
Riemannian logarithmic map operator, K is the number of
snapshots, {R1, . . . ,RK } is a set of THPD matrices, A1 is
the arithmetic mean of the THPD matrices and the converged
At+1 is the Riemannian mean Rrm. Figure 1 illustrates an
example of THPD covariance matrices and their Riemannian
mean on a Riemannian manifold. Similarly, the Riemannian
median can be defined using the same parameters as the
Riemannian mean [34], which is given as

At+1 = A1/2
t exp

{
ε

K∑
k=1

logm(A−1/2t RkA
−1/2
t )

C

}
A1/2
t (8)

where C =
∥∥∥logm(A−1/2t RkA

−1/2
t )

∥∥∥
F
, ‖·‖F is the Frobenius

norm and the converged At+1 is the Riemannian median
Rrmed .

Another important metric for a Riemannian manifold is
the Riemannian distance. The Riemannian distance is the
minimum geodesical distance dR between two THPD covari-
ance matrices R1 and R2, that represent two points on the
Riemannian manifold, and is defined by [7]

d2R(R1,R2)=
∥∥∥logm(R−1/21 R2R

−1/2
1 )

∥∥∥2
F
=

l∑
k=1

log2(λk ) (9)

where {λ1, . . . , λl} are the eigenvalues ofR
−1/2
1 R2R

−1/2
1 and

l is the number of eigenvalues.
In addition, a tangent space can be defined for every point

on the Riemannian manifold. A tangent vector V of the point

FIGURE 1. THPD matrices
{
R1,R2, . . . ,RK

}
with Riemannian mean Rrm

on Riemannian manifold M.

FIGURE 2. Projection of R2 onto the tangent space of R1.

R2 on the tangent space TR1 is the projection of the point R2
onto the tangent space TR1 as shown in Fig. 2. The projection
is defined using the Riemannian logarithmic map operator
[35] as

V = logmR1
(R2)

= R1/2
1 logm

(
R−1/21 R2R

−1/2
1

)
R1/2
1 . (10)

Furthermore, the projection back to the space of the THPD
covariance matrices can be done using the affine-invariant
metric of (9) and the Riemannian exponential map operator
expm as given below

R2 = expmR1
(V)

= R1/2
1 expm

(
R−1/21 VR−1/21

)
R1/2
1 . (11)

The concept of tangent space can be used to manipulate
THPD covariance matrices in Euclidean space where angles
between projected THPD matrices can be calculated.
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IV. GERSHGORIN DISC FOR TOEPLITZ MATRICES
The Gershgorin disc theorem is a well-known and efficient
method for determining the inclusion domain of the eigen-
values of a matrix in terms of its entries. All eigenvalues
of a matrix must lie in a union of discs, each centred at a
diagonal element of the matrix and having a radius equal to
the corresponding deleted row sum [36]. The Gershgorin disc
theorem can also be applied to Toeplitz matrices.
Theorem 1 (Gershgorin Disc Theorem [17]): Let R =

[rij] ∈ Cn×n be a Toeplitz matrix, rii = r0, n > 2 and σ (R)
be the spectrum of R. Then,

σ (R) ⊆ 0(R) =
d n2e⋃
i=1

0i(R)

where 0i(R) =
{
z ∈ C : |z− r0| ≤ max

i∈N
ai(R)

}
ai(R) =

∑
i6=j

∣∣rij∣∣
⌈n
2

⌉
=


n
2
, if n is even,

n+ 1
2

, if n is odd.
(12)

0(R) is the union of the Gershgorin set of discs for the covari-
ance matrix R. Although the Gershgorin disc theorem pro-
vides a good inclusion bound for the eigenvalues, the Brauer
disc theorem provides a tighter inclusion bound that depends
on the row and column summations for the region of the
eigenvalues.
Theorem 2 (Brauer Disc Theorem [17]): Let R = [rij] ∈

Cn×n be a Toeplitz matrix, rii = r0, n > 2 and σ (R) be
spectrum of R. Then,

σ (R) ⊆ ϒ(R) =
d n2e⋃
i=1

ϒi(R)

where ϒi(R) = {z ∈ C : |z− r0| ≤ D}

D = max
i,j∈N ,i6=j

√
ai(R)aj(R)

ai(R) =
∑
i6=j

∣∣rij∣∣
⌈n
2

⌉
=


n
2
, if n is even,

n+ 1
2

, if n is odd.
(13)

where ϒ(R) is the union of the Brauer disc set of covariance
matrix R. Based on [18], the Brauer eigenvalue inclusion set
is tighter than the Gershgorin set such that ϒ(R) ⊆ 0(R).
An example is shown in Fig. 3. In addition, the maximum
eigenvalue of R is associated with the largest Gershgorin and
Brauer discs [37]. The BD theorem will be used to establish
a cluster bound around clutter-plus-noise THPD covariance
matrices.

FIGURE 3. Example of a Gershgorin and Brauer disc for the maximum
eigenvalue of a covariance matrix R.

V. APPLICATION TO RADAR DETECTION
In this section, two non-parametric CFAR detectors based on
Riemannian and Euclidean spaces are presented. The con-
straint for both CFAR detectors uses Gaussian approximation
of the underlying distribution, so that the covariance matrix
estimation can be used with our proposed CFAR detectors.
Also, the minimum number of snapshots required is equal to
the number of antenna elements to be able to have a successful
detection.

Consider M snapshots received by an antenna array of N
elements, xi = (x0, . . . , xN−1) for i = 1, 2, . . . ,M . Stage
one of the proposed CFAR detectors exploits RBA, which
converts each snapshot to a THPD covariance matrix and
establishes a clutter-plus-noise cluster bound and potential
targets bound around the maximum eigenvalues of the THPD
covariance matrices using the BD theorem. The RBM-CFAR
detector is based on the Riemannian distance between the
Riemannian mean of the clutter-plus-noise THPD covariance
matrices and the potential target THPD covariance matrices
on the Riemannian manifold. The ABHB-CFAR detector
takes advantage of the law of cosines on the Riemannianman-
ifold to compute the detection angle between the Riemannian
mean, the Riemannian median and the potential target points
residing on the Riemannian manifold.

A. RD-CFAR DETECTOR
Arnaudon et al., [20] developed a new matrix CFAR detector
based on the Riemannian space of Hermitian positive definite
matrices (HPD) that outperforms the FFT-CFAR detector.
Unlike the classical CFAR detectors where the range bins
are used to compute a single maximum likelihood sample
covariancematrix [38], the RD-CFARdetector converts every
range bin into an HPD covariance matrix and computes the
Riemannian mean of the reference HPD covariance matrices
excluding the guard THPD covariance matrices as illustrated
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in Fig. 4. Specifically, RD-CFAR is based on the Riemannian
distance dR between the Riemannian mean Rrm of the refer-
ence HPD covariance matrices and the HPDmatrix under test
RD. The Riemannian distance is compared with the adaptive
detection threshold T calculated using the clutter power level
(trace of the Rrm) and the desired probability of false alarm.

FIGURE 4. RD-CFAR detector.

The RD-CFAR detector is based on the Riemannian dis-
tance, which can be written as

dR(RD,Rrm)
H1
≷
H0

T. (14)

The RD-CFAR detector outperforms the cell FFT-CFAR
detector based on spectral estimation [24]. However, the com-
putational cost of RD-CFAR is high since the number of
Riemannian mean computations is equal to the number of
snapshots M . The RD-CFAR detection process is shown
in Fig. 4.

B. BRAUER CLUSTER BOUND
The BD theorem can be exploited to establish a cluster bound
around the maximum eigenvalues of the THPD covariance
matrices. The maximum eigenvalues of THPD covariance
matrices are associated with the largest BD. The centre of the
largest BD, which is the inclusion region for the maximum
eigenvalue, represents the power of the snapshot P0 as shown
in Algorithm 1. In addition, the minimum BD radius ρ of the
maximum eigenvalues of the THPD covariance matrices rep-
resents the minimum bound of the clutter-plus-noise. Using
the BD centres of all THPD covariancematrices ci, the Brauer
cluster bound TB for the clutter-plus-noise can be established
as

TB =
1
M

∑M
i=1 ci(∏M

i=1 ci
) 1
M

ρ (15)

where 1
M

∑M
i=1 ci and

(∏M
i=1 ci

) 1
M

are the arithmetic mean
and geometric mean of the centres of the Brauer discs, respec-
tively. The THPD covariance matrices corresponding to the

eigenvalues inside the Brauer cluster bound are considered
clutter-plus-noise covariance matrices. On the other hand,
the THPD covariance matrices associated with the eigenval-
ues outside the Brauer cluster bound are considered THPD
matrices of potential targets. An example of a Brauer cluster
bound with the BD theorem for maximum eigenvalues of the
THPD covariance matrices is shown in Fig. 5. As can be seen
in Fig. 5, all eigenvalues are inside the Brauer cluster bound
except two that can be considered potential targets.

FIGURE 5. Example of Brauer cluster bound for clutter-plus-noise
eigenvalues.

C. RIEMANNIAN-BRAUER MATRIX CFAR DETECTOR
The RBM-CFAR detector is a two stage process based on
the Riemannian distance between Riemannian mean and the
THPD covariance matrices of potential targets. The first
stage uses the RBA to convert each range cell into a THPD
covariance matrix and exploits the BD theorem to cluster
the maximum eigenvalues of the THPD covariance matrices.
By using (15), a clutter-plus-noise cluster bound and potential
target bound of the THPD covariance matrices can be estab-
lished. The second stage involves computing the Riemannian
distance dRB between the Riemannian mean of the clutter-
plus-noise THPD covariance matrices and the potential target
THPD covariance matrices. The rule of detection for the
RBM-CFAR detector can be formulated using (7), (9) and
(15) as

dRB(Rrm(TB),RTi )
H1
≷
H0

δ (16)

where Rrm(TB) is the Riemannian mean of the THPD covari-
ance matrix inside the Brauer cluster bound,RTi is the THPD
covariance matrix of a potential target and δ is an adaptive
threshold. δ is based on the probability of false alarm Pfa and
clutter power levels and is given by

δ = −tr(Rrm)ln(Pfa). (17)
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The RBM-CFAR detector, as illustrated in Fig. 6, has many
advantages over RD-CFAR in [20]. First, the Riemannian
mean and median are robust to outliers since THPD covari-
ance matrices of all potential targets are not included in the
computation process. Second, the computational cost is less
since the Riemannian mean is only calculated once in Fig. 6
as opposed for each snapshot in RD-CFAR as shown in Fig. 4.
Also, the Riemannian distance calculation depends on the
number of outliers as shown in Fig. 6.

FIGURE 6. RBM-CFAR detector.

D. ANGLE-BASED HYBRID-BRAUER CFAR DETECTOR
The ABHB-CFAR detector makes use of the RBA to convert
the range cells to THPD covariance matrices and establishes
a Brauer cluster bound around the maximum eigenvalues
of the THPD covariance matrices. By using (15), a clutter-
plus-noise cluster bound and the potential target bound of
the THPD covariance matrices is created. The ABHB-CFAR
detector exploits the Euclidean tangent space and the Rieman-
nian geodesical distances between points on the Riemannian
manifold. Also, the ABHB-CFAR uses the projection of both

the Riemannian mean and median onto the tangent space of
the potential target point. A geodesical triangle connecting
the projected Riemannian mean, the projected Riemannian
median and the potential target can be generated and the law
of cosines can be used [39] to compute the Riemannian angle
at the potential target as shown in Fig. 7.

If {a, b, c} lie in the Euclidean space, the law of cosines
states that

‖b−c‖2 = ‖b-a‖2 + ‖c-a‖2 − 2 〈b− a, c-a〉 (18)

where ‖·‖ is the `2-norm and 〈, 〉 represents the dot product.
The law of cosines can be applied to the geodesic triangle on
the Riemannian manifold where the vertices of the triangle
are the Riemannian meanRrm, the Riemannian medianRrmed
and the potential target pointRTi , using (7), (8), (9), (10), (15)
and (18) to give

‖dR(Rrm,Rrmed )‖2 =
∥∥dR(Rrm,RTi )

∥∥2
+
∥∥dR(Rrmed ,RTi )

∥∥2
− 2

〈
logmRTi

(Rrm), logmRTi
(Rrmed )

〉
(19)

where logmRTi
(Rrm) is the projection ofRrm onto the tangent

space of RTi . The dot product term can be written in terms of
angle as〈
logmRTi

(Rrm), logmRTi
(Rrmed )

〉
=

∥∥∥logmRTi
(Rrm)

∥∥∥ ∥∥∥logmRTi
(Rrmed )

∥∥∥ cos(θ ) (20)

where θ is the angle at point RTi on the tangent space, which
can be written as

The rule of detection for the ABHB-CFAR detector can be
formulated using (21), shown at the bottom of the page

θ
H0
≷
H1

γ (22)

where γ is the adaptive angle of detection, which can be
formulated using (17), (19) and median-based threshold as
in (23), shown at the bottom of the page.

The farther the potential target, the smaller the angle on the
manifold. The ABHB-CFAR detector is illustrated in Fig. 8.

cos(θ) =

∥∥dR(Rrm,RTi )
∥∥2 + ∥∥dR(Rrmed ,RTi )

∥∥2 − ‖dR(Rrm,Rrmed )‖2

2
∥∥∥logmRTi

(Rrm)
∥∥∥ ∥∥∥logmRTi

(Rrmed )
∥∥∥ (21)

γ = acos

(∥∥−tr(Rrm)ln(Pfa)
∥∥2 + ∥∥tr(Rrmed )ln(Pfa)

∥∥2 − ‖dR(Rrm,Rrmed )‖2

2
∥∥−tr(Rrm)ln(Pfa)

∥∥ ∥∥tr(Rrmed )ln(Pfa)
∥∥

)
(23)
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FIGURE 7. Geodesical triangle showing the angle at potential target on
the manifold.

FIGURE 8. ABHB-CFAR detector.

VI. SIMULATIONS AND RESULTS
The simulations in this section consist of two parts: measur-
ing the Siegel distance [40] between the asymptotic covari-
ance matrix and the estimated THPD covariance matrices
from RBA, atomic-norm minimization [12], nuclear norm
minimization [13] and diagonal loading and evaluating the
performance of the FFT-CFAR, the RD-CFAR, the KLB-
CFAR, the RBM and the ABHB CFAR detectors. The RBA
regularization parameter, ψ1, is set to 0.1 and the autoregres-
sive order model is set to 8, which is equal the number of
receivers in the antenna array. Also, the Riemannian mean
step size, ε, is set to 0.01 and the number of iterations, t , is set
to 10000 with convergence tolerance level set to 10−6. A col-
located uniform linear array is used with N = 8 receivers and
the antenna elements are spaced half a wavelength apart from
each other.

The first part of the simulations is based on measuring
the Siegel distance [40], which is the geodesical distance

FIGURE 9. Siegel distance between the asymptotic covariance matrix and
the estimated THPD covariance matrices from the RBA, the atomic-norm
minimization, the nuclear norm minimization and the diagonally loaded
sample covariance.

FIGURE 10. Performance comparison of the FFT-CFAR, the RD-CFAR,
the KLB-CFAR, RBM and the ABHB CFAR at Pfa = 10−3.

between two covariance matrices in the space of HPD matri-
ces. The data is generated from one received pulse with
different number of snapshots. For different number of snap-
shots, the THPD covariance matrices are estimated using
the RBA, the atomic-norm minimization, the nuclear norm
minimization and the diagonally loaded sample covariance.
The main idea is to measure the Siegel distance between the
asymptotic covariance matrix and the estimated THPD
covariance matrices, where ideally the Siegel distance would
be zero. For the simulations results shown in Fig. 9, the THPD
covariance matrices are estimated using RBA, atomic-norm
minimization, nuclear norm minimization and diagonal load-
ing across increasing number of snapshots. We notice that the
rate of convergence of RBA is faster than the other techniques
as the number of snapshots increases. Also, the atomic-norm
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FIGURE 11. Performance comparison of the FFT-CFAR, the RD-CFAR,
the KLB-CFAR, the RBM and the ABHB CFAR at Pfa = 10−4.

FIGURE 12. Performance comparison of the FFT-CFAR, the RD-CFAR,
the KLB-CFAR, the RBM and the ABHB CFAR at Pfa = 10−5.

minimization and the nuclear-norm minimization out-
performed the diagonally loaded sample covariance.
This indicates that the RBA-based covariance matrix, which
is the mean of the estimated THPD covariance matrices
from each snapshot (range bin), converges to the asymptotic
covariance matrix with fewer snapshots in comparison with
the other techniques.

The second part of the simulation results are presented
to evaluate the performance of the RBM-CFAR and the
ABHB-CFAR techniques in comparison with the FFT-CFAR,
the RD-CFAR and the KLB-CFAR detectors viaMonte Carlo
simulations. The data is generated from 5 received pulses
and M = 25 snapshots with a target moving with a velocity
v = 10 m/s travelling away from the radar at a range of 50 m.
The target is located at the 10th snapshot. The clutter model
is based on aWeibull distribution with scale parameter α = 1

FIGURE 13. Performance comparison of the FFT-CFAR, the RD-CFAR,
the KLB-CFAR, the RBM and the ABHB CFAR at Pfa = 10−6.

and shape parameter β = 3. The covariance matrix model6d
for generating the snapshots can be defined as [29]

6d (i, k) = σ 2
c ρ
|i-k|exp(j2π

v
λ
(i− k)) i, k = 1, . . . ,N

(24)

where σc is the clutter power, ρ is the one lag correlation
coefficient and λ is the wavelength. In this simulation, we set
ρ = 0.9 and λ = 1 m.

For the FFT-CFAR, 10 cells are used for averaging and
for the RD-CFAR and the KLB-CFAR, 10 THPD covari-
ance matrices are used for averaging. The RBM-CFAR and
ABHB-CFAR Riemannian mean is based on the THPD
covariance matrix snapshots inside the BD cluster bound,
which does not include any potential targets and is not
biased to any outlier. The covariance matrix model for

FIGURE 14. Brauer bound for clutter-plus-noise and potential targets at
the 9th and 10th range bins for pulse 1.
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FIGURE 15. Brauer bound for clutter-plus-noise and potential targets at
the 11th and 12th range bins for pulse 2.

FIGURE 16. Brauer bound for clutter-plus-noise and potential targets at
the 13th and 14th range bins for pulse 3.

the RD-CFAR, the KLB-CFAR, the RBM-CFAR and the
ABHB-CFAR is based on (3).

The detection threshold calculation depends on the clutter
background power, the threshold multiplier and the prob-
ability of false alarm Pfa. The threshold multiplier can be
computed using Pfa, number of average snapshots or cells,
and the shape parameter β of the Weibull distribution clut-
ter model [41]. The Monte Carlo simulation is based on
200, 000 runs to determine the probability of detection Pd
and the threshold levels. The performance of all the five
detectors for different Pfa are shown in Figs. 10 to 13. The
simulation results demonstrate that both the RD-CFAR and
the KLB-CFAR outperform the FFT-CFAR. Also, the per-
formance of the RBM-CFAR and the ABHB-CFAR is better
than the RD-CFAR and the KLB-CFAR with at least 2–5 dB
signal-to-clutter improvement.

FIGURE 17. Detection performance of the RBM-CFAR detector for three
consecutive pulses with a moving target.

FIGURE 18. Detection performance of the ABHB-CFAR detector for three
consecutive pulses with a moving target.

VII. REAL DATA ANALYSIS
The performance of the RBM and the ABHB CFAR
detectors were tested using real data from a drone detec-
tion experiment. The data was collected using a Texas
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FIGURE 19. Detection performance of the FFT-CFAR, the RD-CFAR,
the KLB-CFAR, the RBM-CFAR and the ABHB-CFAR detectors for pulse 1.

Instruments AWR1642 automotive radar with a moving
Yuneec Typhoon H drone target at 5 m range travelling
away from the radar. The AWR1642 radar is based on
frequency-modulated continuous-wave (FMCW) with inte-
grated phase locked loop and analog-to-digital converter. The
experiment parameters and the radar specifications are given
in Table 1.

TABLE 1. AWR1642 automotive radar specifications.

The performance of the proposed techniques is tested for
3 consecutive pulses with 16 range cells (snapshots) extracted
from the data set. The extracted snapshots are converted to

FIGURE 20. Detection performance of the FFT-CFAR, the RD-CFAR,
the KLB-CFAR, the RBM-CFAR and the ABHB-CFAR detectors under scaled
SNR for pulse 1.

THPD covariance matrices using the RBA and a clutter-
plus-noise bound established using BD theorem. As we can
see from Figs. 14 to 16, there are some points outside the
clutter-plus-noise bound and they are considered as potential
targets. The detection threshold calculation is based on Pfa =
10−3. In addition, Figs. 17 and 18 show the RBM-CFAR and
the ABHB-CFAR detection for three consecutive pulses that
exhibit some robustness in their performance. For the RBM
detector, the Riemannian distance of both the 9th and 10th

snapshots of the first pulse exceeded the detection threshold.
Likewise, for the ABHB detector the 9th and 10th snap-
shots of the first pulse also have minimum angles. However,
the AWR1642 data set contains only one target and the
detection techniques are showing potentially two targets due
to the range resolution of the AWR1642 being 3.75 cm and
the target occupying two range bins (two snapshots). The 9th

snapshot contains most of the target’s energy and the 10th

contains some of the target’s energy. Furthermore, similar
performance for pulses 2 and 3 are shown in Figs. 17 and 18.
The performance of the RBM-CFAR and theABHB-CFAR

techniques is compared with the FFT-CFAR, the RD-CFAR
and the KLB-CFAR in Fig. 19. We notice that all tech-
niques detected the target at range bins 9 and 10 since
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FIGURE 21. Operating characteristic curves for the FFT-CFAR,
the RD-CFAR, the KLB-CFAR, the RBM-CFAR and the ABHB-CFAR
detectors at Pfa = 10−4.

FIGURE 22. Operating characteristic curves for the FFT-CFAR,
the RD-CFAR, the KLB-CFAR, the RBM-CFAR and the ABHB-CFAR
detectors at Pfa = 10−5.

the data collected has high SNR. By scaling the SNR by
0.2, the performance of the FFT-CFAR and the RD-CFAR
degraded in comparison to the KLB-CFAR, the RBM-CFAR
and the ABHB-CFAR as shown in Fig. 20. In addition,
the ABHB-CFAR and the RBM-CFAR outperformed the
KLB-CFAR and maintained the largest Riemannian distance
and the smallest angle on the Riemannian manifold target
point. Furthermore, the performance of the proposed CFAR
detectors can be studied by varying the SNR of the real
data and maintaining a constant Pfa. Figures 21 and 22
illustrate the detection performance at Pfa = 10−4 and
10−5. At higher SNR, all the CFAR detectors maintain a
good detection performance. However, at lower SNR (less
than 5 dB) and Pfa = 10−4, both the FFT-CFAR and the
RD-CFAR detectors suffer degradation in performance in

comparison with the other CFARs due to the limited number
of range cells. Also, at Pfa = 10−5 the RBM-CFAR and the
ABHB-CFAR showed superior performance while the KLB-
CFAR, the FFT-CFAR and the RD-CFAR failed to retain their
detection performances.

VIII. CONCLUSION
The drone detection problem is viewed from a Rieman-
nian geometry perspective. Two novel CFAR detection tech-
niques, the RBM and the ABHB, were formulated to improve
the probability of detection under small sample size with
low SCR. The RBM-CFAR and the ABHB-CFAR showed
an improvement in the probability of detection in com-
parison with the FFT-CFAR, the RD-CFAR and the KLB-
CFAR. In addition, the BD theorem provided robustness
to the calculation of the Riemannian mean and median by
excluding outliers from the Riemannian mean and median
computations. Real data analysis showed that the proposed
CFAR detectors can achieve better performance for low SNR,
low sample size data and high probability of false alarm.
In addition, the ABHB-CFAR showed a better performance
in comparison with the RBM-CFAR under low SNR. These
results are based on a uniform linear array configuration.
Future work will study the sub-optimality of other array
configurations. Furthermore, future research will investigate
different geometric divergence measures in computing the
geometric mean and median and its effect on the detection
process.
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