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ABSTRACT Data movement between the CPU and main memory is a first-order obstacle against improving
performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of
techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep
multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data
Processing (NDP), where some computation is moved close to memory. Prior NDPworks investigate the root
causes of data movement bottlenecks using different profiling methodologies and tools. However, there is
still a lack of understanding about the key metrics that can identify different data movement bottlenecks and
their relation to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically
identify potential sources of data movement over a broad set of applications and to comprehensively
compare traditional compute-centric data movement mitigation techniques (e.g., caching and prefetching)
to more memory-centric techniques (e.g., NDP), thereby developing a rigorous understanding of the best
techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale
characterization of a wide variety of applications, across a wide range of application domains, to identify
fundamental program properties that lead to data movement to/from main memory. We develop the first
systematic methodology to classify applications based on the sources contributing to data movement
bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144
functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies.
We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and
(2) come from a wide range of application domains. Using NDP as a case study, we identify new insights
about the different data movement bottlenecks and use these insights to determine the most suitable data
movement mitigation mechanism for a particular application. We open-source DAMOV and the complete
source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV.

INDEX TERMS Benchmarking, data movement, energy, memory systems, near-data processing, perfor-
mance, processing-in-memory, workload characterization, 3D-stacked memory.

I. INTRODUCTION
Today’s computing systems require moving data from main
memory (consisting of DRAM) to the CPU cores so that
computation can take place on the data. Unfortunately,
this data movement is a major bottleneck for system
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performance and energy consumption [1], [2]. DRAM tech-
nology scaling is failing to keep up with the increasing
memory demand from applications [2]–[29], resulting in
significant latency and energy costs due to data movement
[1]–[3], [5], [6], [30]–[49]. High-performance systems
have evolved to include mechanisms that aim to allevi-
ate data movement’s impact on system performance and
energy consumption, such as deep cache hierarchies and
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aggressive prefetchers. However, such mechanisms not
only come with significant hardware cost and complex-
ity, but they also often fail to hide the latency and energy
costs of accessing DRAM in many modern and emerging
applications [1], [5], [50]–[52]. These applications’ memory
behavior can differ significantly from more traditional appli-
cations since modern applications often have lower memory
locality, more irregular access patterns, and larger work-
ing sets [36], [45], [46], [53]–[61]. One promising tech-
nique that aims to alleviate the data movement bottleneck in
modern and emerging applications is Near-Data Processing
(NDP) [1], [33], [34], [46]–[48], [54], [55], [59]–[118],1

where the cost of data movement to/from main memory is
reduced by placing computation capability close to mem-
ory. In NDP, the computational logic close to memory has
access to data that resides in main memory with significantly
higher memory bandwidth, lower latency, and lower energy
consumption than the CPU has in existing systems. There
is very high bandwidth available to the cores in the logic
layer of 3D-stacked memories, as demonstrated by many past
works (e.g., [1], [46], [59], [60], [62]–[64], [67]–[69], [74],
[76], [99], [119]). To illustrate this, we use the STREAM
Copy [120]workload tomeasure the peakmemory bandwidth
the host CPU and an NDP architecture with processing ele-
ments in the logic layer of a single 3D-stacked memory (e.g.,
Hybrid Memory Cube [73]) can leverage.2 We observe that
the peak memory bandwidth that the NDP logic can leverage
(431 GB/s) is 3.7× the peak memory bandwidth that the host
CPU can exploit (115 GB/s). This happens since the external
memory bandwidth is bounded by the limited number of I/O
pins available in the DRAM device [121].
Many recent works explore how NDP can benefit various

application domains, such as graph processing [46], [47],
[54], [63], [74], [93], [122]–[126], machine learning [1],
[61], [69], [70], [84], [85], [103], bioinformatics [59], [60],
[68], databases [55], [61], [63], [66], [67], [74], [86], [102],
security [71], [105], [106], data manipulation [49], [86], [88],
[89], [127]–[130], and mobile workloads [1], [61]. These
works demonstrate that simple metrics such as last-level CPU
cache Misses per Kilo-Instruction (MPKI) and Arithmetic
Intensity (AI) are useful metrics that serve as a proxy for
the amount of data movement an application experiences.
These metrics can be used as a potential guide for choosing
when to apply data movement mitigationmechanisms such as
NDP. However, suchmetrics (and the corresponding insights)
are often extracted from a small set of applications, with
similar or not-rigorously-analyzed data movement character-
istics. Therefore, it is difficult to generalize the metrics and
insights these works provide to a broader set of applications,
making it unclear what different metrics can reveal about
a new (i.e., previously uncharacterized) application’s data
movement behavior (and how to mitigate its associated data
movement costs).

1We use the term NDP to refer to any type of Processing-in-Memory [37].
2See Section II for our experimental evaluation methodology.

We illustrate this issue by highlighting the limitations
of two different methodologies commonly used to identify
memory bottlenecks and often used as a guide to justify the
use of NDP architectures for an application: (a) analyzing a
roofline model [131] of the application, and (b) using last-
level CPU cache MPKI as an indicator of NDP suitability
of the application. The roofline model correlates the com-
putation requirements of an application with its memory
requirements under a given system. The model contains two
roofs: (1) a diagonal line (y = Peak Memory Bandwidth ×
Arithmetic Intensity) called the memory roof, and (2) a hori-
zontal line (y = Peak System Throughput) called the compute
roof [131]. If an application lies under the memory roof,
the application is classified as memory-bound ; if an applica-
tion lies under the compute roof, it is classified as compute-
bound. Many prior works [99], [103], [132]–[144] employ
this roofline model to identify memory-bound applications
that can benefit from NDP architectures. Likewise, many
prior works [1], [36], [51], [54], [55], [145]–[150] observe
that applications with high last-level cache MPKI3 are good
candidates for NDP.

Figure 1 shows the roofline model (left) and a plot of
MPKI vs. speedup (right) of a system with general-purpose
NDP support over a baseline system without NDP for a
diverse set of 44 applications (see Table 8). In the MPKI vs.
speedup plot, the MPKI corresponds to a baseline host CPU
system. The speedup represents the performance improve-
ment of a general-purpose NDP system over the baseline (see
Section II-D for our methodology). We make the following
observations. First, analyzing the roofline model (Figure 1,
left), we observe that most of the memory-bound applications
(yellow dots) benefit from NDP, as foreseen by prior works.
We later observe (in Section III-C1) that such applications
are DRAM bandwidth-bound and are a natural fit for NDP.
However, the roofline model does not accurately account
for the NDP suitability of memory-bound applications that
(i) benefit from NDP only under particular microarchitec-
tural configurations, e.g., either at low or high core counts
(green dots, which are applications that are either bottle-
necked byDRAM latency or suffer fromL3 cache contention;
see Sections III-C3 and III-C4); or (ii) experience perfor-
mance degradation when executed using NDP (blue dots,
which are applications that suffer from the lack of a deep
cache hierarchy in NDP architectures; see Section III-C6).
Second, analyzing the MPKI vs. speedup plot (Figure 1,
right), we observe that while all applications with high MPKI
benefit from NDP (yellow dots with MPKI higher than 10),
some applications with low MPKI can also benefit from
NDP in all of the NDP microarchitecture configurations we
evaluate (yellow dots with MPKI lower than 10) or under
specific NDP microarchitecture configurations (green dots
with MPKI lower than 10). Thus, even though both the
roofline model and MPKI can identify some specific sources

3Typically, an MPKI value greater than 10 is considered high by prior
works [151]–[157].
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FIGURE 1. Roofline (left) and last-level cache MPKI vs. NDP speedup (right) for 44 memory-bound applications. Applications are classified
into four categories: (1) those that experience performance degradation due to NDP (blue; Faster on CPU), (2) those that experience
performance improvement due to NDP (yellow; Faster on NDP), (3) those where the host CPU and NDP performance are similar (red; Similar
on CPU/NDP), (4) those that experience either performance degradation or performance improvement due to NDP depending on the
microarchitectural configuration (green; Depends).

of memory bottlenecks and can sometimes be used as a proxy
for NDP suitability, they alone cannot definitively determine
NDP suitability because they cannot comprehensively iden-
tify different possible sources of memory bottlenecks in a
system.

Our goal in this work is (1) to understand the major
sources of inefficiency that lead to data movement bot-
tlenecks by observing and identifying relevant metrics
and (2) to develop a benchmark suite for data move-
ment that captures each of these sources. To this end,
we develop a new three-step methodology to correlate
application characteristics with the primary sources of
data movement bottlenecks and to determine the poten-
tial benefits of three example data movement mitigation
mechanisms: (1) a deep cache hierarchy, (2) a hardware
prefetcher, and (3) a general-purpose NDP architecture.4

We use two main profiling strategies to gather key metrics
from applications: (i) an architecture-independent profiling
tool and (ii) an architecture-dependent profiling tool. The
architecture-independent profiling tool provides metrics that
characterize the application memory behavior independently
of the underlying hardware. In contrast, the architecture-
dependent profiling tool evaluates the impact of the system
configuration (e.g., cache hierarchy) on thememory behavior.
Ourmethodology has three steps. In Step 1, we use a hardware
profiling tool to identify memory-bound functions across
many applications. This step allows for a quick first-level
identification of many applications that suffer from memory
bottlenecks and functions that cause these bottlenecks. In
Step 2, we use the architecture-independent profiling tool to
collect metrics that provide insights about the memory access
behavior of the memory-bottlenecked functions. In Step 3,

4We focus on these three data movement mitigation mechanisms for two
different reasons: (1) deep cache hierarchies and hardware prefetchers are
standard mechanisms in almost all modern systems, and (2) NDP represents
a promising paradigm shift for many modern data-intensive applications.

we collect architecture-dependent metrics and analyze the
performance and energy of each function in an application
when each of our three candidate data movement mitigation
mechanisms is applied to the system. By combining the data
obtained from all three steps, we can systematically classify
the leading causes of data movement bottlenecks in an appli-
cation or function into different bottleneck classes.

Using this new methodology, we characterize a large, het-
erogeneous set of applications (345 applications from 37
different workload suites) across a wide range of domains.
Within these applications, we analyze 77K functions and find
a subset of 144 functions from 74 different applications that
are memory-bound (and that consume a significant fraction
of the overall execution time). We fully characterize this
set of 144 representative functions to serve as a core set of
application kernel benchmarks, which we release as the open-
source DAMOV (DAta MOVement) Benchmark Suite [158].
Our analyses reveal six new insights about the sources of
memory bottlenecks and their relation to NDP:

1) Applications with high last-level cache MPKI and low
temporal locality are DRAM bandwidth-bound. These
applications benefit from the large memory bandwidth
available to the NDP system (Section III-C1).

2) Applications with low last-level cache MPKI and low
temporal locality are DRAM latency-bound. These
applications do not benefit from L2/L3 caches. The
NDP system improves performance and energy effi-
ciency by sending L1 misses directly to DRAM
(Section III-C2).

3) A second group of applications with low LLC
MPKI and low temporal locality are bottlenecked by
L1/L2 cache capacity. These applications benefit from
the NDP system at low core counts. However, at high
core counts (and thus larger L1/L2 cache space),
the caches capture most of the data locality in these
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applications, decreasing the benefits the NDP system
provides (Section III-C3). We make this observation
using a new metric that we develop, called last-to-
first miss-ratio (LFMR), which we define as the ratio
between the number of LLC misses and the total num-
ber of L1 cache misses. We find that this metric accu-
rately identifies how efficient the cache hierarchy is in
reducing data movement.

4) Applications with high temporal locality and low LLC
MPKI are bottlenecked by L3 cache contention at high
core counts. In such cases, the NDP system provides
a cost-effective way to alleviate cache contention over
increasing the L3 cache capacity (Section III-C4).

5) Applications with high temporal locality, low LLC
MPKI, and low AI are bottlenecked by the L1 cache
capacity. The three candidate data movement mit-
igation mechanisms achieve similar performance
and energy consumption for these applications
(Section III-C5).

6) Applications with high temporal locality, low LLC
MPKI, and high AI are compute-bound. These applica-
tions benefit from a deep cache hierarchy and hardware
prefetchers, but the NDP system degrades their perfor-
mance (Section III-C6).

We publicly release our 144 representative data movement
bottlenecked functions from 74 applications as the first open-
source benchmark suite for data movement, called DAMOV
Benchmark Suite, along with the complete source code for
our new characterization methodology [158].

This work makes the following key contributions:

• We propose the first methodology to characterize
data-intensive workloads based on the source of their
data movement bottlenecks. This methodology is driven
by insights obtained from a large-scale experimental
characterization of 345 applications from 37 different
benchmark suites and an evaluation of the performance
of memory-bound functions from these applications
with three data-movement mitigation mechanisms.

• We release DAMOV, the first open-source benchmark
suite for main memory data movement-related studies,
based on our systematic characterization methodol-
ogy. This suite consists of 144 functions representing
different sources of data movement bottlenecks and
can be used as a baseline benchmark set for future
data-movement mitigation research.

• We show how our DAMOV benchmark suite can aid the
study of open research problems for NDP architectures,
via four case studies. In particular, we evaluate (i) the
impact of load balance and inter-vault communication in
NDP systems, (ii) the impact of NDP accelerators on our
memory bottleneck analysis, (iii) the impact of different
core models on NDP architectures, and (iv) the potential
benefits of identifying simpleNDP instructions.We con-
clude that our benchmark suite and methodology can be
employed to address many different open research and

development questions on data movement mitigation
mechanisms, particularly topics related to NDP systems
and architectures.

II. METHODOLOGY OVERVIEW
We develop a new workload characterization methodology to
analyze data movement bottlenecks and the suitability of dif-
ferent data movement mitigation mechanisms for these bot-
tlenecks, with a focus on Near-Data Processing (NDP). Our
methodology consists of three main steps, as Figure 2 depicts:
(1) memory-bound function identification using application
profiling; (2) locality-based clustering to analyze spatial
and temporal locality in an architecture-independent manner;
and (3) memory bottleneck classification using a scalabil-
ity analysis to nail down the sources of memory bounded-
ness, including architecture-dependent characterization. Our
methodology takes as input an application’s source code and
its input datasets, and produces as output a classification
of the primary source of memory bottleneck of important
functions in an application (i.e., bottleneck class of each key
application function). We illustrate the applicability of this
methodology with a detailed characterization of 144 func-
tions that we select from among 77K analyzed functions of
345 characterized applications. In this section, we give an
overview of our workload characterization methodology. We
use this methodology to drive the analyses we perform in
Section III.

A. EXPERIMENTAL EVALUATION FRAMEWORK
As our scalability analysis depends on the hardware archi-
tecture, we need a hardware platform that can allow us
to replicate and control all of our configuration parame-
ters. Unfortunately, such an analysis cannot be performed
practically using real hardware, as (1) there are very few
available NDP hardware platforms, and the ones that cur-
rently exist do not allow us to comprehensively analyze our
general-purpose NDP configuration in a controllable way (as
existing platforms are specialized and non-configurable); and
(2) the configurations of real CPUs can vary significantly
across the range of core counts that we want to analyze,
eliminating the possibility of a carefully controlled study. As
a result, we must rely on accurate simulation platforms to
perform an accurate comparison across different configura-
tions. To this end, we build a framework that integrates the
ZSim CPU simulator [159] with the Ramulator memory sim-
ulator [160] to produce a fast, scalable, and cycle-accurate
open-source simulator called DAMOV-SIM [158]. We use
ZSim to simulate the core microarchitecture, cache hierarchy,
coherence protocol, and prefetchers. We use Ramulator to
simulate the DRAM architecture, memory controllers, and
memory accesses. To compute spatial and temporal locality,
we modify ZSim to generate a single-thread memory trace
for each application, which we use as input for the locality
analysis algorithm described in Section II-C (which stati-
cally computes the temporal and spatial locality at word-level
granularity).
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FIGURE 2. Overview of our three-step workload characterization methodology.

B. STEP 1: MEMORY-BOUND FUNCTION IDENTIFICATION
The first step (labeled ¶ in Figure 2) aims to identify the
functions of an application that arememory-bound (i.e., func-
tions that suffer from data movement bottlenecks). These
bottlenecks might be caused at any level of the memory
hierarchy. There are various potential sources of memory
boundedness, such as cache misses, cache coherence traffic,
and long queuing latencies. Therefore, we need to take all
such potential causes into account. This step is optional if
the application’s memory-bound functions (i.e., regions of
interest, roi, in Figure 2) are already known a priori.
Hardware profiling tools, both open-source and propri-

etary, are available to obtain hardware counters and metrics
that characterize the application behavior on a computing
system. In this work, we use the Intel VTune Profiler [161],
which implements the well-known top-down analysis [162].
Top-down analysis uses the available CPU hardware counters
to hierarchically identify different sources of CPU system
bottlenecks for an application. Among the various metrics
measured by top-down analysis, there is a relevant one called
Memory Bound [163] that measures the percentage of CPU
pipeline slots that are not utilized due to any issue related to
data access. We employ this metric to identify functions that
suffer from data movement bottlenecks (which we define as
functions whereMemory Bound is greater than 30%).

C. STEP 2: LOCALITY-BASED CLUSTERING
Two key properties of an application’s memory access pat-
tern are its inherent spatial locality (i.e., the likelihood of
accessing nearby memory locations in the near future) and
temporal locality (i.e., the likelihood of accessing a memory
location again in the near future). These properties are closely
related to how well the application can exploit the memory
hierarchy in computing systems and how accurate hardware
prefetchers can be. Therefore, to understand the sources of
memory bottlenecks for an application, we should analyze
how much spatial and temporal locality its memory accesses
inherently exhibit. However, we should isolate these proper-
ties from particular configurations of the memory subsystem.
Otherwise, it would be unclear if memory bottlenecks are due

to the nature of the memory accesses or due to the character-
istics and limitations of the memory subsystem (e.g., limited
cache size, too simple or inaccurate prefetching policies).
As a result, in this step (labeled · in Figure 2), we use
architecture-independent static analysis to obtain spatial and
temporal locality metrics for the functions selected in the
previous step (Section II-B). Past works [164]–[173] propose
different ways of analyzing spatial and temporal locality in
an architecture-independent manner. In this work, we use
the definition of spatial and temporal metrics presented
in [166], [167].

The spatial locality metric is calculated for a window of
memory references5 of length W using Equation 1. First, for
every W memory references, we calculate the minimum dis-
tance between any two addresses (stride). Second, we create
a histogram called the stride profile, where each bin i stores
how many times each stride appears. Third, to calculate the
spatial locality, we divide the percentage of times stride i is
referenced (stride profile(i)) by the stride length i and sum the
resulting value across all instances of i.

Spatial Locality =
#bins∑
i=1

stride profile(i)
i

(1)

A spatial locality value close to 0 is caused by large stride
values (e.g., regular accesses with large strides) or random
accesses, while a value equal to 1 is caused by a completely
sequential access pattern.

The temporal locality metric is calculated by using a his-
togram of reused addresses. First, we count the number of
times each memory address is repeated in a window of L
memory references. Second, we create a histogram called
reuse profile, where each bin i represents the number of times
a memory address is reused, expressed as a power of 2. For
each memory address, we increment the bin that represents
the corresponding number of repetitions. For example, reuse
profile(0) represents memory addresses that are reused only
once. reuse profile(1) represents memory addresses that are

5We compute both the spatial and temporal locality metrics at the
word granularity. In this way, we keep our locality analysis architecture-
independent, using only properties of the application under study.
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reused twice. Thus, if a memory address is reused N times,
we increment reuse profile(blog2Nc) by one. Third, we obtain
the temporal locality metric with Equation 2.

Temporal Locality =
#bins∑
i=0

2i × reuse profile(i)
total memory accesses

(2)

A temporal locality value of 0 indicates no data reuse,
while a value close to 1 indicates very high data reuse (i.e.,
a value equal to 1 means that the application accesses a single
memory address continuously).

To calculate these metrics, we empirically select window
lengths W and L to 32. We find that different values chosen
for W and L do not significantly change the conclusions of
our analysis. We observe that our conclusions remain the
same when we set both values to 8, 16, 32, 64, and 128.

D. STEP 3: BOTTLENECK CLASSIFICATION
While Step 2 allows us to understand inherent application
sources for memory boundedness, it is important to under-
stand how hardware architectural features can also result in
memory bottlenecks. As a result, in our third step (¸ in
Figure 2), we perform a scalability analysis of the functions
selected in Step 1, where we evaluate performance and energy
scaling for three different system configurations. The scal-
ability analysis makes use of three architecture-dependent
metrics: (1) Arithmetic Intensity (AI), (2) Misses per Kilo-
Instruction (MPKI), and (3) a new metric called Last-to-First
Miss-Ratio (LFMR). We select these metrics for the following
reasons. First, AI can measure the compute intensity of an
application. Intuitively, we expect an application with high
compute intensity to not suffer from severe data movement
bottlenecks, as demonstrated by prior work [174]. Second,
MPKI serves as a proxy for the memory intensity of an appli-
cation. It can also indicate the memory pressure experienced
by the main memory system [45], [47], [48], [58], [151],
[153], [156], [175]–[177]. Third, LFMR, a new metric we
introduce and is described in detail later in this subsection,
indicates how efficient the cache hierarchy is in reducing data
movement.

As part of our methodology development, we eval-
uate other metrics related to data movement, including
raw cache misses, coherence traffic, and DRAM row
misses/hits/conflicts. We observe that even though such met-
rics are useful for further characterizing an application (as we
do in some of our later analyses in Section III-C), they do not
necessarily characterize a specific type of datamovement bot-
tleneck. We show in Section IV-A that the three architecture-
dependent and two architecture-independent metrics we
select for our classification are enough to accurately char-
acterize and cluster the different types of data movement
bottlenecks in a wide variety of applications.

1) DEFINITION OF METRICS
We define Arithmetic Intensity (AI) as the number of arith-
metic and logic operations performed per L1 cache line

accessed.6 Thismetric indicates howmuch computation there
is per memory request. Intuitively, applications with high AI
are likely to be computationally intensive, while applications
with low AI tend to be memory intensive. We use MPKI at
the last-level cache (LLC), i.e., the number of LLC misses
per one thousand instructions. This metric is considered to be
a good indicator of NDP suitability by several prior works [1],
[36], [51], [54], [55], [145]–[149]. We define the LFMR of an
application as the ratio between the number of LLC misses
and the total number of L1 cache misses. We find that this
metric accurately identifies howmuch an application benefits
from the deep cache hierarchy of a contemporary CPU. An
LFMR value close to 0 means that the number of LLCmisses
is very small compared to the number of L1 misses, i.e., the
L1 misses are likely to hit in the L2 or L3 caches. However,
an LFMR value close to 1 means that very few L1 misses hit
in L2 or L3 caches, i.e., the application does not benefit much
from the deep cache hierarchy, and most L1 misses need to
be serviced by main memory.

2) SCALABILITY ANALYSIS AND SYSTEM CONFIGURATION
The goal of the scalability analysis we perform is to
nail down the specific sources of data movement bottle-
necks in the application. In this analysis, we (i) evalu-
ate the performance and energy scaling of an application
in three different system configurations; and (ii) collect
the key metrics for our bottleneck classification (i.e., AI,
MPKI, and LFMR). During scalability analysis, we simulate
three system configurations of a general-purpose multicore
processor:
• A host CPU with a deep cache hierarchy (i.e., private
L1 (32 kB) and L2 (256 kB) caches, and a shared L3
(8 MB) cache with 16 banks). We call this configuration
Host CPU.

• A host CPU with a deep cache hierarchy (same cache
configurations as in Host CPU), augmented with a
stream prefetcher [178]. We call this configuration Host
CPU with prefetcher.

• AnNDP CPUwith a single level of cache (only a private
read-only7 L1 cache (32 kB), as assumed in many prior
NDP works [1], [46], [51], [63], [66], [74], [99], [101],
[119], [179]) and no hardware prefetcher. We call this
configuration NDP.

The remaining components of the processor configuration
are kept the same (e.g., number of cores, instruction win-
dow size, branch predictor) to isolate the impact of only
the caches, prefetchers, and NDP. This way, we expect
that the performance and energy differences between the

6We consider AI to be architecture-dependent since we consider the
number of cache lines accessed by the application (and hence the hardware
cache block size) to compute the metric. This is the same definition of
AI used by the hardware profiling tool we employ in Step 1 (i.e., the Intel
VTune Profiler [161]).

7We use read-only L1 caches to simplify the cache coherence model
of the NDP system. Enabling efficient synchronization and cache coher-
ence in NDP architectures is an open-research problem, as we discuss in
Section III-F.
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three configurations to come exclusively from the different
data movement requirements. For the three configurations,
we sweep the number of CPU cores in our analysis from
1 to 256, as previous works [46], [66], [180] show that
large core counts are necessary to saturate the bandwidth
provided by modern high-bandwidth memories, and because
modern CPUs and NDP proposals can have varying core
counts. The core count sweep allows us to observe (1) how
an application’s performance changes when increasing the
pressure on the memory subsystem, (2) how much Memory-
Level Parallelism (MLP) [176], [181]–[184] the applica-
tion has, and (3) how much the cores leverage the cache
hierarchy and the available memory bandwidth. We pro-
portionally increase the size of the CPU’s private L1 and
L2 caches when increasing the number of CPU cores in
our analysis (e.g., when scaling the CPU core count from
1 to 4, we also scale the aggregated L1/L2 cache size
by a factor of 4). We use out-of-order and in-order CPU
cores in our analysis for all three configurations. In this
way, we build confidence that our trends and findings are
independent of a specific underlying general-purpose core
microarchitecture. We simulate a memory architecture sim-
ilar to the Hybrid Memory Cube (HMC) [73], where (1)
the host CPU accesses memory through a high-speed off-
chip link, and (2) the NDP logic resides in the logic layer
of the memory chip and has direct access to the DRAM
banks (thus taking advantage of higher memory bandwidth
and lower memory latency). Table 1 lists the parameters of
our host CPU, host CPU with prefetcher, and NDP baseline
configurations.

3) CHOOSING AN NDP ARCHITECTURE
We note that across the proposed NDP architectures in lit-
erature, there is a lack of consensus on whether the archi-
tectures should make use of general-purpose NDP cores
or specialized NDP accelerators [36], [37]. In this work,
we focus on general-purpose NDP cores for two major rea-
sons. First, many prior works (e.g., [1], [46], [51], [63], [66],
[76], [99], [101], [119], [147], [179], [190], [192]–[194])
suggest that general-purpose cores (especially simple in-
order cores) can successfully accelerate memory-bound
applications in NDP architectures. In fact, UPMEM [83],
a start-up building some of the first commercial in-DRAM
NDP systems, utilizes simple in-order cores in their NDP
units inside DRAM chips [83], [140]. Therefore, we believe
that general-purpose NDP cores are a promising candidate
for future NDP architectures. Second, the goal of our work is
not to perform a design space exploration of different NDP
architectures, but rather to understand the key properties of
applications that lead to memory bottlenecks that can be
mitigated by a simple NDP engine. While we expect that
each application could potentially benefit further from an
NDP accelerator tailored to its computational and memory
requirements, such customized architectures openmany chal-
lenges for a methodical characterization, such as the need
for significant code refactoring, changes in data mapping,

and code partitioning between NDP accelerators and
host CPUs.8,9

III. CHARACTERIZING MEMORY BOTTLENECKS
In this section, we apply our three-step workload char-
acterization methodology to characterize the sources of
memory bottlenecks across a wide range of applications.
First, we apply Step 1 to identify memory-bound functions
within an application (Section III-A). Second, we apply
Step 2 and cluster the identified functions using two
architecture-independent metrics (spatial and temporal local-
ity) (Section III-B). Third, we apply Step 3 and combine the
architecture-dependent and architecture-independent metrics
to classify the different sources of memory bottlenecks we
observe (Section III-C).

We also evaluate various other aspects of our three-step
workload characterization methodology. We investigate the
effect of increasing the last-level cache on our memory bottle-
neck classification in Section III-D. We provide a validation
of our memory bottleneck classification in Section III-E.
We discuss the limitations of our proposed methodology in
Section III-F.

A. STEP 1: MEMORY-BOUND FUNCTION IDENTIFICATION
We first apply Step 1 of our methodology across 345 appli-
cations (listed in Appendix C) to identify functions whose
performance is significantly affected by data movement. We
use the previously-proposed top-down analysis methodol-
ogy [162] that has been used by several recent workload
characterization studies [5], [195], [196]. As discussed in
Section II-B, we use the Intel VTune Profiler [161], which
we run on an Intel Xeon E3-1240 processor [197] with four
cores.We disable hyper-threading for more accurate profiling
results, as recommended by the VTune documentation [198].
For the applications that we analyze, we select functions
(1) that take at least 3% of the clock cycles, and (2) that
have a Memory Bound percentage that is greater than 30%.
We choose 30% as the threshold for this metric because,
in preliminary simulation experiments, we do not observe
significant performance improvement or energy savings with
data movement mitigation mechanisms for functions whose
Memory Bound percentage is less than 30%.

The applications we analyze come from a variety of
sources, such as popular workload suites (Chai [199],
CORAL [200], Parboil [201], PARSEC [202], Rodinia [203],
SD-VBS [204], SPLASH-2 [205]), benchmarking
(STREAM [120], HPCC [206], HPCG [207]), bioin-
formatics [208], databases [209], [210], graph pro-
cessing frameworks (GraphMat [211], Ligra [212]),
a map-reduce framework (Phoenix [213]), and neural

8We show in Section V-B that our DAMOV benchmark suite is useful to
rigorously study NDP accelerators.

9The development of a newmethodology or extension of our methodology
to perform analysis targeting function-specific, customized, or reconfig-
urable NDP accelerators is a good direction for future work.
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TABLE 1. Evaluated Host CPU and NDP system configurations.

networks (AlexNet [214], Darknet [215]). We explore dif-
ferent input dataset sizes for the applications and choose
real-world input datasets that impose high pressure on the
memory subsystem (as we expect that such real-world inputs
are best suited for stressing the memory hierarchy). We also
use different inputs for applications whose performance is
tightly related to the input dataset properties. For example,
we use two different graphswith varying connectivity degrees
(rMat [217] and USA [218]) to evaluate graph processing
applications and two different read sequences to evaluate read
alignment algorithms [60], [219], [220].

In total, our application analysis covers more than 77K
functions. To date, this is the most extensive analysis of data
movement bottlenecks in real-world applications. We find a
set of 144 functions that take at least 3% of the total clock
cycles and have a value of the Memory Bound metric greater
or equal to 30%, which forms the basis of DAMOV, our

10The default HMC interleaving scheme (Row:Column:Bank:Vault [73])
interleaves consecutive cache lines across vaults, and then across
banks [216].

new data movement benchmark suite. We provide a list of all
144 functions selected based on our analysis and their major
characteristics in Appendix A.

After identifying memory-bound functions over a wide
range of applications, we apply Steps 2 and 3 of our method-
ology to classify the primary sources of memory bottlenecks
for our selected functions. We evaluate a total of 144 func-
tions out of the 77K functions we analyze in Step 1. These
functions span across 74 different applications, belonging to
16 different widely-used benchmark suites or frameworks.

From the 144 functions that we analyze further, we select
a subset of 44 representative functions to explore in-depth in
Sections III-B and III-C and to drive our bottleneck classi-
fication analysis. We use the 44 representative functions to
ease our explanations and make figures more easily readable.
Table 8 in Appendix A lists the 44 representative functions
that we select. The table includes one column that indi-
cates the class of data movement bottleneck experienced by
each function (we discuss the classes in Section III-C), and
another column representing the percentage of clock cycles
of the selected function in the whole application. We select
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representative functions that belong to a variety of domains:
benchmarking, bioinformatics, data analytics, databases, data
mining, data reorganization, graph processing, neural net-
works, physics, and signal processing. In Section III-E,
we validate our classification using the remaining 100 func-
tions and provide a summary of the results of our methodol-
ogy when applied to all 144 functions.

B. STEP 2: LOCALITY-BASED CLUSTERING
We cluster the 44 representative functions across both spatial
and temporal locality using the K-means clustering algo-
rithm [221]. Figure 3 shows how each function is grouped.
We find that two groups emerge from the clustering: (1) low
temporal locality functions (orange boxes in Figure 3), and
(2) high temporal locality functions (blue boxes in Figure 3).
Intuitively, the closer a function is to the bottom-left corner of
the figure, the less likely it is to take advantage of amulti-level
cache hierarchy. These functions are more likely to be good
candidates for NDP. However, as we see in Section III-C,
the NDP suitability of a function also depends on a number
of other factors.

C. STEP 3: BOTTLENECK CLASSIFICATION
Within the two groups of functions identified in Section III-B,
we use three key metrics (AI, MPKI, and LFMR) to clas-
sify the memory bottlenecks. We observe that the AI of the
analyzed low temporal locality functions is low (i.e., always
less than 2.2 ops/cache line, with an average of 1.3 ops/cache

line). Among the high temporal locality functions, there are
some with low AI (minimum of 0.3 ops/cache line) and
others with high AI (maximum of 44 ops/cache line). LFMR
indicates whether a function benefits from a deeper cache
hierarchy. When LFMR is low (i.e., less than 0.1), then a
function benefits significantly from a deeper cache hierarchy,
as most misses from the L1 cache hit in either the L2 or
L3 caches. When LFMR is high (i.e., greater than 0.7), then
most L1 misses are not serviced by the L2 or L3 caches, and
must go to memory. A medium LFMR (0.1–0.7) indicates
that a deeper cache hierarchy can mitigate some, but not
a very large fraction of L1 cache misses. MPKI indicates
the memory intensity of a function (i.e., the rate at which
requests are issued to DRAM). We say that a function is
memory-intensive (i.e., it has a high MPKI) when the MPKI
is greater than 10, which is the same threshold used by prior
works [151]–[157].

We find that six classes of functions emerge, based on
their temporal locality, AI, MPKI, and LFMR values, as we
observe from Figures 3 and 4.We observe that spatial locality
is not a keymetric for our classification (i.e., it does not define
a bottleneck class) because the L1 cache, which is present in
both host CPU and NDP system configurations, can capture
most of the spatial locality for a function. Figure 4 shows
the LFMR and MPKI values for each class. Note that we do
not have classes of functions for all possible combinations of
metrics. In our analysis, we obtain the temporal locality, AI,
MPKI, and LFMR values and their combinations empirically.

FIGURE 3. Locality-based clustering of 44 representative functions.
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FIGURE 4. L3 Cache MPKI and Last-to-First Miss Ratio (LFMR) for 44 representative functions.

Fundamentally, not all value combinations of different met-
rics are possible. We list some of the combinations we do not
observe in our analysis of 144 functions:

• A function with high LLC MPKI does not display low
LFMR. This is because a low LFMR happens whenmost
L1 misses hit the L2/L3 caches. Thus, it becomes highly
unlikely for the L3 cache to suffer many misses when
the L2/L3 caches do a good job in fulfilling L1 cache
misses.

• A function with high temporal locality does not display
both high LFMR and high MPKI. This is because a
function with high temporal locality will likely issue
repeated memory requests to few memory addresses,
which will likely be serviced by the cache hierarchy.

• A function with low temporal locality does not display
low LFMR since there is little data locality to be cap-
tured by the cache hierarchy.

We discuss each class in detail below, identifying the mem-
ory bottlenecks for each class and whether the NDP system
can alleviate these bottlenecks. To simplify our explanations,
we focus on a smaller set of 12 representative functions (out
of the 44 representative functions) for this part of the analysis.
Figure 5 shows how each of the 12 functions scales in terms
of performance for the host CPU, host CPU with prefetcher,
and NDP system configurations.

1) CLASS 1a: LOW TEMPORAL LOCALITY, LOW AI, HIGH
LFMR, AND HIGH MPKI (DRAM BANDWIDTH-BOUND
FUNCTIONS)
Functions in this class exert highmainmemory pressure since
they are highly memory intensive and have low data reuse.
To understand how this affects a function’s suitability for
NDP, we study how performance scales as we increase the
number of cores available to a function, for the host CPU,
host CPU with prefetcher, and NDP system configurations.

Figure 5(a) depicts performance11 as we increase the core
count, normalized to the performance of one host CPU core,
for two representative functions from Class 1a (HSJNPO and
LIGPrkEmd; we see similar trends for all functions in the
class).

We make three observations from the figure. First, as the
number of host CPU cores increases, performance eventu-
ally stops increasing significantly. For HSJNPO, host CPU
performance increases by 27.5× going from 1 to 64 host
CPU cores but only 27% going from 64 host CPU cores to
256 host CPU cores. For LIGPrkEmd, host CPU perfor-
mance increases by 33× going from 1 to 64 host CPU cores
but decreases by 20% going from 64 to 256 host CPU cores.
We find that the lack of performance improvement at large
host CPU core counts is due to main memory bandwidth
saturation, as shown in Figure 6. Given the limited DRAM
bandwidth available across the off-chip memory channel,
we find that Class 1a functions saturate theDRAMbandwidth
once enough host CPU cores (e.g., 64) are used, and thus
these functions are bottlenecked by the DRAM bandwidth.
Second, the host CPU system with prefetcher slows down the
execution of the HSJNPO (LIGPrkEmd) function compared
with the host CPU system without prefetcher by 43% (38%),
on average across all core counts. The prefetcher is ineffective
since these functions have low temporal and spatial locality.
Third, when running on the NDP system, the functions see
continued performance improvements as the number of NDP
cores increases. By providing the functions with access to the
much higher bandwidth available inside memory, the NDP
system can greatly outperform the host CPU system at a high
enough core count. For example, at 64/256 cores, the NDP
system outperforms the host CPU system by 1.7×/4.8× for
HSJNPO, and by 1.5×/4.1× for LIGPrkEmd.

11Performance is the inverse of application execution time.
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FIGURE 5. Performance of 12 representative functions on three systems: host CPU, host CPU with prefetcher, and NDP, normalized to one host CPU core.

FIGURE 6. Host CPU system IPC vs. utilized DRAM Bandwidth for
representative Class 1a functions.

Figure 7 depicts the energy breakdown for our two rep-
resentative functions. We make two observations from the
figure. First, for HSJNPO, the energy spent on DRAM for
both host CPU system and NDP system are similar. This is
due to the function’s poor locality, as 98% of its memory
requests miss in the L1 cache. Since LFMR is near 1, L1 miss
requests almost always miss in the L2 and L3 caches and
go to DRAM in the host CPU system for all core counts we
evaluate, which requires significant energy to query the large
caches and then to perform off-chip data transfers. The NDP
system does not access L2, L3, and off-chip links, leading
to large system energy reduction. Second, for LIGPrkEmd,
the DRAM energy is higher in the NDP system than in the
host CPU system. Since the function’s LFMR is 0.7, some
memory requests that would be cache hits in the host CPU’s
L2 and L3 caches are instead sent directly to DRAM in the
NDP system. However, the total energy consumption on the
host CPU system is still larger than that on the NDP system,
again because the NDP system eliminates the L2, L3 and
off-chip link energy.

DRAM bandwidth-bound applications such as those in
Class 1a have been the primary focus of a large num-
ber of proposed NDP architectures (e.g., [1], [46], [54],
[69], [76], [132], [133], [192], [222], [223]), as they
benefit from increased main memory bandwidth and do

FIGURE 7. Cache and DRAM energy breakdown for representative
Class 1a functions at 1, 4, 16, 64, and 256 cores.

not have high AI (and, thus, do not benefit from com-
plex cores on the host CPU system). An NDP architec-
ture for a function in Class 1a needs to extract enough
MLP [57], [176], [181]–[184], [224]–[229] to maximize the
usage of the available internal memory bandwidth. How-
ever, prior work has shown that this can be challenging due
to the area and power constraints in the logic layer of a
3D-stacked DRAM [1], [46]. To exploit the high memory
bandwidth while satisfying these area and power constraints,
the NDP architecture should leverage application memory
access patterns to efficiently maximize main memory band-
width utilization.

We find that there are two dominant types of memory
access patterns among our Class 1a functions. First, functions
with regular access patterns (DRKYolo, STRAdd, STRCpy,
STRSca, STRTriad) can take advantage of specialized
accelerators or Single Instruction Multiple Data (SIMD)
architectures [1], [66], which can exploit the regular access
patterns to issue many memory requests concurrently. Such
accelerators or SIMD architectures have hardware area and
thermal dissipation that fall well within the constraints of
3D-stacked DRAM [1], [46], [64], [230]. Second, functions
with irregular access patterns (HSJNPO, LIGCompEms,
LIGPrkEmd, LIGRadiEms) require techniques to extract
MLP while still fitting within the design constraints. This
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requires techniques that cater to the irregular memory access
patterns, such as prefetching algorithms designed for graph
processing [46], [231]–[235], pre-execution of difficult
access patterns [57], [58], [151], [183], [184], [236]–[243] or
hardware accelerators for pointer chasing [55], [56], [149],
[193], [244]–[246].

2) CLASS 1b: LOW TEMPORAL LOCALITY, LOW AI, HIGH
LFMR, AND LOW MPKI (DRAM LATENCY-BOUND
FUNCTIONS)
While functions in this class do not effectively use the host
CPU caches, they do not exert high pressure on the main
memory due to their lowMPKI. Across all Class 1b functions,
the average DRAMbandwidth consumption is only 0.5 GB/s.
However, all the functions have very high LFMR values (the
minimum is 0.94 for CHAHsti), indicating that the host
CPU L2 and L3 caches are ineffective. Because the functions
cannot exploit significant MLP but still incur long-latency
requests to DRAM, the DRAM requests fall on the critical
path of execution and stall forward progress [57], [58], [151],
[176], [247]. Thus, Class 1b functions are bottlenecked by
DRAM latency. Figure 5(b) shows performance of both the
host CPU system and the NDP system for two represen-
tative functions from Class 1b (CHAHsti and PLYalu).
We observe that while performance of both the host CPU
system and the NDP system scale well as the core count
increases, NDP system performance is always higher than the
host CPU system performance for the same core count. The
maximum (average) speedup with NDP over host CPU at the
same core count is 1.15× (1.12×) for CHAHsti and 1.23×
(1.13×) for PLYalu.

We find that the NDP system’s improved performance is
due to a reduction in the Average Memory Access Time
(AMAT) [248]. Figure 8 shows the AMAT for our two
representative functions. Memory accesses take significantly
longer in the host CPU system than in the NDP system due
to the additional latency of looking up requests in the L2 and
L3 caches, even though data is rarely present in those caches,
and going through the off-chip links.

FIGURE 8. Average Memory Access Time (AMAT) for representative
Class 1b functions.

Figure 9 shows the energy breakdown for Class 1b rep-
resentative functions. Similar to Class 1a, we observe that
the L2/L3 caches and off-chip links are a large source of
energy usage in the host CPU system. While DRAM energy
increases in the NDP system, as L2/L3 hits in the host CPU
system become DRAM lookups with NDP, the overall energy

FIGURE 9. Energy breakdown for representative Class 1b functions.

consumption in the NDP system is greatly smaller (by 69%
maximum and 39% on average) due to the lack of L2 and
L3 caches.

Class 1b functions benefit from the NDP system, but
primarily because of the lower memory access latency
(and energy) that the NDP system provides for mem-
ory requests that need to be serviced by DRAM. These
functions could benefit from other latency and energy
reduction techniques, such as L2/L3 cache bypassing [51],
[249]–[260], low-latency DRAM [15], [22]–[26], [89],
[127], [261]–[276], and better memory access scheduling
[153]–[157], [175]–[177], [247], [277]–[290]. However, they
generally do not benefit significantly from prefetching (as
seen in Figure 5(b)), since infrequent memory requests make
it difficult for the prefetcher to successfully train on an access
pattern.

3) CLASS 1c: LOW TEMPORAL LOCALITY, LOW AI,
DECREASING LFMR WITH CORE COUNT, AND LOW MPKI
(L1/L2 CACHE CAPACITY BOTTLENECKED FUNCTIONS)
Wefind that the behavior of functions in this class depends on
the number of cores they are using. Figure 5(c) shows the host
CPU system and the NDP system performance as we increase
the core count for two representative functions (DRKRes and
PRSFlu). We make two observations from the figure. First,
at low core counts, the NDP system outperforms the host
CPU system. With a low number of cores, the functions have
medium to high LFMR (0.5 for DRKRes at 1 and 4 host CPU
cores; 0.97 at 1 host CPU core and 0.91 at 4 host CPU cores
for PRSFlu), and behave like Class 1b functions, where
they are DRAM latency-sensitive. Second, as the core count
increases, the host CPU system begins to outperform theNDP
system. For example, beyond 16 (64) cores, the host CPU
system outperforms the NDP system for DRKRes (PRSFlu).
This is because as the core count increases, the aggregate
L1 and L2 cache size available at the host CPU system grows,
which reduces the miss rates of both L2 and L3 caches. As a
result, the LFMR decreases significantly (e.g., at 256 cores,
LFMR is 0.09 for DRKRes and 0.35 for PRSFlu). This
indicates that the available L1/L2 cache capacity bottlenecks
Class 1c functions.

Figure 10 shows the energy breakdown for Class 1c func-
tions. We make three observations from the figure. First,
for functions with larger LFMR values (PRSFlu), the NDP
system provides energy savings over the host CPU system
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at lower core counts, since the NDP system eliminates the
energy consumed due to L3 and off-chip link accesses. Sec-
ond, for functions with smaller LFMR values (DRKRes), the
NDP system does not provide energy savings even for low
core counts. Due to the medium LFMR, enough requests
still hit in the host CPU system L2/L3 caches, and these
cache hits becomeDRAMaccesses in theNDP system,which
consume more energy than the cache hits. Third, at high-
enough core counts, the NDP system consumes more energy
than the host CPU system for all Class 1c functions. As
the LFMR decreases, the functions effectively utilize the
caches in the host CPU system, reducing the off-chip traffic
and, consequently, the energy Class 1c functions spend on
accessing DRAM. The NDP system, which does not have
L2 and L3 caches, pays the larger energy cost of a DRAM
access for all L2/L3 hits in the host CPU system.

FIGURE 10. Energy breakdown for representative Class 1c functions.

We find that the primary source of the memory bottle-
neck in Class 1c functions is limited L1/L2 cache capacity.
Therefore, while the NDP system improves performance and
energy of some Class 1c functions at low core counts (with
lower associated L1/L2 cache capacity), the NDP system
does not provide performance and energy benefits across all
core counts for Class 1c functions.

4) CLASS 2a: HIGH TEMPORAL LOCALITY, LOW AI,
INCREASING LFMR WITH CORE COUNT, AND LOW MPKI
(L3 CACHE CONTENTION BOTTLENECKED FUNCTIONS)
Like Class 1c functions, the behavior of the functions in
this class depends on the number of cores that they use.
Figure 5(d) shows the host CPU system and the NDP sys-
tem performance as we increase the core count for two
representative functions (PLYGramSch and SPLFftRev).
We make two observations from the figure. First, at low core
counts, the functions do not benefit from the NDP system.
In fact, for a single core (16 cores), PLYGramSch slows
down by 67% (3×) when running on the NDP system, com-
pared to running on the host CPU system. This is because,
at low core counts, these functions make reasonably good
use of the cache hierarchy, with LFMR values of 0.03 for
PLYGramSch and lower than 0.44 for SPLFftRev until
16 host CPU cores. We confirm this in Figure 11, where we
see that very few memory requests for PLYGramSch and
SPLFftRev go to DRAM (5% for PLYGramSch, and at
most 13% for SPLFftRev) at core counts lower than 16.
Second, at high core counts (i.e., 64 for PLYGramSch and

256 for SPLFftRev), the host CPU system performance
starts to decrease. This is because Class 2a functions are
bottlenecked by cache contention. At 256 cores, this con-
tention undermines the cache effectiveness and causes the
LFMR to increase to 0.97 for PLYGramSch and 0.93 for
SPLFftRev. With the last-level cache rendered essentially
ineffective, the NDP system greatly improves performance
over the host CPU system: by 2.23× for PLYGramSch and
3.85× for SPLFftRev at 256 cores.

FIGURE 11. Memory request breakdown for representative Class 2a
functions.

One impact of the increased cache contention is that it
converts these high-temporal-locality functions into memory
latency-bound functions. We find that with the increased
number of requests going to DRAM due to cache contention,
the AMAT increases significantly, in large part due to queu-
ing at the memory controller. At 256 cores, the queuing
becomes so severe that a large fraction of requests (24% for
PLYGramSch and 67% for SPLFftRev) must be reissued
because the memory controller queues are full. The increased
main memory bandwidth available to the NDP cores allows
the NDP system to issue many more requests concurrently,
which reduces the average length of the queue and, thus, the
mainmemory latency. TheNDP system also reducesmemory
access latency by getting rid of L2/L3 cache lookup and
interconnect latencies.

Figure 12 shows the energy breakdown for the two
representative Class 2a functions. We make two observa-
tions. First, the host CPU system is more energy-efficient
than the NDP system at low core counts, as most of
the memory requests are served by on-chip caches in the
host CPU system. Second, the NDP system provides large
energy savings over the host CPU system at high core
counts. This is due to the increased cache contention, which
increases the number of off-chip requests that the host CPU

FIGURE 12. Energy breakdown for representative Class 2a functions.
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system must make, increasing the L3 and off-chip link
energy.

We conclude that cache contention is the primary scala-
bility bottleneck for Class 2a functions, and the NDP sys-
tem can provide an effective way of mitigating this cache
contention bottleneck without incurring the high area and
energy overheads of providing additional cache capacity in
the host CPU system, thereby improving the scalability of
these applications to high core counts.

5) CLASS 2b: HIGH TEMPORAL LOCALITY, LOW AI,
LOW/MEDIUM LFMR, AND LOW MPKI (L1 CACHE CAPACITY
BOTTLENECKED FUNCTIONS)
Figure 5(e) shows the host CPU system and the NDP system
performance for PLYgemver and SPLLucb. We make two
observations from the figure. First, as the number of cores
increases, performance of the host CPU system and the NDP
system scale in a very similar fashion. The NDP system and
the host CPU system perform essentially on par with (i.e.,
within 1% of) each other at all core counts. Second, even
though the NDP system does not provide any performance
improvement for Class 2b functions, it also does not hurt
performance. Figure 13 shows the AMAT for our two repre-
sentative functions. When PLYgemver executes on the host
CPU system, up to 77% of the memory latency comes from
accessing L3 and DRAM, which can be explained by the
function’s medium LFMR (0.5). For SPLLucb, even though
up to 73% of memory latency comes from L1 accesses,
some requests still hit in the L3 cache (its LFMR is 0.2),
translating to around 10% of the memory latency. However,
the latency that comes from L3 + DRAM for the host CPU
system is similar to the latency to access DRAM in the NDP
system, resulting in similar performance between the host
CPU system and the NDP system.

FIGURE 13. AMAT for representative Class 2b functions.

Wemake a similar observation for the energy consumption
for the host CPU system and the NDP system (Figure 14).
Even though a small number of memory requests hit in L3,
the total energy consumption for both the host CPU system
and the NDP system is similar due to L3 and off-chip link
energy. For some functions in Class 2b, we observe that the
NDP system slightly reduces energy consumption compared
to the host CPU system. For example, the NDP system
provides an 12% average reduction in energy consumption,
across all core counts, compared to the host CPU system for
PLYgemver.

FIGURE 14. Energy breakdown for representative Class 2b functions.

We conclude that while the NDP system does not solve any
memory bottlenecks for Class 2b functions, it can be used
to reduce the overall SRAM area in the system without any
performance or energy penalty (and sometimes with energy
savings).

6) CLASS 2c: HIGH TEMPORAL LOCALITY, HIGH AI, LOW
LFMR, AND LOW MPKI (COMPUTE-BOUND FUNCTIONS)
Aside from one exception (PLYSymm), all of the 11 functions
in this class exhibit high temporal locality. When combined
with the high AI and low memory intensity, we find that
these characteristics significantly impact how the NDP sys-
tem performance scales for this class. Figure 5(f) shows
the host CPU system and the NDP system performance
for HPGSpm and RODNw, two representative functions from
the class. We make two observations from the figure. First,
the host CPU system performance is always greater than the
NDP system performance (by 44% for HPGSpm and 54%
for RODNw, on average). The high AI (more than 12 ops
per cache line), combined with the high temporal locality
and low MPKI, enables these functions to make excellent
use of the host CPU system resources. Second, both of the
functions benefit greatly from prefetching in the host CPU
system. This is a direct result of these functions’ high spatial
locality, which allows the prefetcher to be highly accurate
and effective in predicting which lines to retrieve from main
memory.

Figure 15 shows the energy breakdown consumption for
the two representative Class 2c functions. We make two
observations. First, the host CPU system is 77% more
energy-efficient than the NDP system for HPGSpm, on aver-
age across all core counts. Second, the NDP system provides
energy savings over the host CPU system at high core counts
for RODNw (up to 65% at 256 cores). When the core count
increases, the aggregate L1 cache capacity across all cores
increases as well, which in turn decreases the number of
L1 cache misses. Compared to executing on a single core,
executing on 256 cores decreases the L1 cache miss count by
43%, reducing the memory subsystem energy consumption
by 40%. However, due to RODNw’s medium LFMR of 0.5,
the host CPU system still suffers from L2 and L3 cache
misses at high core counts, which require the large L3 and off-
chip link energy. In contrast, the NDP system eliminates the
energy of accessing the L3 cache and the off-chip link energy
by directly sending L1 cachemisses to DRAM,which, at high
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FIGURE 15. Energy breakdown for representative Class 2c functions.

core counts, leads to lower energy consumption than the host
CPU system.

We conclude that Class 2c functions do not experience
large memory bottlenecks and are not a good fit for the
NDP system in terms of performance. However, the NDP
system can sometimes provide energy savings for functions
that experience medium LFMR.

D. EFFECT OF THE LAST-LEVEL CACHE SIZE
The bottleneck classification we present in Section III-C
depends on two key architecture-dependent metrics (LFMR
and MPKI) that are directly affected by the parameters and
the organization of the cache hierarchy. Our analysis in
Section III-C partially evaluates the effect of caching by
scaling the aggregated size of the private (L1/L2) caches
with the number of cores in the system while maintaining
the size of the L3 cache fixed at 8 MB for the host CPU
system. However, we also need to understand the impact of
the L3 cache size on our bottleneck classification analysis.
To this end, this section evaluates the effects on our bottleneck
classification analysis of using an alternative cache hierar-
chy configuration, where we employ a Non-Uniform Cache
Architecture (NUCA) [291] model to scale the size of the
L3 cache with the number of cores in the host CPU system.

In this configuration, we maintain the sizes of the private
L1 and L2 caches (32 kB and 256 kB per core, respectively)
while increasing the shared L3 cache size with the core
count (we use 2 MB/core) in the host CPU system. The
cores, shared L3 caches, and DRAM memory controller are
interconnected using a 2D-mesh Network-on-Chip (NoC)
[292]–[299] of size (n + 1) × (n + 1) (an extra intercon-
nection dimension is added to place the DRAM memory
controllers). To faithfully simulate the NUCA model (e.g.,
including network contention in our simulations), we inte-
grate the M/D/1 network model proposed by ZSim++ [300]
in our DAMOV simulator [158]. We use a latency of 3 cycles
per hop in our analysis, as suggested by prior work [301].
We adapt our energy model to account for the energy con-
sumption of the NoC in the NUCA system. We consider
router energy consumption of 63 pJ per request and energy
consumed per link traversal of 71 pJ, same as previous
work [251].

Figure 16 shows the performance scalability curves for
representative functions from each one of our bottleneck
classes presented in Section III-C for the baseline host CPU

system (Host with 8MB Fixed LLC), the host CPU NUCA
system (Host with NUCA 2MB/Core LLC), and the NDP
system. We make two observations. First, the observations
we make for our bottleneck classification (Section III-C)
are not affected by increasing the L3 cache size for
Classes 1a, 1b, 1c, 2b, and 2c. We observe that Class 1a func-
tions benefit from a large L3 cache size (by up to 1.9×/2.3×
for HSJNPO/LIGPrkEmd at 256 cores). However, the NDP
system still provides performance benefits compared to the
host CPU NUCA system. We observe that increasing the
L3 size reduces some of the pressure on main memory but
cannot fully reduce the DRAM bandwidth bottleneck for
Class 1a functions. Functions in Class 1b do not benefit
from extra L3 capacity (we do not observe a decrease in
LFMR or MPKI). Functions in Class 1c do not benefit from
extra L3 cache capacity. We observe that the private L1 and
L2 caches capture most of their data locality, as mentioned
in Section III-C3, and thus, these functions do not benefit
from increasing the L3 size. Functions in Class 2b do not
benefit from extra L3 cache capacity, which can even lead
to a decrease in performance at high core counts for the host
CPU NUCA system in some Class 2b functions due to long
NUCA L3 access latencies. For example, we observe that
PLYgemver’s performance drops 18% when increasing the
core count from 64 to 256 in the host CPU NUCA system.
We do not observe such a performance drop for the host
CPU system with fixed LLC size. The performance drop in
the host CPU NUCA system is due to the increase in the
number of hops that L3 requests need to travel in the NoC
at high core counts, which increase the function’s AMAT.
Class 2c functions benefit from a larger last-level cache.
We observe that their performance improves by 1.3×/1.2×
for HPGSpm/RODNw compared to the host CPU system with
8MB fixed LLC at 256 cores.

Second, we observe two different types of behavior for
functions in Class 2a. Since cache conflicts are the major bot-
tleneck for functions in this class, we observe that increasing
the L3 cache size can mitigate this bottleneck. In Figure 16,
we observe that for both PLYGramSch and SPLFftRev,
the host system with NUCA 2MB/Core LLC provides better
performance than the host systemwith 8MBfixedLLC.How-
ever, the NDP system can still provide performance benefits
in case of contention on the L3 NoC (e.g., in SPLFftRev).
For example, the NDP system provides 14% performance
improvement for SPLFftRev compared to the NUCA sys-
tem (with 512 MB L3 cache) for 256 cores.

In summary, we conclude that the key takeaways and
observations we present in our bottleneck classification in
Section III-C are also valid for a host system with a shared
last-level cache whose size scales with core count. In partic-
ular, different workload classes get affected by an increase in
L3 cache size as expected by their characteristics distilled by
our classification.

Figure 17 shows the energy consumption for representative
functions from each one of our bottleneck classes presented in
Section III-C. We observe that the NDP system can provide
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FIGURE 16. Performance of the host and the NDP system as we vary the LLC size, normalized to one host core with a fixed 8MB LLC size.

substantial energy savings for functions in different bottle-
neck classes, even compared against a system with very large
(e.g., 512 MB) cache sizes. We make the following observa-
tions for each bottleneck class:

• Class 1a: First, for both representative functions in this
bottleneck class, the host CPU NUCA system and the
NDP system reduce energy consumption compared to
the baseline host CPU system. However, we observe
that the NDP system provides larger energy savings than
the host CPU NUCA system. On average, across all
core counts, the NDP system and the host CPU NUCA
system reduce energy consumption compared to the host
CPU system for HSJNPO/LIGPrkEmd by 46%/65%
and 25%/22%, respectively. Second, at 256 cores,
the host CPU NUCA system provides larger energy
savings than the NDP system for both representa-
tive functions. This happens because at 256 cores,
the large L3 cache (i.e., 512 MB) captures a large por-
tion of the dataset for these functions, reducing costly
DRAM traffic. The host CPU NUCA system reduces
energy consumption compared to the host CPU system
for HSJNPO/LIGPrkEmd at 256 cores by 2.0×/2.2×
while the NDP system reduces energy consumption by
1.6×/1.8×. The L3 cache capacity needed to make the
host CPU NUCA system more energy efficient than the
NDP system is very large (512 MB SRAM), which is
likely not cost-effective.

• Class 1b: First, for CHAHsti, the host CPU NUCA
system increases energy consumption compared to the
host CPU system by 9%, on average across all core
counts. In contrast, the NDP system reduces energy
consumption by 57%. Due to its low spatial and tem-
poral locality (Figure 3), this function does not benefit
from a deep cache hierarchy. In the host CPU NUCA

system, the extra energy from the large amount of NoC
traffic further increases the cache hierarchy’s overall
energy consumption. Second, for PLYalu, the host
CPU NUCA system and the NDP system reduce energy
consumption compared to the host CPU system by 76%
and 23%, on average across all core counts. Even though
the increase in LLC size does not translate to perfor-
mance improvements, the large LLC sizes in the host
CPUNUCA system aid to reduceDRAM traffic, thereby
providing energy savings compared to the baseline host
CPU system.

• Class 1c: First, for DRKRes, the host CPU NUCA
system reduces energy consumption compared to the
host CPU system by 15%, on average across all core
counts. In contrast, the NDP system increases energy
consumption by 30%, which is due to the function’s
medium LFMR (Section III-C3). Second, for PRSFlu,
we observe that the NDP system provides large energy
savings than the host CPUNUCA system. The host CPU
NUCA system reduces energy consumption compared
to the host CPU system by 21%, while the NDP system
reduces energy consumption by 25%, on average across
all core counts. However, the energy savings of both
host CPU NUCA and NDP systems compared to the
host CPU system reduces at high-enough core counts
(the energy consumption of the host CPUNUCA system
(NDP system) is 0.6× (0.9×) that of the host CPU
system at 64 cores and 1.1× (1.3×) that of the host
CPU system at 256 cores). This result is expected for
Class 1c functions since the functions in this class have
decreasing LFMR, i.e., the functions effectively utilize
the private L1/L2 caches in the host CPU system at
high-enough core counts.

• Class 2a: First, for PLYGramSch, compared to the
host CPU system the host CPU NUCA system reduces
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FIGURE 17. Energy of the host and the NDP system as we vary the LLC size. Host refers to the host system with a fixed 8MB LLC size; Host NUCA refers to
the host system with 2MB/Core LLC.

energy consumption by 2.53× and the NDP system
increases energy consumption by 55%, on average
across all core counts. Even though at high core counts
(64 and 256 cores) the host CPUNUCA system provides
larger energy savings than the NDP system compared to
the host CPU system (the host CPU NUCA system and
the NDP system reduce energy consumption compare
to the host CPU system by 9× and 65% respectively,
averaged across 64 and 256 cores), such large energy
savings come at the cost of very large (e.g., 512 MB)
cache sizes. Second, for SPLFftRev, the host CPU
NUCA system and the NDP system reduce energy con-
sumption compared to the host CPU system by 42%

and 7%, on average across all core counts. The NDP
system increases energy consumption compared to the
host CPU system at low core counts (an increase of 33%,
averaged across 1, 4, and 16 cores). However, it provides
similar energy savings as the host CPU NUCA system
for large core counts (99% and 75% energy reduction
compare to the host CPU system for the host CPU
NUCA system and the NDP system, respectively, aver-
aged across 64 and 256 cores counts). Since the function
suffers from high network contention, the increase in
core count increases NoC traffic, which in turn increases
energy consumption for the host CPU NUCA system.
We conclude that the NDP system provides energy sav-
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ings for Class 2a applications compared to the host CPU
system at lower cost than the host CPU NUCA system.

• Class 2b: First, for PLYgemver, the host CPU NUCA
system increases energy consumption compared to the
host CPU system by 2%, on average across all core
counts. In contrast, the NDP system reduces energy
consumption by 13%. This function does not benefit
from large L3 cache sizes since Class 2b functions are
bottlenecked by L1 capacity. Thus, the NoC only adds
extra static and dynamic energy consumption. Second,
for SPLLucb, the host CPU NUCA system consumes
the same energy as the host CPU system while the NDP
system increases energy consumption by 5%, averaged
across all core counts.

• Class 2c: For both representative functions in this
class, the host CPU NUCA system reduces energy
consumption compared to the host CPU system while
the NDP system increases energy consumption. For
HPGSpm/RODNw, the host CPU NUCA system reduces
energy consumption by 6%/9% while the NDP system
increases energy consumption by 74%/22%, averaged
across all core counts. This result is expected since
Class 2c functions are compute-bound and highly bene-
fit from a deep cache hierarchy.

In conclusion, the NDP system can provide substantial
energy savings for functions in different bottleneck classes,
even compared against a system with very large (e.g.,
512 MB) cache sizes.

E. VALIDATION AND SUMMARY OF OUR WORKLOAD
CHARACTERIZATION METHODOLOGY
In this section, we present the validation and a summary
of our new workload characterization methodology. First,
we use the remaining 100memory-bound functions we obtain
from Step 1 (see Section III-A) to validate our workload char-
acterization methodology. To do so, we calculate the accu-
racy of our workload classification by using the remaining
100 memory-bound functions, which were not used to iden-
tify the six classes we found and described in Section III-C.
Second, we present a summary of the key metrics we obtain
for all 144 memory-bound functions, including our analysis
of the host CPU system and the NDP system using two types
of cores (in-order and out-of-order).

1) VALIDATION OF OUR WORKLOAD CHARACTERIZATION
METHODOLOGY
Our goal is to evaluate the accuracy of our workload char-
acterization methodically on a large set of functions. To this
end, we apply Step 2 and Step 3 of our memory bottleneck
classification methodology (as described in Sections II-C
and II-D) to the remaining 100 memory-bound functions we
obtain from Step 1 (in Section III-A). Then, we perform a
two-phase validation to calculate the accuracy of our work-
load characterization.

In phase 1 of our validation, we calculate the threshold
values that define the low/high boundaries of each of the four
metrics we use to cluster the initial 44 functions in the six
memory bottleneck classes in Section III-C (i.e., temporal
locality, LFMR, LLC MPKI, and AI). We also include the
LFMR curve slope to indicate when the LFMR increases,
decreases or stays constant as we scale the core count.
We calculate the threshold values for a metric M by comput-
ing the middle point between (i) the average value of M across
the memory bottleneck classes with low values of M and (ii)
the average value of M across the memory bottleneck classes
with high values ofM values out of the 44 functions. In phase 2
of our validation, we calculate the accuracy of our workload
characterization by classifying the remaining 100 memory-
bound functions using the threshold values obtained from
phase 1 and the LFMR curve slope. After phase 2, a function
is considered to be accurately classified into a correct mem-
ory bottleneck class if and only if it (1) fits the definition of
the assigned class using the threshold values obtained from
phase 1 and (2) follows the expected performance trends of
the assigned class when the function is executed in the host
CPU system and the NDP system. For example, a function is
correctly classified into Class 1a if and only if it (1) displays
low temporal locality, low AI, high LFMR, high MPKI and
(2) the NDP system outperforms the host CPU system as
we scale the core count when executing the function. The
final accuracy of our workload characterizationmethodology
is calculated by computing the percentage of the functions
that are accurately classified into one of the six memory
bottleneck classes.

First, by applying phase 1 of our two-phase validation,
we obtain that the threshold values are: 0.48 for temporal
locality, 0.56 for LFMR, 11.0 forMPKI, and 8.5 for AI. Sec-
ond, by applying phase 2 of our two-phase validation, we find
that we can accurately classify 97% of the 100 memory-
bound functions into one of our six memory bottleneck
classes (i.e., the accuracy of our workload characteriza-
tion methodology is 97%). We observe that three functions
(Ligra:ConnectedComponents:compute:rMat, Ligra:Maxi
malIndependentSet:edgeMapDense:USA, and SPLASH-2:
Oceanncp:relax) could not be accurately classified into their
correct memory bottleneck class (Class 1a). We observe that
these functions have LLCMPKI values lower than the MPKI
threshold expected for Class 1a functions. We expect that the
accuracy of our methodology can be further improved by
incorporating more workloads into our workload suite and
fine-tuning each metric to encompass an even larger set of
applications.

We conclude that our workload characterization methodol-
ogy can accurately classify a given new application/function
into its appropriate memory bottleneck class.

2) SUMMARY OF Our WORKLOAD CHARACTERIZATION
RESULTS
Figure 18a summarizes the metrics we collect for all
144 functions across all core counts (i.e., from 1 to 256 cores)
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FIGURE 18. Summary of our characterization for all 144 memory-bound functions. Each box is lower-bounded by the first quartile and upper-bounded by
the third quartile. The median falls within the box. The inter-quartile range (IQR) is the distance between the first and third quartiles (i.e., box size).
Whiskers extend to the minimum and maximum data point values on either sides of the box.

and different core microarchitectures (i.e., out-of-order and
in-order cores). The figure shows the distribution of the key
metrics we use during our workload characterization for
each memory bottleneck class in Section III-C, including
architecture-independent metrics (i.e., temporal locality) and
architecture-dependent metrics (i.e., AI, LFMR, and LLC
MPKI). We report the architecture-dependent metrics for
two core models: (i) in-order and (ii) out-of-order cores.12

Together with the out-of-order core model that we use in
Section III-C, we incorporate an in-order core model to our
analysis, so as to show that our memory bottleneck clas-
sification methodology focuses on data movement require-
ments andworks independently of the coremicroarchitecture.
Figure 18b shows the distribution of speedups we observe for

12In Section III-C, we collect and report the values of the
architecture-independent metrics and architecture-dependent metrics
for a subset of 44 representative functions out of the 144 memory-
bound functions we identify in Step 1 of our workload characterization
methodology. In Section III-E2, we report values for the complete set
of 144 memory-bound functions.

when we offload the function to our general-purpose NDP
cores, while employing the same core type as the host CPU
system.

We make two key observations from Figure 18. First, we
observe similar values for each architecture-dependent key
metric (i.e., LFMR, MPKI, AI) regardless of core type for
all 144 functions (in Figure 18a). Second, we observe that
the NDP system achieves similar speedups over the host
CPU system, when using both in-order and out-of-order core
configurations (in Figure 18b). The speedup provided by the
NDP system compared to the host CPU system when both
systems use out-of-order (in-order) cores for Classes 1a, 1b,
1c, 2a, 2b, and 2c is 1.59 (1.77), 1.22 (1.15), 0.96 (0.95), 1.04
(1.22), 0.94 (1.01), and 0.56 (0.76), respectively, on aver-
age across all core counts and functions within a memory
bottleneck class. The NDP system greatly outperforms the
host CPU system across all core counts for Class 1a and
1b functions, with a maximum speedup for the out-of-order
(in-order) core model of 4.8 (3.5) and 3.4 (2.9), respectively.
The NDP system greatly outperforms the host CPU system at
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low core counts for Class 1c functions and at high core counts
for Class 2a functions, with a maximum speedup for the out-
of-order (in-order) core model of 2.3 (2.4) and 3.8 (3.4),
respectively. The NDP system provides a modest speedup
compared to the host CPU system across all core counts
for Class 2b functions and slowdown for Class 2c functions,
with a maximum speedup for the out-of-order (in-order) core
model of 1.2 (1.1) and 1.0 (1.0), respectively. We observe
that, averaged across all classes and core types, the average
speedup provided by the NDP system using in-order cores
is 11% higher than the average speedup offered by the NDP
system using out-of-order cores. This is because the host CPU
system with out-of-order cores can hide the performance
impact of memory access latency to some degree (e.g., using
dynamic instruction scheduling) [57], [58], [183], [184],
[240], [302]. On the other hand, the host CPU system using
in-order cores has little tolerance to hide memory access
latency [57], [58], [183], [184], [240], [302].

We conclude that our methodology to classify memory
bottlenecks of applications is robust and effective since we
observe similar trends for the six memory bottleneck classes
across a large range of (144) functions and two very different
core models.

F. LIMITATIONS OF OUR METHODOLOGY
We identify three limitations to our workload char-
acterization methodology. We discuss each limitation
next.

1) NDP ARCHITECTURE DESIGN SPACE
Our methodology uses the same type and number of cores
in the host CPU and the NDP system configurations for our
scalability analysis (Section III-C) because our main goal is
to highlight the performance and energy differences between
the host CPU system and the NDP system that are caused
by data movement. We do not consider practical limitations
related to area or thermal dissipation that could affect the
type and the maximum number of cores in the NDP system,
because our goal is not to propose NDP architectures but to
characterize data movement and understand the different data
movement bottlenecks in modern workloads. Proposing NDP
architectures for the workload classes that our methodology
identifies as suitable for NDP is a promising topic for future
work.

2) FUNCTION-LEVEL ANALYSIS
We choose to conduct our analysis at a function granularity
rather than at the application granularity for two major rea-
sons. First, general-purpose NDP architectures are typically
leveraged as accelerators to which only parts of the appli-
cation or specific functions are offloaded [1], [47], [48],
[54], [59], [64], [65], [83], [86], [89], [92], [98], [100], [102],
[133], [192], [193], [303]–[307], rather than the entire appli-
cation. Functions typically form natural boundaries for parts
of algorithms/applications that can potentially be offloaded.
Second, it is well-known that applications go through distinct

phases during execution. Each phase may have different char-
acteristics (e.g., a phasemight bemore compute-bound, while
another one might be more memory-bound) and thus fall into
different classes in our analysis. A fine-grained analysis at
the function level enables us to identify each of those phases
and hence, identify more fine-grained opportunities for NDP
offloading. However, the main drawback of function-level
analysis is that it does not take into account data movement
across function boundaries, which affects the performance
and energy benefits the NDP system provides over the host
CPU system. For example, the NDP systemmight hurt overall
system performance and energy consumption when a large
amount of data needs to be continuously moved between a
function executing on the NDP cores and another executing
on the host CPU cores [63], [74].

3) OVERESTIMATING NDP POTENTIAL
Offloading kernels to NDP cores incurs overheads that our
analysis does not account for (e.g., maintaining coherence
between the host CPU and the NDP cores [63], [74],
efficiently synchronizing computation across NDP cores
[101], [140], providing virtual memory support for the NDP
system [47], [55], [308], and dynamic offloading sup-
port for NDP-friendly functions [48]). Such overheads can
impact the performance benefits NDP can provide when
considering the end-to-end application. However, decid-
ing how to and whether or not to offload computation
to NDP is an open research topic, which involves several
architecture-dependent components in the system, such as
the following two examples. First, maintaining coherence
between the host CPU and the NDP cores is a challenging
task that recent works tackle [63], [74]. Second, enabling
efficient synchronization across NDP cores is challenging
due to the lack of shared caches and hardware cache coher-
ence protocols in NDP systems. Recent works, such as [101],
[309], provide solutions to the NDP synchronization prob-
lem. Therefore, to focus our analysis on the data move-
ment characteristics of workloads and the broad benefits of
NDP, we minimize our assumptions about our target NDP
architecture, making our evaluation as broadly applicable as
possible.

IV. DAMOV: THE DATA MOVEMENT BENCHMARK SUITE
In this section, we present DAMOV, the DAta MOVement

Benchmark Suite. DAMOV is the collection of the 144 func-
tions we use to drive our memory bottleneck classification
in Section III. The benchmark suite is divided into each
one of the six classes of memory bottlenecks presented in
Section III. DAMOV is the first benchmark suite that encom-
passes real applications from a diverse set of application
domains tailored to stress different memory bottlenecks in a
system. We present the complete description of the functions
in DAMOV in Appendix A. We highlight the benchmark
diversity of the functions in DAMOV in Section IV-A. We
open source DAMOV [158] to facilitate further rigorous
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FIGURE 19. Hierarchical clustering of 44 representative functions.

research in mitigating data movement bottlenecks, including
in near data processing.
A. BENCHMARK DIVERSITY
We perform a hierarchical clustering algorithm with the 44
representative functions we employ in Section III-C.13 Our
goal is to showcase our benchmark suite’s diversity and
observe whether a clustering algorithm produces a notice-
able difference from the application clustering presented
Section III. The hierarchical clustering algorithm [310] takes
as input a dataset containing features that define each object
in the dataset. The algorithm works by incrementally group-
ing objects in the dataset that are similar to each other in terms
of some distance metric (called linkage distance), which is
calculated based on the features’ values. Two objects with
a short linkage distance have more affinity to each other
than two objects with a large linkage distance. To apply the
hierarchical clustering algorithm, we create a dataset where
each object is one of the 44 representative functions from
DAMOV. We use as features the same metrics we use for
our analysis, i.e., temporal locality, MPKI, LFMR, and AI.
We also include the LFMR curve slope to indicate when the
LFMR increases, decreases or stays constant when scaling
the core count. We use Euclidean distance [310] to calculate
the linkage distance across features in our dataset. We eval-
uate other linkage distance metrics (such as Manhattan dis-
tance [310]), and we observe similar clustering results.

Figure 19 shows the dendrogram that the hierarchical clus-
tering algorithm produces for our 44 representative functions.
We indicate in the figure the application class each function
belongs to, according to our classification. We make three
observations from the figure.

First, our benchmarks exhibit a wide range of behavior
diversity, even among those belonging to the same class.
For example, we observe that the functions from Class 1a

13In Section IV-A, we use the same 44 representative functions that we use
during our bottleneck classification instead of the entire set of 144 functions
in DAMOV, in order to visualize better the clustering produced by the
hierarchical clustering algorithm.

are divided into two groups, with a linkage distance of 3.
Intuitively, functions in the first group (HSJNPO, STRAdd,
STRCpy, STRSca, STRTriad) have regular access pat-
terns while functions in the second group (DRKYolo,
LIGCompEms, LIGPrkEmd, LIGRadiEms) have irreg-
ular access patterns. We observe a similar clustering in
Section III-C1.

Second, we observe that our application clustering
(Section III-C) matches the clustering that the hierarchical
clustering algorithm provides (Figure 19). From the den-
drogram root, we observe that the right part of the den-
drogram consists of functions with high temporal locality
(from Classes 2a, 2b, and 2c). Conversely, the left part of the
dendrogram consists of functions with low temporal locality
(from Classes 1a, 1b, and 1c). The functions in the right
and left part of the dendrogram have a high linkage dis-
tance (higher than 15), which implies that the metrics we
use for our clustering are significantly different from each
other for these functions. Third, we observe that functions
within the same class are clustered into groups with a linkage
distance lower than 5. This grouping matches the six classes
of datamovement bottlenecks present inDAMOV. Therefore,
we conclude that our methodology can successfully cluster
functions into distinct classes, each one representing a differ-
ent memory bottleneck.

We conclude that (i) DAMOV provides a heterogeneous
and diverse set of functions to study data movement bottle-
necks and (ii) ourmemory bottleneck clusteringmethodology
matches the clustering provided by a hierarchical clustering
algorithm (this section; Figure 19).

V. CASE STUDIES
In this section, we demonstrate how our benchmark suite is
useful to study open questions related to NDP system designs.
We provide four case studies. The first study analyzes the
impact of load balance and communication on NDP execu-
tion. The second study assesses the impact of tailored NDP
accelerators on our memory bottleneck analysis. The third
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study evaluates the effect of different core designs on NDP
system performance. The fourth study analyzes the impact
of fine-grained offloading (i.e., offloading small blocks of
instructions to NDP cores) on performance.

A. CASE STUDY 1: IMPACT OF LOAD BALANCE AND
INTER-VAULT COMMUNICATION ON NDP SYSTEMS
Communication between NDP cores is one of the key chal-
lenges for future NDP system designs, especially for NDP
architectures based on 3D-stacked memories, where access-
ing a remote vault incurs extra latency overhead due to
network traffic [46], [101], [311]. This case study aims to
evaluate the load imbalance and inter-vault communication
that the NDP cores experience when executing functions
from the DAMOV benchmark suite. We statically map a
function to an NDP core, and we assume that NDP cores
are connected using a 6 × 6 2D-mesh Network-on-Chip
(NoC), similar to previous works [66], [70], [312]–[314].
Figure 20 shows the performance overhead that the intercon-
nection network imposes to NDP cores when running several
functions from our benchmark suite. We report performance
overheads of functions from different bottleneck classes (i.e.,
from Classes 1a, 1b, 2a, and 2b) that experience at least
5% of performance overhead due to the interconnection net-
work. We calculate the interconnection network performance
overhead by comparing performance with the 2D-mesh ver-
sus that with an ideal zero-latency interconnection network.
We observe that the interconnection network performance
overhead varies across functions, with a minimum overhead
of 5% for SPLOcpSlave and a maximum overhead of 26%
for SPLLucb.

FIGURE 20. Interconnection network performance overhead in our NDP
system.

We further characterize the traffic of memory requests
injected into the interconnection network for these functions,
aiming to understand the communication patterns across
NDP cores. Figure 21 shows the distribution of all memory
requests (y-axis) in terms of how many hops they need to
travel in the NoC between NDP cores (x-axis) for each func-
tion. We make the following observations. First, we observe
that, on average, 40% of all memory requests need to travel
3 to 4 hops in the NoC, and less than 5% of all requests are
issued to a local vault (0 hops). Even though the functions fol-
low different memory access patterns, they all inject similar

network traffic into the NoC.14 Therefore, we conclude that
the NDP design can be further optimized by (i) employing
more intelligent data mapping and scheduling mechanisms
that can efficiently allocate data nearby the NDP core that
accesses the data (thereby reducing inter-vault communica-
tion and improving data locality) and (ii) designing intercon-
nection networks that can better fit the traffic patterns that
NDP workloads produce. The DAMOV benchmark suite can
be used to develop new ideas as well as evaluate existing ideas
in both directions.

FIGURE 21. Distribution of NoC hops traveled per memory request.

B. CASE STUDY 2: IMPACT OF NDP ACCELERATORS ON
OUR MEMORY BOTTLENECK ANALYSIS
In our second case study, we aim to leverage our memory bot-
tleneck classification to evaluate the benefits an NDP accel-
erator provides compared to the same accelerator accessing
memory externally. We use the Aladdin accelerator simula-
tor [315] to tailor an accelerator for an application function.
Aladdin works by estimating the performance of a custom
accelerator based on the data-flow graph of the application.
The main difference between an NDP accelerator and a regu-
lar accelerator (i.e., compute-centric accelerator) is that the
former is placed in the logic layer of a 3D-stacked mem-
ory device and thus can leverage larger memory bandwidth,
shorter memory access latency, and lower memory access
energy, compared to the compute-centric accelerator that is
exemplary of existing compute-centric accelerator designs.

To evaluate the benefits of NDP accelerators, we select
three functions from our benchmark suite for this case study:
DRKYolo (from Class 1a), PLYalu (from Class 1b), and
PLY3mm (from Class 2c). We select these functions and
memory bottleneck classes because we expect them to benefit
the most (or to show no benefit) from the near-memory place-
ment of an accelerator. According to our memory bottleneck
analysis, we expect that the functions we select to (i) benefit
from NDP due to its high DRAM bandwidth (Class 1a),
(ii) benefit fromNDP due to its shorter DRAM access latency
(Class 1b), or (iii) do not benefit from NDP in any way
(Class 2c).

Figure 22 shows the speedup that the NDP accelera-
tor provides for the different functions compared to the
compute-centric accelerator. We make four observations.

14We use the default HMC data interleaving scheme in our experiments
(Table 1).
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FIGURE 22. Speedup of the NDP accelerators over the compute-centric
accelerators for three functions from Classes 1a, 1b, and 2c.

First, as expected based on our classification, the NDP
accelerator provides performance benefits compared to the
compute-centric accelerator for functions in Classes 1a and
1b. It does not provide performance improvement for the
function in Class 2c. Second, the NDP accelerator for
DRKYolo shows the largest performance benefits (1.9×
performance improvement compared to the compute-centric
accelerator). Since this function is DRAM bandwidth-bound
(Class 1a, Section III-C1), the NDP accelerator can leverage
the larger memory bandwidth available in the logic layer
of the 3D-stacked memory device. Third, we observe that
the NDP accelerator also provides speedup (1.25×) for the
PLYalu function compared to the compute-centric accel-
erator, since the NDP accelerator provides shorter mem-
ory access latency to the function, which is latency-bound
(Class 1b, Section III-C2). Fourth, the NDP accelerator does
not provide performance improvement for the PLY3mm
function since this function is compute-bound (Class 2c,
Section III-C6).

In conclusion, our observations for the performance
of NDP accelerators are in line with the characteristics
of the three memory bottleneck classes we evaluate in
this case study. Therefore, our memory bottleneck clas-
sification can be applied to study other types of system
configurations, e.g., the accelerators used in this section.
However, since NDP accelerators are often employed under
restricted area and power constraints (e.g., limited area
available in the logic layer of a 3D-stacked memory [63],
[74]), the core model of the compute-centric and NDP
accelerators cannot always be the same. We leave a thor-
ough analysis that takes area and power constraints in the
study of NDP accelerators into consideration for future
research.

C. CASE STUDY 3: IMPACT OF DIFFERENT CORE MODELS
ON NDP ARCHITECTURES
This case study aims to analyze when a workload can
benefit from different core models and numbers of cores
while respecting the area and power envelope of the logic
layer of a 3D-stacked memory. Many prior works employ
3D-stacked memories as the substrate to implement NDP
architectures [1], [46]–[48], [54], [55], [59]–[61], [63]–[70],
[74]–[77], [79], [80], [99], [101]–[103], [137], [146], [192],
[194], [305], [316]–[324]. However, 3D-stacked memories
impose severe area and power restrictions on NDP architec-

tures. For example, the area and power budget of the logic
layer of a single HMC vault are 4.4 mm2 and 312 mW ,
respectively [1], [63].

In the case study, we perform an iso-area and iso-power
performance evaluation of three functions from our bench-
mark suite. We configure the host CPU system and the NDP
system to guarantee an iso-area and iso-power evaluation,
considering the area and power budget for a 32-vault HMC
device [1], [63]. We use four out-of-order cores with a deep
cache hierarchy for the host system configuration and two
different NDP configurations: (1) one using six out-of-order
NDP cores (NDP+out-of-order) and (2) using 128 in-order
NDP cores (NDP+in-order), without a deep cache hierarchy.
We choose functions from Classes 1a, 1b, and 2b for this case
study since the major effects distinct microarchitectures have
on the memory system are: (a) how much DRAM bandwidth
they can sustain, and (b) how much DRAM latency they can
hide. Classes 1a, 1b, and 2b are the most affected by mem-
ory bandwidth and access latency (as shown in Section III).
We choose two representative functions from each of these
classes.

Figure 23 shows the speedup provided by the two
NDP system configurations compared to the baseline host
system. We make two observations. First, in all cases,
the NDP+in-order system provides higher speedup than the
NDP+out-of-order system, both compared to the host sys-
tem. On average across all six functions, the NDP+in-order
system provides 4× the speedup of the NDP+out-of-order
system. The larger speedup the NDP+in-order system pro-
vides is due to the high number of NDP cores in the
NDP+in-order system. We can fit 128 in-order cores in
the logic layer of the 3D-stacked memory as opposed to
only six out-of-order cores in the same area/power budget.
Second, we observe that the speedup the NDP+in-order
system provides compared to the NDP+out-of-order sys-
tem does not scale with the number of cores. For exam-
ple, the NDP+in-order system provides only 2× the perfor-
mance of the NDP+out-of-order system for DRKYolo and
PLYalu, even though the NDP+in-order system has 21×
the number of NDP cores of the NDP+out-of-order system.
This implies that even though the functions benefit from a
large number of NDP cores available in the NDP+in-order
system, static instruction scheduling limits performance on
the NDP+in-order system.

FIGURE 23. Speedup of NDP architectures over 4 out-of-order host CPU
cores for two NDP configurations: using 128 in-order NDP cores
(NDP+in-order ) and 6 out-of-order NDP cores (NDP+out-of-order ) for
representative functions from Classes 1a, 1b, and 2b.
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We believe, and our previous observations suggest, that
an efficient NDP architecture can be achieved by leverag-
ing mechanisms that can exploit both dynamic instruction
scheduling and many-core design while fitting in the area
and power budget of 3D-stackedmemories. For example, past
works [57], [58], [183], [184], [224], [325]–[343] propose
techniques that enable the benefits of simple and complex
cores at the same time, via heterogeneous or adaptive archi-
tectures. These ideas can be examined to enable better core
and system designs for NDP systems, and DAMOV can
facilitate their proper design, exploration, and evaluation.

D. CASE STUDY 4: IMPACT OF FINE-GRAINED
OFFLOADING TO NDP ON PERFORMANCE
Several prior works onNDP (e.g., [47], [54], [86], [89], [100],
[146], [303], [306], [344]–[346]) propose to identify and
offload to the NDP system simple primitives (e.g., instruc-
tions, atomic operations). We refer to this NDP offloading
scheme as a fine-grained NDP offloading, in contrast to a
coarse-grained NDP offloading scheme that offloads whole
functions and applications to NDP systems. A fine-grained
NDP offloading scheme provides two main benefits com-
pared to a coarse-grained NDP offloading scheme. First,
a fine-grained NDP offloading scheme allows for a reduction
in the complexity of the processing elements used as NDP
logic, since the NDP logic can consist of simple processing
elements (e.g., arithmetic units, fixed function units) instead
of entire in-order or out-of-order cores often utilized when
employing a coarse-grainedNDP offloading scheme. Second,
a fine-grained NDP offloading scheme can help developing
simple coherence mechanism needed to allow shared host
and NDP execution [47]. However, identifying arbitrary NDP
instructions can be a daunting task since there is no compre-
hensive methodology that indicates what types of instructions
are good offloading candidates.

As the first step in this direction, we exploit the key insight
provided by [151], [347] to identify potential regions of
code that can be candidates for fine-grained NDP offload-
ing. [151], [347], [348] show that few instructions are
responsible for generating most of the cache misses during
program execution in memory-intensive applications. Thus,
these instructions are naturally good candidates for fine-
grained NDP offloading. Figure 24 shows the distribution of
unique basic blocks (x-axis) and the percentage of last-level
cache misses (y-axis) the basic block produces for three
representative functions from our benchmark suite. We select
functions fromClasses 1a (LIGKcrEms), 1b (HSJPRH), and
1c (DRKRes) since functions in these classes have higher
L3MPKI than functions in Classes 2a, 2b, and 2c.We observe
from the figure that 1% to 10% of the basic blocks in each
function are responsible for up to 95.3% of the LLC misses.
We call these basic blocks the hottest basic blocks.15 We

15We observe for the 44 functions we evaluate in Section III that in
many cases (for 65% of the evaluated workloads), a single basic block
is responsible for 90% to 100% of the LLC misses during the function’s
execution.

FIGURE 24. Distribution of unique basic blocks (x-axis) and the
percentage of last-level cache misses they produce (y-axis) for three
representative functions from Classes 1a (LIGKcrEms), 1b (HSJPRH), and
1c (DRKRes).

FIGURE 25. Speedup of offloading to NDP the hottest basic block in each
function versus the entire function.

investigate the data-flow of each basic block and observe
that these basic blocks often execute simple read-modify-
write operations, with few arithmetic operations. Therefore,
we believe that such basic blocks are good candidates for fine-
grained offloading. Figure 25 shows the speedup obtained by
offloading (i) the hottest basic block we identified for the
three representative functions and (ii) the entire function to
the NDP system, compared to the host system. Our initial
evaluations show that offloading the hottest basic block of
each function to the NDP system can provide up to 1.25×
speedup compared to the host CPU, which is half of the
1.5× speedup achieved when offloading the entire function.
Therefore, we believe that methodically identifying simple
NDP instructions can be a promising research direction for
future NDP system designs, which our DAMOV Benchmark
Suite can help with.

VI. KEY TAKEAWAYS
We summarize the key takeaways from our extensive
characterization of 144 functions using our new three-step
methodology to identify data movement bottlenecks. We also
highlight when NDP is a good architectural choice to mitigate
a particular memory bottleneck.

Figure 26 pictorially represents the key takeaways we
obtain from our memory bottleneck classification. Based on
four key metrics, we classify workloads into six classes of
memory bottlenecks. We provide the following key take-
aways:

1) Applications with low temporal locality, high LFMR,
high MPKI, and low AI are DRAM bandwidth-bound
(Class 1a, Section III-C1). They are bottlenecked
by the limited off-chip memory bandwidth as they
exert high pressure on main memory. We make three
observations for Class 1a applications. First, these
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FIGURE 26. Summary of our memory bottleneck classification.

applications do benefit from prefetching since they
display a low degree of spatial locality. Second, these
applications highly benefit from NDP architectures
because they take advantage of the high memory band-
width available within the memory device. Third, NDP
architectures significantly improve energy for these
applications since they eliminate the off-chip I/O traffic
between the CPU and the main memory.

2) Applications with low temporal locality, high LFMR,
low MPKI, and low AI are DRAM latency-bound
(Class 1b, Section III-C2). We make three observa-
tions for Class 1b applications. First, these applica-
tions do not significantly benefit from prefetching since
infrequent memory requests make it difficult for the
prefetcher to train successfully on an access pattern.
Second, these applications benefit from NDP architec-
tures since they take advantage of NDP’s lower mem-
ory access latency and the elimination of deep L2/L3
cache hierarchies, which fail to capture data locality
for these workloads. Third, NDP architectures signifi-
cantly improve energy for these applications since they
eliminate costly (and unnecessary) L3 cache look-ups
and the off-chip I/O traffic between the CPU and the
main memory.

3) Applications with low temporal locality, decreasing
LFMR with core count, low MPKI, and low AI are
bottlenecked by the available L1/L2 cache capacity
(Class 1c, Section III-C3). We make three observations
for Class 1c applications. First, these applications are
DRAM latency-bound at low core counts, thus tak-
ing advantage of NDP architectures, both in terms of
performance improvement and energy reduction. Sec-
ond, NDP’s benefits reduce when core count becomes
larger, which consequently allows the working sets of
such applications to fit inside the cache hierarchy at
high core counts. Third, NDP architectures can be a
good design choice for such workloads in systems with
limited area budget since NDP architectures do not

require large L2/L3 caches to outperform or perform
similarly to the host CPU (in terms of both system
throughput and energy) for these workloads.

4) Applications with high temporal locality, increasing
LFMR with core count, low MPKI, and low AI
are bottlenecked by L3 cache contention (Class 2a,
Section III-C4). We make three observations for
Class 2a applications. First, these applications benefit
from a deep cache hierarchy and do not take advan-
tage of NDP architectures at low core counts. Second,
the number of cache conflicts increases when the num-
ber of cores in the system increases, leading to more
pressure on main memory. We observe that NDP can
effectively mitigate such cache contention for these
applications without incurring the high area and energy
overheads of providing additional cache capacity in
the host. Third, NDP can improve energy for these
workloads at high core counts, since it eliminates the
costly data movement between the last-level cache and
the main memory.

5) Applications with high temporal locality, low LFMR,
low MPKI, and low AI are bottlenecked by L1 cache
capacity (Class 2b, Section III-C5). We make two
observation for Class 2b applications. First, NDP can
provide similar performance and energy consumption
than the host system by leveraging lower memory
access latency and avoiding off-chip energy consump-
tion for these applications. Second, NDP can be used
to reduce the overall SRAM area (by eliminating
L2/L3 caches) in the system without a performance or
energy penalty.

6) Applications with high temporal locality, low LFMR,
low MPKI, and high AI are compute-bound (Class 2c,
Section III-C6). We make three observations for
Class 2c applications. First, these applications suffer
performance and energy penalties due to the lack of
a deep L2/L3 cache hierarchy when executed on the
NDP architecture. Second, these applications highly
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benefit from prefetching due to their high temporal and
spatial locality. Third, these applications are not good
candidates to execute on NDP architectures.

A. SHAPING FUTURE RESEARCH WITH DAMOV
A key contribution of our work is DAMOV, the first
benchmark suite for main memory data movement studies.
DAMOV is the collection of 144 functions from 74 different
applications, belonging to 16 different benchmark suites or
frameworks, classified into six different classes of data move-
ment bottlenecks.

We believe that DAMOV can be used to explore
a wide range of research directions on the study of
data movement bottlenecks, appropriate mitigation mech-
anisms, and open research topics on NDP architec-
tures. We highlight DAMOV’s usability and potential
benefits with four brief case studies, which we summarize
below:

• In the first case study (Section V-A), we use DAMOV
to evaluate the interconnection network overheads that
NDP cores placed in different vaults of a 3D-stacked
memory suffer from. We observe that a large por-
tion of the memory requests an NDP core issues go
to remote vaults, which increases the memory access
latency for the NDP core. We believe that DAMOV can
be employed to study better data mapping techniques
and interconnection network designs that aim to min-
imize (i) the number of remote memory accesses the
NDP cores execute and (ii) the interconnection network
latency overheads.

• In the second case study (Section V-B), we evalu-
ate the benefits that NDP accelerators can provide for
three applications from our benchmark suite. We com-
pare the performance improvements an NDP accelera-
tor provides against the compute-centric version of the
same accelerator. We observe that the NDP accelera-
tor provides significant performance benefits compared
to the compute-centric accelerator for applications in
Classes 1a and 1b. At the same time, it does not improve
performance for an application in Class 2c. We believe
that DAMOV can aid the design of NDP accelerators
that target different memory bottlenecks in the system.

• In the third case study (Section V-C), we perform
an iso-area/-power performance evaluation to compare
NDP systems using in-order and out-of-order cores.
We observe that the in-order cores’ performance ben-
efits for some applications are limited by the cores’
static instruction scheduling mechanism. We believe
that better NDP systems can be built by leveraging
techniques that enable dynamic instruction scheduling
without incurring the large area and power overheads of
out-of-order cores. DAMOV can help in the analysis and
development of such NDP architectures.

• In the fourth case study (Section V-D), we evaluate the
benefits of offloading small portions of code (i.e., a basic

block) to NDP, which simplifies the design of NDP
systems. We observe that for many applications, a small
percentage of basic blocks is responsible for most of the
last-level cache misses. By offloading these basic blocks
to an NDP core, we observe a performance improvement
of up to 1.25×. We believe that DAMOV can be used
to identify simple NDP instructions that enable building
efficient NDP systems in the future.

VII. RELATED WORK
To our knowledge, this is the first work that methodically
characterizes data movement bottlenecks and evaluates the
benefits of different data movement mitigation mechanisms,
with a focus on Near-Data Processing (NDP), for a broad
range of applications. This is also the first work that provides
an extensive open-source benchmark suite, with a diverse
range of real world applications, tailored to stress different
memory-related data movement bottlenecks in a system.

Many past works investigate how to reduce data movement
cost using a range of different compute-centric (e.g., prefetch-
ers [56], [189], [244], [349]–[369], speculative execution
[57], [58], [183], [184], [349], [370], value-prediction [349],
[356], [371]–[387], data compression [388]–[405], approx-
imate computing [40], [371], [406], [407]) and memory-
centric techniques [1], [35], [47], [54], [63]–[65], [81], [194],
[222], [223], [250], [251], [335], [408]–[417]. These works
evaluate the impact of data movement in different systems,
includingmobile systems [1], [39], [418]–[420], data centers
[5], [31], [355], [421]–[425], accelerators-based systems [1],
[59], [60], [179], [220], [423], [426], and desktop comput-
ers [202], [427], [428]. They use very different profiling
frameworks and methodologies to identify the root cause of
data movement for a small set of applications. Thus, it is not
possible to generalize prior works’ findings to other applica-
tions than the limited set they analyze.

We highlight two of these prior works, [426] and [1],
since they also focus on characterizing applications for NDP
architectures. In [426], the authors provide the first work that
characterizes workloads for NDP. They analyze five applica-
tions (FFT, ray tracing, method of moments, image under-
standing, data management). The NDP organization [426]
targets is similar to [429], where vector processing compute
units are integrated into the DDRx memory modules. Even
though [426] has a similar goal to our work, it understand-
ably does not provide insights into modern data-intensive
applications and NDP architectures as it dates from 2001.
Also, [426] focuses its analysis only on a few workloads,
whereas we conduct a broader workload analysis starting
from 345 applications. Therefore, a new, more comprehen-
sive and rigorous analysis methodology of data movement
bottlenecks in modern workloads and modern NDP systems
is necessary. A more recent work investigates the memory
bottlenecks in widely-used consumer workloads fromGoogle
and how NDP can mitigate such bottlenecks [1]. This work
focuses its analysis on a small number of consumer work-
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loads. Our work presents a comprehensive analysis of a
much broader set of applications (345 different applications,
and a total of 77K application functions), which allows us
to provide a general methodology, a comprehensive work-
load suite, and general takeaways and guidelines for future
NDP research. With our comprehensive analysis, this work
is the first to develop a rigorous methodology to classify
applications into six groups, which have different charac-
teristics with respect to how they benefit from NDP sys-
tems as well as other data movement bottleneck mitigation
techniques.

VIII. CONCLUSION
This paper introduces the first rigorous methodology to char-
acterize memory-related data movement bottlenecks in mod-
ern workloads and the first data movement benchmark suite,
called DAMOV. We perform the first large-scale charac-
terization of applications to develop a three-step workload
characterization methodology that introduces and evaluates
four key metrics to identify the sources of data movement
bottlenecks in real applications. We use our new methodol-
ogy to classify the primary sources of memory bottlenecks
of a broad range of applications into six different classes
of memory bottlenecks. We highlight the benefits of our
benchmark suite with four case studies, which showcase how
representative workloads in DAMOV can be used to explore
open-research topics on NDP systems and reach architec-
tural as well as workload-level insights and conclusions.
We open-source our benchmark suite and our bottleneck anal-
ysis toolchain [158]. We hope that our work enables further
studies and research on hardware and software solutions for
data movement bottlenecks, including near-data processing.

APPENDIX A
APPLICATION FUNCTIONS IN THE DAMOV BENCHMARK
SUITE
We present the list of application functions in each one of the
six classes of data movement bottlenecks we identify using
our new methodology.

Our benchmark suite is composed of 144 different appli-
cation functions, collected from 74 different applications.
These applications belong to a different set of previously
published and widely used benchmark suites. In total, we
collect applications from 16 benchmark suites, including:
BWA [430], Chai [199], Darknet [215], GASE [208],
Hardware Effects [431], Hashjoin [209], HPCC [206],
HPCG [207], Ligra [212], PARSEC [202], Parboil
[201], PolyBench [432], Phoenix [213], Rodinia [203],
SPLASH-2 [205], STREAM [120]. The 144 application
functions that are part of DAMOV are listed across six
tables, each designating one of the six classes we identify in
Section III-C:
• Table 2 lists application functions in Class 1a, i.e.,
that are DRAM bandwidth-bound (characterized in
Section III-C1);

• Table 3 lists application functions in Class 1b,
i.e., that are DRAM latency-bound (characterized in
Section III-C2);

• Table 4 lists application functions in Class 1c, i.e., that
are bottlenecked by the available L1/L2 cache capacity
(characterized in Section III-C3);

• Table 5 lists application functions in Class 2a, i.e., that
are bottlenecked by L3 cache contention (characterized
in Section III-C4);

• Table 6 lists application functions in Class 2b, i.e., that
are bottlenecked by L1 cache size (characterized in
Section III-C5);

• Table 7 lists application functions in Class 2c, i.e., that
are compute-bound (characterized in Section III-C6).

In each table we list the benchmark suite, the appli-
cation name, and the function name. We also list the
input size/problem size we use to evaluate each application
function.
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TABLE 2. List of application functions in Class 1a.
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TABLE 3. List of application functions in Class 1b.

TABLE 4. List of application functions in Class 1c.
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TABLE 5. List of application functions in Class 2a.

TABLE 6. List of application functions in Class 2b.
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TABLE 7. List of application functions in Class 2c.
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APPENDIX B
REPRESENTATIVE APPLICATION FUNCTIONS

TABLE 8. 44 representative application functions studied in detail in this work.∗.
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APPENDIX C
COMPLETE LIST OF EVALUATED APPLICATIONS

TABLE 9. List of the evaluated 345 applications.
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TABLE 9. (Continued.) List of the evaluated 345 applications.
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