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ABSTRACT Influenza-like illnesses (ILI) result in deaths and hospitalizations across the globe. Traditional
surveillance systems rely on data from general medical practitioners. The process is resource-intensive and
plagued with delay. Although recent studies have shown the potential utility of free and fast alternatives like
web and social media data, the reliability cannot be generalized due to differences in technological culture.
Meanwhile, there is a scarcity of studies exploring these free online data for (sub-Saharan) African countries.
In this paper, we utilize Google trends (GT) data for ILI forecasting in South Africa. We study models based
on deep learning (Long short-term memory (LSTM) and feedforward neural networks (FNN)), machine
learning (Multiple linear regression (MLR), elastic net (EN), support vector machine (SVM)), and statistical
time series (seasonal autoregressive integrated moving average (SARIMA)) algorithms. The FNN and SVM
models using GT data alone, produce forecasts close in accuracy to those fitted to actual ILI data. The
algorithms rank differently across various performance measures. Generally, the deep learning techniques
perform better than the other algorithms in our study. However, tuning the former is quite intricate. Combin-
ing GT and historical ILI data enhances the models. The non-deep-learning algorithms benefit more from
this enhancement. Furthermore, we observe that search volume increases proportional to and timeously with
reported infection rates, suggesting that South Africans search Google in the week they feel flu symptoms.
Thus, monitoring Google search trends is a reliable proxy for monitoring flu spread in South Africa.

INDEX TERMS Deep learning, flu surveillance, Google Trends, ILI reporting, influenza forecasting,
machine learning, South Africa.

I. INTRODUCTION
Like the coronavirus disease (COVID-19), influenza (flu) is
a severe respiratory infection that can cause complications
and death in humans. Flu primarily affects young children,
the elderly, and persons with underlying health conditions.
It is caused by influenza viruses that spread in all parts of the
world, leading to up to 5 million cases of acute illness, and
about 290 000 to 650 000 deaths annually [1]. In response
to this worldwide epidemic, the world health organization
(WHO) monitors flu activity globally to strengthen its pre-
vention and control [1]. In South Africa, where there is
high HIV and tuberculosis infection rate, published estimates
reveal that between 6734 and 11, 619 influenza deaths occur
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every year, and 22, 481 out of 47,000 incidences of acute
influenza-like illness (ILI) result in hospitalization [2], [3].
Sustainable surveillance, a vital goal of the South African
national influenza policy and strategic plan developed by the
Department of Health for 2017 to 2021, currently employs
traditional laboratory-basedmonitoring systems. A drawback
of these systems is that they are resource-intensive and slow,
often with a lag of 1 to 2 weeks before reports are available.

The increased availability of online real-time data streams
such as web search volumes, internet forums and social media
data, has led to a new field of research called infodemiology
or more broadly, digital epidemiology. The field explores
the use of these alternative data streams for disease surveil-
lance. While the term infodemiology coined by Eysen-
bach [4] is older, digital epidemiology was recently defined
by Salathe [5] as epidemiology that uses data generated
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outside of the public health system. One assumption behind
using these alternative data streams, for example search
engine data, is that patients commonly use search engines
for initial self-diagnosis, providing the health-information
seeking trends of a populace over time [6]. Furthermore,
patients may prefer to use search engines for information or
education about health conditions that may attract societal
stigma. Online platforms are also low cost, real-time and give
a muchmore satisfactory spatial resolution of disease surveil-
lance [7]. These advantages have become more important in
the wake of the COVID-19 pandemic, as demonstrated by
recent studies [8]–[12].

Despite the current evidence base in this field, the results
cannot be generalized across countries due to varying cul-
tural, technological, and economic inclinations [7]. This is
substantiated by studies in Italy [13] and Turkey [14] where
no significant relationship was found between Google search
data and national disease records. In Germany, though the
Google search data correlated well with reported Lyme dis-
ease incidence, it failed to improve forecast accuracy signif-
icantly [15]. Tran et al. [16] also detailed the low validity
of Google search data for behavioural forecasting of national
suicide rates in 4 countries. Furthermore, most of the studies
focused on the USA, and there remains a need for studies that
investigate the feasibility and performance of models built
with these alternative data streams for disease surveillance
across other countries of the world. This is especially needed
in Africa where severe respiratory infections are a leading
cause of mortality and where such studies are scarce [17].
Research has also suggested the need for contextualized
approaches when using these online data for disease surveil-
lance [17]. In a recent study [18], we had taken the first step
of investigating correlation between Google search data for
several flu-related queries and the traditional flu surveillance
data in South Africa. We established that significant correla-
tion exists for certain flu queries and highlighted such queries.

In this paper, we are concerned with investigating the
predictive utility of Google search data for ILI surveillance
in South Africa using the query terms (21 of them) compiled
in our previous study. To the best of our knowledge, there
is no published study on the use of Google search data for
forecasting influenza activity in South Africa.

Our specific contributions are as follows: we developed
forecastingmodels based on deep learning (LSTMand FNN),
machine learning (Multiple linear regression (MLR), elastic
net (EN) and support vector machine (SVM)), and seasonal
autoregressive integrated moving average (SARIMA) algo-
rithms. We studied the performance of the models using
(i) Google search data alone, (ii) a combination of Google
search data and historical ILI data, and (iii) historical ILI data
only. Our experimental study reveals the relative strengths
of the various algorithms across a variety of performance
measures. The performance measures studied include root
mean squared error (RMSE), mean absolute error (MAE),
Pearson correlation coefficient (PCC), peak weak difference
(PWD) and peak magnitude difference (PMD) between the

estimated and the true incidence rates. Our results demon-
strate the usefulness of Google search data as a reliable proxy
for monitoring flu spread in South Africa.

II. RELATED WORKS
Since the early days of the infodemiology research area
and over the years, various online data streams have been
explored by several studies. Some of these include news
articles [19]–[21], data from health-related websites and
blogs [22], Wikipedia [23]–[25] and more commonly, search
engines [4], [26]–[28] and Twitter data [29]–[33]. Twit-
ter data has the advantage of providing spatio-temporal
insights. More importantly, the infection-related tweets are
personal testimonies, thus they reflect actual illness more
accurately [34]. However, the data collection procedure, pre-
processing and classification as required in studies using
Twitter data are generally more complicated with the poten-
tial of false positives and negatives plaguing such studies.
Moreover, Twitter has the limitation of not being commonly
used by everyone [35]. On the other hand, search engines
are more universal due to increased Internet penetration [35].
In addition, data obtained from search engines are simpler
to use in investigating the epidemiological patterns of a spe-
cific disease over time. One search engine data source is
Google Trends (GT), a free web tool that provides relative
volume of Google engine searches for user-specified queries.
GT is generic and publicly accessible. This is unlike Google
Flu Trends (GFT) which although focused on providing flu
estimates, had disadvantages of non-reproducibility since its
underlying data and algorithm were non-accessible and was
eventually discontinued in 2015 due to concerns about its
reliability and accuracy [36], [37].

Though GT data has been explored for the monitoring
of multiple communicable and non-communicable diseases
including dengue fever [38], [39], tuberculosis [40], [41],
multiple sclerosis [42], Type 2 diabetes [43], Lyme dis-
ease [6], dementia [44], Ebola [45], pertussis [46], gas-
troenteritis [47], cancer [48], zika [49] and more recently
COVID-19 [50], [51], Aiello et al. [52] in their recent review
noted that it has mostly been used for ILI monitoring and
surveillance. A few of the studies that have utilized GT data
for ILI surveillance are [53]–[55]. Some of these studies
incorporate climate data [56] while others include traditional
disease data to form a hybrid system with improved per-
formance [57]–[59]. Some studies stop at investigating and
reporting a correlation between the web data and traditional
disease records [12], [46], [60], while others go ahead to now-
cast or forecast disease trends using the web or social media
data [27], [39], [61]. Nowcasting is a short-term prediction
that gives the current disease incidence trends while forecast
aims to estimate future disease trends.

Themodels that have been commonly used for disease inci-
dence forecasting in the digital epidemiology field include
the statistical ARIMA/ARIMAX time series methods [49],
[56], [39], [62]–[64], traditional machine learning algorithms
such linear regression, random forests, elastic net and support
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vectormachines [17], [41], [65], [66]. The application of deep
learning techniques is a recent development. Studies that have
applied deep learning methods include [9], [67]–[71]. Deep
learning techniques are attractive due to their competitive
performance.

In a very recent review of studies that utilized Internet-
based user-generated data for public health surveillance by
Abad et al. [72], 56% of the studies were from the US.
Other countries with a significant number of studies were the
UK, Australia, Canada, and Italy. In another recent review
of studies that used Twitter for public health research by
Edo-Osagie et al. [73], the top five countries in their break-
down of study activity by country were the US, UK, Canada,
India, and China, with more than half of the studies originat-
ing in the US. Mogo [7] suggests that the acclaimed results
from the developed countries cannot be generalized due to
varying cultural, technological, and economic inclinations.
The very few recently published works that have utilized
digital data streams for nowcasting or forecasting disease
trends in sub-Saharan Africa include [17] and [74].

It is evident from the aforementioned reviews that there
is a scarcity of studies investigating the use of these online
data streams for disease surveillance in Africa even though
severe respiratory infections may have significant impact on
morbidity and mortality in this part of the world [75]. This
paper seeks to address this gap by showing the predictive use-
fulness of Google search trends for ILI forecasting in South
Africa. We develop models to design nowcasting/forecasting
systems. The study shows that Google search patterns suf-
fice as features to monitor flu spread and they can also
be combined with historical ILI data, yielding even better
forecasting performances. Consequently, this study brings
us a step closer to achieving sustainable surveillance, a key
goal of the South African national influenza policy and
strategic plan, developed by the Department of Health for
2017 to 2021 [3].

III. MATERIALS AND METHODS
A. DATA
This study was approved by the ethics committee of the
Faculty of Engineering and the Built Environment, Univer-
sity of Johannesburg. The data used in the study covered a
period of 459 weeks, comprising of weekly data from the 1st
week of 2010 to the 43rd week of 2018. The data sources are
described in the following subsections:

1) ILI DATA
We obtained the national-level outpatient ILI data over the
study period from the viral watch, a flu surveillance program
of the National institute for communicable diseases (NICD)
carried out by general practitioners in all the nine provinces
of South Africa [76]. The data are anonymized, and they are
weekly counts of patients who meet the ILI case definition of
a fever of 38◦ and cough or sore throat with onset ≤10 days.

2) GOOGLE SEARCH DATA
Google search data was obtained from Google Trends (GT),
a free web tool that gives aggregated search volume for
any query submitted by users. The data are anonymized
and normalized relative to all searches conducted on the
Google search engine based on geolocation, category, and
time period. There are 25 categories each with several sub-
categories to choose from. The search term index can be
downloaded as a CSV file at national and regional levels.
GT returns 0 search index for a query if its search volume is
low for a given period of time [77]. We collected the weekly
search index for the 21 flu- related queries highlighted in our
previous study [18]. The queries showed moderate to strong
Pearson correlationwith theNICD ILI data (r≥ 0.5; p< 0.05)
for at least 5 of the 9 years under study. These queries fall
under three broad divisions namely, flu nomenclature, flu
symptoms, and flu treatment and are presented in Table 1.

B. DATA PRE-PROCESSING
The ILI data from NICD had 21 missing instances from
the total of 467 weekly data. To improve the forecasting
performance of the models, the tsclean from the R forecast
package [78] was used to estimate missing values and outlier
replacements for the training data. To replicate the real-world
scenario, we left the test set uncleaned. For the models based
on the FNN and LSTM deep learning algorithms, we per-
formed min-max scaling on the data to the range [0,1] before
giving it as input.

C. ALGORITHMS
The different models employed in this study are briefly
described on the following subsections:

1) SEASONAL ARIMA WITH(OUT) EXTERNAL REGRESSORS
The SARIMA technique [79] denoted as ARIMA(p, d , q)
(P, D, Q)m, is a time series forecasting method proposed by
Box and Jenkins. It models the input data in two compo-
nents, namely, the non-seasonal ARIMA part and additional
seasonal terms. Parameter p denotes the order of the autore-
gressive (AR) model, d the degree of differencing, and q
the order of the moving average (MA) model. P, D, Q are
the AR, differencing, and MA terms for the seasonal com-
ponent, while m is the number of observations in each year.
SARIMA can be extended by including external regressors.
The extended version is commonly called SARIMAX. In our
study, we implemented the SARIMA(X)-based models using
the auto.arima function in the R forecast package [78].

2) MULTIPLE LINEAR REGRESSION (MLR)
MLR is a machine learning algorithm involving more than
one explanatory variable being used to predict a response
variable by modelling the linear relationship between the
explanatory and response variables. The MLR-based models
were implemented using the lm function in R stats package.
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TABLE 1. Queries showing moderate to strong correlation (R ≥ 0.5) with ILI data for at least 5 of the 9 years under study [18].

3) ELASTIC NET (EN)
Elastic net is a regularized and variable selection regression
method that combines the penalties of the ridge and Least
Absolute Shrinkage and Selection Operator (LASSO) meth-
ods [80]. The EN-based models were implemented using the
cv.glmnet function from the glmnet package in R [81], [82].

4) SUPPORT VECTOR MACHINE REGRESSION (SVM)
SVM regression involves mapping the independent variables
into a higher dimensional feature space using the kernel
trick [83]. We implemented the SVM models using the func-
tion svm in the e1071 R package [84].

5) FEEDFORWARD NEURAL NETWORK (FNN)
A feedforward neural network is an artificial neural network
(ANN) comprising nodes arranged into layers. The input
layer is the first layer, the output layer is the last layer, while
the layers between are referred to as the hidden layers. This
type of ANN is called feedforward because information only
travels forward from the input through the hidden layers and
to the output layer. There are no cycle connections through
which the network output can be fed back into the nodes [85].

6) LONG SHORT-TERM MEMORY (LSTM)
LSTMs [86] are a variant of recurrent neural networks
(RNN). RNNs, unlike FNNs are artificial neural networks

with feedback connections among the nodes, allowing infor-
mation to be retained. LSTMs were developed to overcome
the gradient vanishing and long-term dependency problems
which basic RNNs suffer from. LSTMs are well suited to
process sequence data and thus are being applied to time
series prediction tasks.

The FNNs and LSTMs were implemented using the Keras
library with Tensorflow backend in Python.

D. EXPERIMENTAL STUDY
In this section, we describe different experimental models
that are combinations of the various algorithms and data for
forecasting future trends of flu in South Africa. The three
categories of models that were explored based on input data
are described as follows:

1) PREDICTING ILI RATES VIA TIME SERIES MODELLING OF
HISTORICAL ILI DATA ONLY (ILI-DATA ONLY MODELS)
Supplying the historical ILI trends as input, we studied two
techniques for time series modelling namely:

ILI-SARIMA: This model is based on the ARIMA algo-
rithm (SARIMA) using 80% of the data (367 instances)
to train the model and 20% of the data (92 instances) for
testing the performance of the model. The training/test
set size is as suggested in the popular book of Hyndman
and Athanasopoulos [87].

VOLUME 9, 2021 126825



S. O. Olukanmi et al.: Utilizing Google Search Data With Deep Learning, Machine Learning and Time Series Modeling

ILI-LSTM: For the second model, the LSTM algorithm
was used. The train/test split was maintained as in the
ILI-SARIMA model. We used a stack of two LSTM
layers for our implementation, with each layer having
200 units. The input data was reshaped as 4 time steps
(4 weeks) for ILI prediction at the next time step (the fol-
lowing week). A dropout technique with rate of 0.2 was
used after each LSTM layer to prevent overfitting of the
model. These optimal parameter values for the model
were determined experimentally by evaluating the effect
on the model’s forecasting performance. The adam opti-
mizer was used for the model compilation and the model
was trained for 100 epochs.
A simple mathematical representation of these twomod-
els based on the input and output data is given as:

o = f (p) (1)

where o is the predicted ILI rates and p is the past ILI
trends.

2) PREDICTING ILI RATES WITH GT DATA ONLY (GT-DATA
ONLY MODELS)
These set of models take only the Google search data of
the highlighted 21 queries as inputs (explanatory variables)
and predict the ILI rates as the outputs (response variable).
This helps us ascertain the GT data’s predictive ability for flu
surveillance in South Africa in the absence of real-life ILI
data. We considered zero to two weeks ahead forecasts. For
the zero week ahead estimates (nowcast), we used GT data
of the queries at week (t) to predict the ILI incidence rates at
the end of week (t). For one week ahead forecasts, we used
GT data of all the queries at the current week (t) to predict
the ILI incidence rates for the next week (t+1), while for
two weeks ahead forecasts, GT data of all the queries at the
current week (t) were used to predict the ILI incidence rates
of the next two weeks (t+2). The same number of training
instances as in the ILI data only models (in section C-1) were
maintained for the different week-ahead estimates while the
test set reduced by 1 and 2 instances for one week and two
weeks ahead, respectively. The four model categories with
their implementation details are briefly described below:
GT-MLR: These models are based on the multivariate linear

regression algorithm.
GT-EN: The three GT-EN models are based on the elastic

net algorithm. We performed a 10-fold cross-validation
to find the optimal value of the shrinkage parameter,
lambda over a varying set of alphas from 0 to 1. When
alpha equals 0, we have a ridge regression and when
alpha equals 1, we have a lasso regression.

GT-SVM: For these models based on the SVM algorithm,
four different kernels (linear, radial, polynomial, and
sigmoid) were tested experimentally on the data, and the
radial kernel was selected as it performed the best. The
optimal values for the model parameters, cost, gamma
and epsilonwere determined experimentally by evaluat-
ing the effect on the forecasting performance (in terms

of RMSE) of the different possible combinations of the
values for the three parameters from a predefined set of
values.

GT-FNN: These models adopt the feedforward neural net-
work (FNN) algorithm. The input layers have 21 nodes,
representing the Google search data of the 21 queries,
while the output layers have just 1 node representing
the predicted ILI rate. A dropout technique with rate
of 0.2 was used after each hidden layer to prevent
overfitting of the models. For the nowcasts, the optimal
model parameters were determined experimentally as
three hidden layers with 256, 128 and 64 units respec-
tively from the first to the last hidden layer, all with
the relu activation function. For the one week ahead
forecasts, there are four hidden layers with 28, 56, 56
and 128 units respectively. The two weeks ahead fore-
casts also have four hidden layers with 24, 58, 58 and
128 units from the first to the last hidden layer. The three
GT-FNN models used the adam optimizer for compila-
tion and 100 epochs for training.
A simple mathematical representation of these models
based on the input and output data is given as:

o = f (qi, q2, q3, . . . , q21) (2)

where o is the predicted ILI rates and (qi, q2, q3, . . . ,

q21) are the 21 Google queries.

3) PREDICTING ILI RATES WITH GT AND HISTORICAL ILI
DATA (ILI-GT-DATA MODELS)
Hybrid models comprising online data and traditional dis-
ease data have been shown to have improved perfor-
mance [58], [59]. For this set of models, the past ILI trends
data and the Google search data of the 21 queries were fed
as input. We were able to determine the improvement in the
forecasting performance of the models that had used only the
past ILI or GT data through these models. The training/test
data sizes are the same as in the ILI-SARIMA model. The
models are described below along with their implementation
details:
ILI-GT-SARIMAX: Here, the ILI-SARIMA model was

enhanced with the GT data as external regressors. As in
the GT-data only models we considered zero to two
weeks ahead estimates, resulting in three models. For
the zero week ahead estimates (nowcasts), GT data of
the queries at current week (t) were used as external
regressors to predict ILI rate of the same week (t). For
one-week ahead estimates, GT data of the queries at the
current week (t) were used as regressors to predict the
ILI incidence rate of the next week (t+1), while for two
weeks ahead estimates, GT data of the queries at the
current week (t) were used as regressors to predict the
ILI incidence rate of the next two weeks (t+2).

ILI-GT-LSTM: This model is made up of a single LSTM
layer with 200 units, and a dropout technique with
rate 0.2 immediately following the layer. Similar to
the ILI_LSTM model, we reshape the input of past
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FIGURE 1. ILI forecasting framework.

ILI and GT data as 4 time steps (4 weeks) for the
prediction of ILI at the next time step (the following
week). The optimal parameter values for the model were
also determined experimentally by evaluating the effect
on the model’s forecasting performance. We also used
the adam optimizer and 100 epochs for compiling and
training this model.

ILI-GT-MLR: These MLR models take as explanatory vari-
ables, the GT data of all the 21 queries as well as histor-
ical ILI data from the past one or two weeks, in order to
predict the current week ILI incidence rate.

ILI-GT-EN: These models are based on the elastic net algo-
rithm and the optimal parameter values selection process
are the same as in the GT-EN models. The input data are
the same as in the ILI-GT-MLR models.

ILI-GT-SVM: For these SVM models, the radial kernel was
also selected as it performed the best and the optimal
values for the parameters were also determined experi-
mentally as in the GT-SVM models. The input data are
also the same as in the ILI-GT-MLR models.

ILI-GT-FNN: The input layers of these FNN-based models
have 22 nodes, representing the Google search data of
the 21 queries and the historical ILI data of the past one
or two weeks. As in the GT-FNNmodels, the output lay-
ers have just 1 node representing the predicted ILI rate.
For the model incorporating the ILI data of the past one
week, the optimal model parameters were determined
experimentally as four hidden layers with 27, 54, 54 and
128 units respectively from the first to the last hidden
layer, all with the relu activation function. A dropout

technique with rate of 0.2 was used after each hidden
layer of this model to prevent overfitting. The model
using the ILI data of the past two weeks also have four
hidden layers with 27, 54, 54 and 128 units respectively.
This second model used a dropout technique with rate
0.2 after each of the first two hidden layers only. Both
models used the adam optimizer for compilation and
40 epochs for training.
A simple mathematical representation of these models
based on the input and output data is given as:

o = f (p, qi, q2, q3, . . . , q21) (3)

where o is the predicted ILI rates, p is the ILI data of the
past one or two weeks and (qi, q2, q3, . . . , q21) are the
21 Google queries.

Our overall forecasting framework is summarized in Figure 1.

E. PERFORMANCE METRICS
We compared the predictive performance of the different
models by calculating different measures on the test set. The
root mean squared error (RMSE), mean absolute error (MAE)
and Pearson correlation coefficient (PCC) of the estimated
and the true incidence rates. The lower the RMSE and MAE,
the better the performance of the models, while the higher the
PCC, the better the model performance.

We also estimated the ability of each model to predict the
week of the peak ILI incidence and the height of the peak.
Peak week difference (PWD) is estimated as the difference
between the true and estimated peak week. In contrast, peak
magnitude difference (PMD) corresponds to the difference
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between the true and the forecasted peak height. The lower
the PWD and PMD, the better the model performance.

IV. RESULTS
A. ILI-DATA ONLY MODELS (ILI-SARIMA AND ILI-LSTM)
Table 2 shows the performances of the ILI-data only models,
ILI-SARIMA and ILI-LSTM. The recorded accuracy metrics
include the RMSE, MAE, PCC, PWD and PMD. Each of
them provides a way to judge the accuracy of the models.
There are two peaks reflecting the two influenza seasons
of 2017 and 2018 in the test period. The deep learning time
series model ILI-LSTM performed better than its statistical
counterpart (ILI-SARIMA) on almost all the metrics except
the PWD where the ILI-SARIMA predicted the first peak
week correctly. Figure 2 presents a visualization of the true
ILI data over the study period (red) while showing the pre-
dicted signal (blue) over the test period, for comparison.

TABLE 2. Performance of the ILI-Data only models.

B. GT-DATA ONLY MODELS (GT-MLR,
GT-EN,GT-SVM AND GT-FNN)
In Table 3, we present the performances of the GT-data only
regression models. The table records the accuracy metrics
for three prediction scenarios: nowcasting (predicting ILI
using search data of same week at each time step in the test
period), forecasting ILI one week ahead and forecasting ILI
two weeks ahead at each time step in the test period. The
predicted signals for each case are visualized in Figure 3.

1) RMSE
The RMSE for these set of models ranged from 13.44 to
25.48 with different algorithms and at different forecast
horizons. The deep learning model (GT-FNN) had the low-
est forecast error, followed by GT-SVM and GT-EN, while
GT-MLR showed the worst performance based on this met-
ric. The RMSE of the four models increases as the forecast
horizon increases from zero (nowcasts) to two weeks ahead.

2) MAE
Like the RMSE, GT-FNN had the lowest MAE, followed
by GT-SVM and GT-EN, while GT-MLR had the highest
forecast error. The values ranged from 9.87 (GT-FNN, lag 0)
to 21.70 (GT-MLR, lag 2). Like the RMSE, the MAE
increased for the models as we move from nowcasts to two
weeks ahead forecasts.

3) PCC
The PCC for the models generally decreased as the forecast
horizon increased from zero to two weeks ahead. For the

FIGURE 2. Comparison of actual and predicted weekly ILI counts from the
ILI-SARIMA and ILI-LSTM models for the two flu seasons in the test
period.

nowcasts (zero week ahead), GT-SVM had the highest PCC
of 0.9068. GT-MLR had the highest PCC of 0.8764 at one
week ahead forecasts while GT-FNN had the highest PCC
of 0.8372 at two weeks ahead forecasts.

4) PWD
There are two peaks reflecting the two influenza seasons
of 2017 and 2018 in the test period. For the nowcasts, all
the models predicted the first peak week accurately, GT-MLR
still predicted the second peak week accurately while the
rest of the models peaked one week earlier than the true
peak. At the one week ahead estimates, GT-MLR and GT-EN
predicted the first flu season peak to be one week later
than the true peak, while the GT-SVM and GT-FNN models
predicted the peak to be two weeks later than the true peak.
For the second flu season, GT-MLR, GT-EN and GT-SVM
had accurate peak predictions, while GT-FNN predicted the
peak to be three weeks later than the true peak. At the two
weeks ahead forecasts, GT-MLR and GT-EN predicted the
peak of the first flu season to be two weeks later while
GT-SVMandGT-FNNpredicted the peak as threeweeks later
than the true peak. For the second season in the test period,
GT-MLR and GT-SVM got accurate peak week prediction
while GT-EN and GT-SVMwere one week later in their peak
week prediction.

5) PMD
While GT-MLR had the highest forecast error in terms
of RMSE and MAE, it showed the best performance in
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FIGURE 3. Comparison of actual and predicted weekly ILI counts from the GT-MLR, GT-EN, GT-SVM AND GT-FNN models for same week, one week ahead
and two weeks ahead for the two flu seasons in the test period.

predicting the magnitude of the peaks in the 2 seasons in
the test period at all the forecast horizons (zero to two
weeks ahead), as shown in Figure 3. The other three models
(GT-EN, GT-SVM and GT-FNN) had relatively comparable
performance in predicting the PMD at one week and two
weeks ahead forecasts.

C. ILI-GT-DATA MODELS
In this section of our study, we show the performances of
the models incorporating both ILI and GT data. These mod-
els perform the best among the three categories of models.
Table 4 presents the performance of the ILI-GT-SARIMAX
model, Table 5 shows the performance of the ILI-GT-LSTM
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TABLE 3. Performance of the GT-Data only models: nowcasts, one week
ahead and two weeks ahead estimates.

model while Table 6 presents the performances of the ILI-GT-
MLR, ILI-GT-EN, ILI-GT-SVM and ILI-GT-FNN models.
The visualization of the performance of the models can be
seen in Figures 4, 5 and 6.

1) RMSE
The deep learning models (ILI-GT-FNN) had the lowest
RMSE value of 10.54 which is comparable with the RMSE
of the ILI-GT-LSTM and ILI-GT-SVM models which had

TABLE 4. Performance of the ILI-GT-SARIMAX models: nowcasts, one
week ahead and two weeks ahead estimates.

TABLE 5. Performance of ILI-GT-LSTM model.

values of 10.71 and 10.96 respectively. The other machine
learning models (ILI-GT-MLR and ILI-GT-EN) had perfor-
mance comparable to one another with increasing RMSE
values as the added ILI data was lagged from the previous
week (t−1) to previous two weeks (t−2). The out-of-sample
RMSE of the ILI-GT-SARIMAX nowcast model (14.64) is
comparable to the RMSE obtained with GT-SVM nowcast
model (14.35).

2) MAE
The ILI-GT-FNN deep learning model had the lowest MAE
value of 7.33, followed by the ILI-GT-LSTM, ILI-GT-MLR
and ILI-GT-SVM models with comparable values of 7.53,
7.57 and 7.98 respectively. Similar to the other performance
metrics, the MAE value increases as the forecast horizon
increases.

3) PCC
The ILI-GT-FNN deep learning model also had the high-
est Pearson correlation coefficient of 0.9397, followed
by its recurrent network counterpart (ILI-GT-LSTM) with
comparable PCC value of 0.9370. The ILI-GT-SARIMAX
models generally had slightly lower PCC values.

4) PWD
The ILI-GT-MLR, ILI-GT-EN, ILI-GT-SVM, and ILI-GT-
FNN models all predicted the peak week as one week later
than the true peak week when the ILI data of the past one
week were part of the explanatory variables, while they
predicted the peak week as two weeks later than the true
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FIGURE 4. Comparison of actual and predicted weekly ILI counts from the ILI-GT-MLR, ILI-GT-EN, ILI-GT-SVM AND ILI-GT-FNN models for the two flu
seasons in the test period. Col 1: The weekly ILI estimates for week t were produced given search data at week t + ILI data at week (t−1). Col 2: : The
weekly ILI estimates for week t were produced given search data at week t + ILI data at week (t−2).

peak week when the ILI data of the past two weeks were
part of the explanatory variables to forecast the current week
ILI rates. The performance of the ILI-GT-SARIMAXmodels
were the same with the increase in forecast horizon: the
first peak week was predicted correctly while the second
peak week was predicted as one week later than the true
peak week.

5) PMD
The ILI-GT-LSTM model had the lowest PMD values, fol-
lowed by the ILI-GT-MLR model.

V. DISCUSSION
The results of the GT-data only models (Table 3) show
that Google search data alone can be used to forecast ILI
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FIGURE 5. Comparison of actual and predicted weekly ILI counts from the ILI-GT-SARIMAX models using GT data of the same week (t) (1st row, left), past
one week (t−1) (1st row, right) and past two weeks (t−2) (2nd row) as external regressors.

FIGURE 6. Comparison of actual and predicted weekly ILI counts from
ILI-GT-LSTM model.

incidence rates with accuracy close towhat would be obtained
using the real ILI data from general practitioners. The real
ILI data collection process is plagued with delay, and it
is costly. GT data on the other hand is free and available
without delay. This shows that GT data may be used as
a reliable proxy for monitoring flu spread in South Africa
in the absence or delay of the real ILI data. This affords

more rapid response to mitigate the effects of any epidemic
outbreak.

Furthermore, the results from the ILI-GT-data models in
Tables 4, 5 and 6 show that better influenza forecasting
models can be developed for South Africa by incorporating
both past ILI and GT data. These set of models outperform
every other category of models that we considered.

The results also show that the choice of algorithm is
equally crucial. The models rank differently across differ-
ent performance measures. On the overall, across the cat-
egories of models considered, the models based on deep
learning methods consistently outperform the traditional sta-
tistical/machine learningmethods onmost of the metrics. The
ILI-GT-LSTMmodel proves especially good at predicting the
peak magnitudes. This accuracy, however, comes at a cost
of detailed tuning of several model parameters which can
be complicated. Meanwhile, each of the SVM based mod-
els (GT-SVM and ILI-GT-SVM) yields performance that is
comparable to its deep learning based counterpart (GT-FNN,
ILI-GT-FNN and ILI-GT-LSTM) in terms of RMSE, MAE,
PCC and PWD. This shows that SVM is also a highly effec-
tive machine learning method for the purpose as supported by
the findings of Nsoesie et al. [17]

Also, we observe that the performance gaps between the
traditional linear models on the one hand and the deep
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TABLE 6. Performance of the ILI-GT-MLR, ILI-GT-EN, ILI-GT-SVM AND
ILI-GT-FNN models.

learning models (Table 3) on the hand are significantly
reduced when historical ILI data are combined with GT data
to predict current/future ILI rates (Table 6). By implication,
where historical ILI data of up to the previous two weeks is
available (which is the case in South Africa), these models
that are reasonably accurate affords simplicity (requires no
complicated tuning) which is an attractive property in prac-
tice. The simple GT-data only MLR (GT-MLR) also predicts
the peak weeks accurately and can be used if the peak timing
is the desired performance metric.

We find that, regardless of the modelling method, the pre-
diction errors were lowest for the same week forecasts (now-
casts) and the models’ performances generally decreases on
all the accuracy metrics as the forecast horizon increases.
This may suggest that in South Africa, people search within
or around the week when they have started experiencing
symptoms and/or go for treatment at health facilities in the
same week.

VI. CONCLUSION
This paper addresses the scarcity of studies exploring the
utility of web and social media data for ILI surveillance
in South Africa. Specifically, we established the predic-
tive utility of Google Search data for ILI rate forecasting.
We explored models based on deep learning techniques
(LSTM and FNN), machine learning algorithms (Multiple
linear regression (MLR), elastic net (EN) and support vec-
tor machine (SVM)), and seasonal autoregressive integrated
moving average (SARIMA) models. The choice of algorithm
plays a significant role in model performance. The studied

models rank differently across various criteria, though deep
learning techniques are optimal overall with appropriate tun-
ing. Notably also, SVM-based models compete closely with
the deep learning techniques. The findings also show that
reasonable forecasts can bemade a fewweeks ahead using the
proposed models. We observe that search volume increases
proportional to and timeously with reported infection rates.
This may suggest that South Africans tend to search Google
to confirm their symptoms or for common flu home remedies
around the week they feel flu symptoms. The implication
is that monitoring Google search data is a reliable proxy
for monitoring flu spread. The study established that mod-
els based on Google search data alone produce forecasts
comparable in accuracy to those fitted to real-life ILI data;
and that the models that incorporate GT and historical ILI
data have enhanced by forecasting capability. Thus, Google
search data, although free and readily available without delay
can be utilized to effectively address problems associated
with traditional systems such as resource-intensiveness and
delay. This will, in turn, allow for better epidemic prepared-
ness, moving us closer to achieving sustainable surveillance,
a key goal of the South African national influenza policy and
strategic plan, developed by the Department of Health for
2017 to 2021.
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