
Received August 14, 2021, accepted August 29, 2021, date of publication September 7, 2021, date of current version October 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3111105

NNR-GL: A Measure to Detect Co-Nonlinearity
Based on Neural Network Regression
Regularized by Group Lasso
MIHO OHSAKI 1, (Member, IEEE), NAOYA KISHIMOTO2, HAYATO SASAKI1, RYOJI IKEURA2,
SHIGERU KATAGIRI 1, (Life Fellow, IEEE), KEI OHNISHI 3, (Member, IEEE),
YAKUB SEBASTIAN 4, AND PATRICK THEN 5, (Member, IEEE)
1Graduate School of Science and Engineering, Doshisha University, Kyoto 610-0321, Japan
2Faculty of Science and Engineering, Doshisha University, Kyoto 610-0321, Japan
3Graduate School of Computer Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka 820-8502, Japan
4College of Engineering, IT and Environment, Charles Darwin University, Northern Territory 0810, Australia
5Faculty of Engineering, Computing and Science, Swinburne University of Technology, Sarawak 93350, Malaysia

Corresponding author: Miho Ohsaki (mohsaki@mail.doshisha.ac.jp)

This work was supported in part by Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI)
under Grant 21K12018, and in part by the COVID-19 Research Project of Doshisha University.

ABSTRACT For finding keys to understand and elucidate a phenomenon, it is essential to detect dependences
among variables, and so measures for that have been proposed. Correlation coefficient and its variants are
most common, but they only detect a linear dependence (co-linearity) between two variables. Some recent
measures can detect a nonlinear dependence (co-nonlinearity) by means of kernelization or segmentation.
They are supposed to handle two variables only and open to discussion with regard to performance in
detection and difficulty in setup. There is room for a novel measure based on Neural Networks (NNs), since
usual NNs aim at prediction but not at variable dependence detection. For the high-performance detection of
co-nonlinearities among multi variables, we propose a measure called NNR-GL based on Neural Network
Regression (NNR) regularized by Group Lasso (GL). NNR-GL embodies the detection through multi-input
single-output regression by NNR and regularization on the input layer by GL. NNR-GL then calculates
how strong the detected co-nonlinearities are by unifying the regression performance and the weights on
input variables. We conducted experiments using artificial data to examine the behaviors and fundamental
effectiveness of NNR-GL. The performance was estimated by a comprehensive detection performance
criterion (CDP-AUC in short), which is the mean of area under curves representing true positive and true
negative detections. NNR-GL achieved the values of CDP-AUC from 0.7472 to 0.9681, where 0 means
complete failure and 1 means complete success in detection. These values were consistently higher than
those from 0.5972 to 0.9259 of the conventional measures for all the different conditions of dependence, data
size, and noise rate. Consequently, the effectiveness and robustness of NNR-GL were clearly confirmed.

INDEX TERMS Machine learning, knowledge discovery, nonlinear dependence, measure to detect
co-nonlinearity, regularization, robustness, neural network regression, group lasso.

I. INTRODUCTION
In this study, we propose and evaluate a novel neural-
network-based measure that detects nonlinear dependences
among multi variables.1 Two backgrounds motivated us,
where one is of variable dependence detection, and the other

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianmaria Silvello .
1‘‘dependence’’ not ‘‘dependency’’ is used following the use of ‘‘depen-

dence’’ as a technical term in the related papers. ‘‘dependences’’ is used
intentionally to mean multiple relationships among multiple variables.

is of machine learning and knowledge discovery. Section I
provides the first background, the second background, and
the motivation and objective in Sections I-A, I-B, and I-C,
respectively.

A. BACKGROUND OF
VARIABLE DEPENDENCE DETECTION
Detecting dependences among variables is a common issue
in various fields as the first step toward understanding and
elucidating phenomena. Measures for that have been pro-
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TABLE 1. Interests and standpoints of machine learning (ML) and knowledge discovery (KD). What we focus on are in bold letters.

posed and applied to scientific and engineering disciplines.
We actually found a large number of such applications
by a survey for only the last 5 years, some of which are
about the following: Medicine on cancer, Alzheimer’s dis-
ease, and Covid-19 [1]–[3]. Brain science and engineer-
ing using electroencephalogram, electromyogram, and so
on [4], [5]. Genomics and proteomics on emergent properties,
clonal fate, and protein types [6]–[8]. Chemistry, physics,
and material science on laser devices, ion energy, and pho-
toelectrochemical power [9]–[11]. Environmental and earth
science on climate and ocean dynamics [12]–[14]. Auto-
motive and transportation engineering including self-driving
techniques [15]–[17].

Once dependence is detected using a measure, it can
become new knowledge on the focal phenomenon. It can
also contribute to the selection of important variables and the
improvement of regression/classification performance. Steps
in variable dependence detection are illustrated in Fig. 1.
In the first step, potential dependences among a wide variety
of variables are detected that give hints for new hypotheses on
a target phenomenon. In the second step, these dependences
are narrowed down and brushed up to promising dependences
based on knowledge specific to the domain. In the third step,
the promising dependences are interpreted and formulated
rigorously on the basis of domain knowledge. This result
becomes newly established knowledge on the phenomenon.
A traditional way starts from the second or third step for
limited numbers and types of variables, assuming a wealth
of domain knowledge. This way is important, of course, but
will not be sufficient for perceiving unexpected dependences
behind various variables. We hence consider a measure for

FIGURE 1. Steps to established knowledge on variable dependences.

the first step to detect potential dependences that are difficult
to perceive only with known domain knowledge.

As an example of the stepwise process, suppose clinical
data accumulated in hospitals. Applying a measure in the
first step enables to detect potential dependences related to
health risks from variables including patients’ environments,
lifestyles, clinical examinations, diagnoses, and treatments.
That provides awareness of dependences hardly noticeable
with known medical knowledge only. The potential depen-
dences can be analyzed and formulated in the second and
third steps to reach novel medical knowledge. Another exam-
ple is car driving support, where sensor data on users, devices,
and environments are available. In the first step, a measure
detects potential dependences causing traffic accidents. Their
analysis and formulation lead to new knowledge on safe
driving in the second and third steps. The same applies to
other fields.

Most of the conventional measures aim at the detection
of a dependence between two variables. Correlation coeffi-
cient and its variants are most common, but because of their
assumption of a linear dependence (co-linearity), they cannot
detect a nonlinear dependence (co-nonlinearity) [18]–[21].
In recent years, measures able to detect a co-nonlinearity
have been proposed. Some of them are based on mapping
and correlation coefficient/covariance [22]–[26]. The others
are based on segmentation and mutual information [27], [28].
Their abilities in expressing a co-nonlinearity and difficulties
in setting are still controversial. Both the linear and nonlinear
measures cannot directly detect dependences among more
than two variables.

B. BACKGROUND OF MACHINE LEARNING AND
KNOWLEDGE DISCOVERY
Looking at Machine Learning (ML) and its use for finding
new knowledge i.e. Knowledge Discovery (KD), they share
technical features but pursue different interests as in Table 1.
For the interest of ML, Neural Networks (NNs) including
deep learning attract great attention and achieve high perfor-
mances in nonlinear prediction. Such NNs implicitly model
dependences among variables, but do not explicitly provide
the modeled dependences. In terms of variable dependence
detection, it would be worth utilizing NNs for the interest of
KD from the standpoint of awareness.

As far as we surveyed, surprisingly we did not find NNs
that directly aim at assisting awareness except a few related
work [29]. Specifically, NN-based measures representing
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how strong variable dependences were not found, despite the
high potential of NNs in nonlinearmodeling. Themain reason
would be that NNs are a black box mixing input variables
up in a way not understandable in the domain context (what
is called ‘‘implicit distributed representation’’). In our past
research collaboration with medical experts, they wanted to
know clear relationships of original variables that were clin-
ical test results having medical meanings. They did not want
to get into the features transformed inside of NNs that were
difficult to understand medically. This episode is just our
experience but gives a suggestion that focusing on original
variables (equivalently, the input layer of a NN) is essential
for awareness and understanding.

C. MOTIVATION AND OBJECTIVE
The background in Section I-A indicates the need for a novel
measure to detect nonlinear dependences among multi vari-
ables in the first step in Fig. 1. That in Section I-B indicates
the high but not demonstrated potential of NNs in variable
dependence detection and the way to demonstrate it for the
awareness in KD in Table 1.
These indications encourage us to propose a NN-based

measure called NNR-GL, in which Neural Network Regres-
sion (NNR) [30], [31] models co-nonlinearities among multi-
input single-output variables, and Group Lasso (GL) [32],
[33] selects contributable input variables by the regulariza-
tion on the NNR’s input layer. Thanks to GL on the input
layer only, NNR-GL provides explicit localized representa-
tion on which input and output variables are dependent and
accepts any kinds of NNRs. As the measure value, NNR-GL
outputs a quantity representing the strength of input-output
co-nonlinearity by unifying the performance of regression
and theweight on each input variable. To analytically evaluate
NNR-GL, we conduct experiments in comparison with the
conventional measures using artificial datasets with known
correct dependences. NNR-GL, of which rough idea partially
appeared in our past study [34], is now thoroughly proposed
and evaluated in our present study.

The main contributions of this paper are summarized as the
following #1, #2, and #3.
#1: From a broad perspective, the detection of unexpected

complex dependences behind various variables is necessary
as the first step to clarifying phenomena. Our study, which
lies in the interdiscipline between ML/KD and other sciences
and engineering, provides people in these areas a novel way
to achieve this first step. Furthermore, the study expands the
utilization of NNs from prediction in place of humans to
dependence detection for human awareness.

#2:As a concrete solution, our proposedmeasureNNR-GL
makes the detection of multi nonlinear dependences possible
in an accurate and robust manner. The ideas of NNR-GL
(namely, nonlinear modeling by NNR, variable selection by
GL, the way to quantify detected dependences, and robust-
ness by averaging) are simple but applicable to various NNs.

#3: The experimental results in our study ensure the
effectiveness of NNR-GL. They are helpful as the baseline

performances of NNR-GL and the conventional measures
when one wants to use these measures for his/her task. Unlike
the past studies, our study introduces an evaluation method-
ology that is quantitative and both-sided for true positives and
true negatives. This methodology can be used in future related
work.

In this paper, Section I provides the background and objec-
tive as above. Section II reviews conventional measures for
variable dependence detection and their remaining problems.
Section III proposes the novel measure NNR-GL to detect
nonlinear dependences among multi variables. Section IV
designs an evaluation experiment to analytically examine
the fundamental effectiveness of NNR-GL with artificial
datasets. Section V reports the experiment and discusses the
performances of NNR-GL and the conventional measures.
As a stepping stone toward practicality, Section VI reports
a pilot experiment to apply NNR-GL to real benchmark
datasets. Finally, Section VII concludes the paper and gives
some directions for future work.

II. CONVENTIONAL MEASURES
Our proposed measure NNR-GL is for the purpose of
detecting nonlinear dependences among variables by intro-
ducing machine learning techniques NNR and GL. Thus,
in Section II on related work, variable dependence is defined
at first in Section II-A. Next, the conventional measures for
variable dependence detection are reviewed in Section II-B.
Finally, NNs, NNR, Lasso, GL, and their combinations are
reviewed in Section II-C.

A. DEFINITION OF VARIABLE DEPENDENCE
In general, the independence between two random variables
X and Y is defined as Equ. (1) using the joint probability
mass or density function pXY (x, y), the marginal probability
mass or density function of X pX (x), and that of Y pY (y)
[35], [36]. There is another definition Equ. (2) based on
Fourier transform, i.e. the characteristic functions cXY (s, t),
cX (s), and cY (t). The greater the difference between the
left and right sides of Eqs. (1) or (2), the stronger the
dependence.

pXY (x, y) = pX (x) pY (y), ∀x, y (1)

cXY (s, t) = cX (s) cY (t), ∀s, t (2)

The measures of a dependence between two variables can
be categorized viewing from three aspects. The first aspect
is the definition of dependence, whether it is based on prob-
abilities or characteristic functions. The second aspect is
the formulation of dependence, how the left and right side
difference is described mathematically such as the norm of
subtraction and the logarithm of ratio. The third aspect is the
assumption of dependence, what shape is assumed for the
dependence function, that is linear or nonlinear. Generally,
it is emphasized to unlock hidden complex dependences,
and so we discuss conventional measures as to the third
aspect.
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TABLE 2. Variable dependence measures categorized based on shape assumption. Our focal points are in bold letters.

B. MEASURES TO DETECT VARIABLE DEPENDENCE
Variable dependence measures are categorized into linear and
nonlinear in Table 2. Based on our survey, the sub-categories
of nonlinear measures are mapping-based, segmentation-
based, and (potentially) NN-based. The linear measures are
Correlation Coefficient (CC) and its variants. The elemental
and dominant nonlinear measures based on mapping are Dis-
tance Correlation Coefficient (DCC), Hilbert Schmidt Inde-
pendence Criterion (HSIC), and their variants. Those based
on segmentation are Maximal Information Coefficient (MIC)
and its variants. Those based on NNs are not found so far,
and thus we propose a NN-based measure later in Section III.
CC, DCC, HSIC, and MIC are explained hereinafter in this
Section II-B. Note that their definitions for the population
X and Y are skipped, but the definitions for the sample x and y
are provided. In Section II-C, the existing NNs regularized
by GL are discussed, which are not measures but technically
related to NNR-GL.

1) LINEAR MEASURES
CC is the most basic measure that assumes a linear depen-
dence between two variables [18]–[21]. It estimates the dif-
ference between the left and right sides of Equ. (1), from the
viewpoint of how the variables co-vary around a linear line.
Equ. (3) formulates the definition of CC, where x and y are
variables. xi is the ith observation of x, x is the samplemean of
x, and the same applies to yi and y. N is the number of sample
points. COVsmp(x, y) is the sample covariance of x and y.
CC ranges from−1 to+1, and its larger absolute valuemeans
a stronger dependence. CC and its variants cannot detect
nonlinear dependences and which variable causes which one.

CC(x, y) =
COVsmp(x, y)√

COVsmp(x, x)
√
COVsmp(y, y)

COVsmp(x, y) =
1
N

N∑
i=1

(xi − x)(yi − y) (3)

2) NONLINEAR MEASURES BASED ON MAPPING
Distance Correlation Coefficient (DCC) is a measure based
on characteristic functions [22], [23]. It calculates the L2
norm distance between the left and right sides of Equ. (2)
for each of x and y, x and x, and y and y. DCC then outputs
the normalized distance of x and y as the quantity repre-
senting dependence. In Equ. (4), cxyN (s, t), c

x
N (s), and c

y
N (t)

are the characteristic functions. DISTsmp(x, y) is the distance
estimated with the N sample points. DCC ranges from 0
to +1, and its larger value means a stronger dependence.

It can detect co-nonlinearity with no assumption, but cannot
explicitly specify the family of nonlinear functions.

DCC(x, y) =
DISTsmp(x, y)√

DISTsmp(x, x)
√
DISTsmp(y, y)

DISTsmp(x, y) =
1
N

N∑
s,t=1

‖cxyN (s, t)− c
x
N (s)c

y
N (t)‖

2
2 (4)

Another mapping-based measure is Hilbert Schmidt Inde-
pendence Criterion (HSIC) [24]–[26]. It detects a nonlinear
dependence between two variables via kernelization. The
difference between the left and right sides of Equ. (1) is
estimated by the covariance in the reproducing kernel Hilbert
space. HSIC is defined as Equ. (5), where φ(x, θφ) is the map-
ping function of x with its hyperparameter θφ , and ψ(y, θψ )
is that of ywith its hyperparameter θψ . The actual calculation
is done using the inner products of the mapping functions or
the kernel functions k(x, x ′) and l(y, y′). The range of HSIC
depends on kernel functions and hyperparameters, but can be
normalized to −1 to +1. The larger the absolute value of
HSIC, the stronger the dependence. Although HSIC is able
to express various families of nonlinear functions, it matters
how to select kernel functions and set their hyperparameters.

HSIC(x, y) = COVsmp(φ(x, θφ), ψ(y, θψ ))

k(x, x ′) = < φ(x, θφ), φ(x ′, θφ) >

l(y, y′) = < ψ(y, θψ ), ψ(y′, θψ ) > (5)

3) NONLINEAR MEASURES BASED ON SEGMENTATION
Maximal Information Coefficient (MIC) performs segmenta-
tion of an original variable space [27], [28]. It then detects
a nonlinear dependence by accumulating the mutual infor-
mation between two variables over all the segments. See-
ing Equ. (6), MIC can be understood to be the mean of
piecewise log ratios of the left and right sides of Equ. (1).
It has hyperparameters determining the maximal grid size
and the maximal segment size. The parameters to optimize
via training are the kth segmentation pattern for x and the lth
segmentation pattern for y. MIsmp(SEGk , SEGl) is the sample
mutual information when the sets of segments are SEGk and
SEGl . pXY ,kl(x, y), pX ,k (x), and pY ,l(y) are the probabilities
estimated based on the ratio of sample points in SEGk and
SEGl . MIC(x, y) is the maximal mutual information obtained
with the optimal sets of segments SEGk∗ and SEGl∗ .
MIC ranges from 0 to +1, where the larger value means

stronger dependence. It can express any families of non-
linear functions representing a dependence, but may cause
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overfitting if all the data are used for segmentation pattern
search. The advantage that MIC detects any of one-to-one,
one-to-many, many-to-one, and many-to-many relationships
backfires in identifying which variable causes which one. The
versatility of MIC is said to be controversial [37].

MIC(x, y) = MIsmp(SEGk∗ , SEGl∗ )

MIsmp(SEGk , SEGl)

=

∑
x∈SEGk
y∈SEGl

pXY ,kl(x, y) log
pXY ,kl(x, y)
pX ,k (x)pY ,l(y)

(6)

The measures CC, DCC, HSIC, and MIC are established
basic ones. Consequently, recent related studies are on the
analysis, assistance, expansion, and utilization of these mea-
sures. There are studies that analyzed the characteristics
and behaviors of the measures theoretically and/or empir-
ically [38]–[41]. For the assistance of the measures, other
studies proposed algorithms to accelerate measure value
calculation [42], [43]. Other studies aim at expanding and
utilizing the measures in a general manner. They proposed
methods based on the measures for the following: statistical
tests [44]–[46], robustness improvement [47]–[49], algorith-
mic strategies for multi dependence detection [50], [51], fea-
ture selection [52]–[56], and feature extraction [57], [58]. The
other studies are to utilize the measures in specific domains,
the applications in short, which are as given in Section I-A.
As suggested by the many related studies, CC, DCC, HSIC,
and MIC are still the gold standards and so should be the
competitors to our proposed measure.

C. NEURAL NETWORKS WITH GROUP LASSO
There is a superficially subtle yet fundamental distinction
between NNs for prediction and NN-based measures for
variable dependence detection. NNs with Lasso have been
proposed in the former sense but not in the latter sense that
we pursue. However, they are discussed below because of
their technical aspects common to our study. The simple L1
regularization Lasso is not efficient to selectively strengthen
important neurons, since Lasso adjusts weights on edges
regardless which edges are connected to which neurons.
GL can solve this problem by grouping edges connected to
the same neuron and adjusting the weights groupwise. Hence,
NNs with GL attract attentions as to sparse modeling and
variable selection aiming at better prediction.

For sparse modeling in image recognition, Zhao et al. [59]
proposed a Deep NN (DNN) classifier that consists of
sub-networks representing modalities. The weights in each
sub-network are grouped and regularized by GL. Similar
attempts were done in the literatures [60]–[62]. In speech
recognition, Ochiai et al. [63] proposed a hybrid of DNN and
Hidden Markov Model, where the weights corresponding to
each neuron in hidden layers are grouped and regularized by
GL. These methods successfully made the DNNs sparse and
improved the performances. The effectiveness of NNs with
GL was ensured, but their purpose and way (prediction by

a NN with GL on all the layers) differ from ours (variable
dependence detection utilizing a NN with GL on the input
layer).

For variable selection, there are studies to regularize the
input layer of a NN with GL. They used ‘‘feature selec-
tion’’ to refer to selecting input variables, despite fea-
tures represented by hidden layers were out of their scope.
That is confusing, and so we use ‘‘variable selection’’
instead. Li et al. [64] employed GL and L1/2 regularization
on the input layers of multilayer feedforward NNs includ-
ing NNR and Autoencoder (AE). Han et al. [65] made a
similar attempt regarding AE. Zhang et al. [66] proposed a
smooth differentiable GL on the input layer for efficient
training. These methods remove input variables independent
of the output variable under the fixed input and output vari-
ables. If a strong dependence exists among input variables,
a part of them are randomly selected as their representatives
by GL. We call this problem ‘‘multi-co-nonlinearity’’ (or
‘‘multi-col-nonlinearity’’) named after multicolinearity (or
multicollinearity) [18], [19]. The reproducibility of such
selection might be open to question. As is obvious, the meth-
ods do not concern detecting nonlinear dependences; they are
not co-nonlinearity measures.

III. PROPOSAL OF NNR-GL
The background in Section I and the related work in Section II
motivated and led us to propose NNR-GL. In Section III,
we concretize NNR-GL by providing the underlying ideas
and algorithm design in Section III-A and the formulation and
definition in Section III-B. Additionally, we answer poten-
tial questions that the readers may have about NNR-GL in
Section III-C.

A. UNDERLYING IDEAS AND ALGORITHM DESIGN
Let us begin with the summary of what is suggested in
Section II. Aiming at variable dependence detection, there
are linear and nonlinear (mapping-based and segmentation-
based) measures, but no NN-based ones. The past successes
of NNs with GL in prediction encourage us to devise a
novel NN-based measure. The core of the measure should
be a NNR with GL regularizing the input layer. Unlike the

FIGURE 2. Conceptual design of the proposed measure NNR-GL.
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Function 1: Iterative Nonlinear Regression
Input: Dtr , Dva, Dte
Output: Sets of RCs and RSS
1: % Train and validate NNR-GL Core while changing the

output variable and initialization.
2: for hs ∈ all hyperparameter settings do
3: for j = 1 to Nz do
4: for k = 1 to Nrnd do
5: Under hs, train NNR-GL Core initialized with k

to regress the jth variable zj on z1, · · · , zj−1, zj+1,
· · · , zNz using Dtr .

6: Validate the trained NNR-GL Core using Dva.
7: Record the best hyperparameter setting bhs and

the best parameter setting bps for j and k .
8: end for
9: end for

10: end for
11: % Test NNR-GL Core for each output variable and ini-

tialization.
12: for j = 1 to Nz do
13: for k = 1 to Nrnd do
14: Under the bhs and bps corresponding to j and k ,

apply the trained and validated NNR-GL Core to
regress the jth variable zj on z1, · · · , zj−1, zj+1, · · · ,
zNz using Dte.

15: Extract RCs and RSS from the trained, validated,
and tested NNR-GL Core.

16: end for
17: end for
18: Output the sets of RCs and RSS for all j and k .

existing NNs with GL, the measure should exchange input
and output variables. Motivated by the above, we propose
a NN-based measure called NNR-GL that detects nonlinear
dependences among multi variables with high performance.
We design NNR-GL to have Function 1 (iterative nonlinear
regression) and Function 2 (measure value calculation) as
shown in Fig. 2.

1) FUNCTION 1
NNR-GL Core plays the main role here. In training and
validation phases, NNR-GL Core models nonlinear depen-
dences between multi input variables and a single output
variable. It makes a contrast of the weights or the regres-
sion coefficients (RCs) on input variables according to their
contributions to regression. In a test phase, the trained and
validated NNR-GL Core estimates the regression perfor-
mance or the residual sum of squares (RSS). This pro-
cess is done individually to each variable as the output.
If high reproducibility is required, regression is repeated
and averaged over different initializations expecting a kind
of ensemble effect. Consequently, the sets of RCs and
RSS are obtained for all the different output variables and
initializations.

Function 2: Measure Value Calculation
Input: Sets of RCs and RSS
Output: MVte = [ qnttyjm | j, m = 1, 2, · · · , Nz ]
1: % Calculate the measure values.
2: for j = 1 to Nz do
3: for m = 1 to Nz do
4: for k = 1 to Nrnd do
5: if j == m then

Set the quantity qnttyjmk , which represents the
dependence between the jth and mth variables
under the kth initialization, to 1.

6: else
7: Calculate qnttyjmk by unifying the RC and RSS

corresponding to j, m, and k .
8: Overwrite the smaller with the larger out of

qnttyjmk and qnttymjk .
9: end if
10: end for
11: Calculate the mean of qnttyjmk over the Nrnd initial-

izations and set qnttyjm to this mean.
12: end for
13: end for
14: Output the measure value matrix MVte consisting of

qnttyjm for j, m = 1, 2, · · · , Nz.

There are two reasons why changing the output variable.
One reason is to solve the multi-co-nonlinearity problem,
which was discussed at the end of Section II. Executing
NNR-GL Core for different output variables reveals depen-
dences possibly masked by multi-co-nonlinearity. Regarding
the other reason, suppose x3 = f (x1)+g(x2). The dependence
between x3 and x1 and that between x3 and x2 are detectable
when x3 is regressed on x1 and x2. Meanwhile, these depen-
dences are less or not detectable when x1 or x2 is regressed
on the others, because the inverse mapping of nonlinear f (x1)
and g(x2) is one-to-many. To solve this problem, NNR-GL
runs NNR-GL Core for different output variables and reveals
dependences possibly masked by inverse mapping. In other
words, NNR-GL takes into account which variable causes
which one. In the example, the dependence between x3 and
x1 is adopted when x3 is regressed, but it is discarded when
x1 is regressed.

Function 1 is embodied as in the pseudocode. It receives
training, validation, and test setsDtr ,Dva, andDte and returns
the sets of RCs and RSS. For the hyperparameter setting hs,
the jth output variable, and the kth initialization, NNR-GL
Core gets through training using Dtr and validation using
Dva (Lines 1 to 10). The best hyperparameter setting bhs
and the best parameter setting bps are obtained for each
output variable with each initialization. NNR-GL Core with
the settings bhs and bps moves onto test using Dte. It models
dependences between the output variable zj and the input
variables z1 to zNz except zj (Lines 11 to 17). In the end,
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Function 1 outputs the sets of RCs and RSS for all the output
variables and initializations.

2) FUNCTION 2
Given the sets of RCs and RSS from Function 1, NNR-GL
unifies the RC and RSS for each pair of an input vari-
able and an output one into a quantity representing their
co-nonlinearity. This pairing clarifies each input-output co-
nonlinearity, even if there exist multi-co-nonlinearities in
input variables. The quantity for variables x and x ′ is obtained
both when x is regressed andwhen x ′ is regressed. Out of such
quantities, NNR-GL picks up the larger one representing the
dependence not in inverse mapping but in forward mapping.
For reproducibility, quantities under the same condition are
averaged over their different initializations. NNR-GL then
outputs the sets of quantities as the measure values of all the
dependences.

As in the pseudocode, Function 2 receives the sets of RCs
and RSS and returns the measure value matrix. The RC and
RSS, which were obtained when the jth variable was output
and themth variable was one of inputs under the kth initializa-
tion, are unified into the quantity qnttyjmk (Lines 1 to 13). This
quantity represents the co-nonlinearity generalized for Dte
between the jth and mth variables. This calculation includes
selecting the larger one of qnttyjmk and qnttymjk and averaging
it over initializations. Finally, Function 2 outputs the measure
value matrix MVte of which element is qnttyjm for all the
combinations of variables.

B. FORMULATION AND DEFINITION
We formulate the model structure, objective function, and
optimization of NNR-GL Core in Function 1. NNR-GL Core
accepts any types of NNs for regression, but a Multilayer
Perceptron (MLP) is used for simplicity. NNR-GL Core has
NL + 1 layers, where the 0th is the input layer, the 1st to
(NL − 1)th are the hidden layers, and the NL th is the output
layer. In the input layer, there are Nz neurons corresponding
to input variables z1, z2, · · · , zNz . In Fig.2, the regression
target variable zj is excluded from the input layer for ease
of understanding. However, zj is included here for a general
formulation, and its weight is fixed to 0 to be excluded
parametrically. In the lth layer, there are N (l)

z neurons, z(l)1 ,
z(l)2 , · · · , z(l)

N (l)
z
. w(l)

mn is the weight on the edge from the mth

neuron in the (l− 1)th layer to the nth neuron in the lth layer.
W(l) given in Equ. (7) is the weight matrix containing w(l)

mn.
W, which gathersW(l) over 1 ≤ l ≤ NL , is the weight matrix
to set by training. As mentioned above, w(1)

jn is fixed to 0. The
numbers of layers and neurons are hyperparameters to set by
validation.

W(l)
=



w(l)
11, w(l)

12, · · · , w(l)

1N (l)
z

w(l)
21, w(l)

22, · · · , w(l)

2N (l)
z

. . .
. . . w(l)

mn
. . .

w(l)

N (l−1)
z 1

, w(l)

N (l−1)
z 2

, · · · , w(l)

N (l−1)
z N (l)

z

 (7)

The objective function of NNR-GL Core is defined in
Equ.(8), which is composed of the terms as to regression
performance and variable selection. λ is a hyperparameter
balancing the two terms. s andNtr are the index and number of
training sample points, respectively. zjs is the sth observation
of the output variable zj. ẑjs(W) is the prediction of zjs by
NNR-GL Core with the weight matrix W. The first term
is the RSS between zjs and ẑjs(W). The second term is the
GL regularization to pick up contributable ones out of input
variables z1 to zNz except zj. The weights w(1)

m1, w
(1)
m2, · · · ,

w(1)

mN (1)
z

on the edges connected to the mth neuron of the

input layer are grouped into a weight vector w(1)
m . The L2

norm ||w(1)
m ||2 fuses the weights and can be understood as

the RC of the mth input variable zm. The sum of ||w(1)
m ||2

is the L1 norm of such RCs and yields the effect of variable
selection.

Jj(W) =
1
Ntr

Ntr∑
s=1

(zjs − ẑjs(W))2 + λ
Nz∑

m=1, 6=j

||w(1)
m ||2 (8)

NNR-GLCore is trained byminimizing the objective func-
tion. Any types of optimization methods are acceptable, but
here we use the most standard ones, Backpropagation and
Stochastic Gradient Descent [30], [31]. Equ. (9) shows the
parameter update rule. The partial derivative of the first term
J1st termj (W) of the objective function is derived by the chain
rule, where z denotes the outputs of all the neurons. The
partial derivative of the second term is directly and easily
derived for not only MLP but also other NNs. After training
and validating, the weight vector for each neuron of the
input layer i.e. RC is obtained. RSS is also obtained via
testing.

W ← W− ρ
∂Jj(W)
∂W

∂Jj(W)
∂W

=
J1st termj (W)

∂z
∂z
∂W
+ λ

w(1)
m

||w(1)
m ||2

(9)

In Equ.(10), we define the quantity representing a
co-nonlinearity calculated in Function 2. It is a multiplication
of normalized RC and RSS. W2

x is the normalized RC, that
is the normalized squared L2 norm of the weight vector of
the focal input variable x. w(1)

m is the weight vector of the
mth input variable, and M is the number of input variables
Nz−1.W2

x is normalized to sum to 1 or to make the maximum
to 1. R2

y is the normalized RSS, that is the coefficient of
determination for the output variable y. yi is the ith obser-
vation, ŷi is the ith prediction, y is the mean of yi, and Nte
is the size of a test dataset. R2

y basically ranges from 0 to
1. There is a possibility that R2

y happens to be less than
0 when regression fails. Such a negative value means no
dependence, and so NNR-GL replaces it with 0. Finally, W2

x
and R2

y are square-rooted and multiplied into the quantity
or the measure value. Averaging it over initializations can
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raise the reproducibility of detection.

NNR-GL(x, y) =
√
W2

x

√
R2
y

W2
x=



||w(1)
x ||

2
2

M∑
m=1

||w(1)
m ||

2
2

or

||w(1)
x ||

2
2

max
m
||w(1)

m ||
2
2

R2
y = 1−

Nte∑
i=1

(yi − ŷi)2

Nte∑
i=1

(yi − y)2
(10)

C. ANSWERS TO POTENTIAL QUESTIONS
We here answer potential questions on our measure NNR-
GL. Questions and answers (QAs) concerning meaningful-
ness and significance are QAs 1 to 3, and those concerning
technical aspects are QAs 4 to 7 as follows.

QA1: ‘‘NNs do not provide the explicit mathematical
functions of dependences. Is NNR-GL based on NNs really
meaningful?’’ This question intends the second and third
steps to brush up and formulate promising dependences (See
Section I-A). These steps should be taken after the detec-
tion of potential dependences done by measures including
NNR-GL in the first step for human awareness.

QA2: ‘‘There exist NNs with GL. Is NNR-GL really
novel?’’ NNs with GL actually have been studied
[59]–[66]. They are NNs themselves aiming at sparse mod-
eling or variable selection, but not measures aiming at
variable dependence detection (See Section II-C). They
make non-contributable neurons perish for better prediction.
In contrast, NNR-GL is a measure containing a NN with
GL in Function 1 to detect co-nonlinearities, followed by
Function 2 to derive quantities representing the detected co-
nonlinearities.

QA3: ‘‘What is the difference between NNR-GL and
conventional nonlinear measures?’’ NNR-GL is free from
the problems which the conventional mapping-based and
segmentation-based approaches suffer from, i.e. the limita-
tion to two variables and the limited families of nonlin-
ear functions. Modeling by conventional measures is done
pairwise, on the other hand, modeling by NNR-GL is done
output-variable-wise. NNR-GL can simultaneously model
nonlinear dependences among multi variables with high per-
formance. The concise mechanism of GL regularizing only
the input layer enables NNR-GL to accept various kinds of
NNRs.

QA4: ‘‘Why does not NNR-GL take the weights over all
the neurons and layers into account?’’ The reason why not all
the weights are regularized by GL is as below. If so, neurons
highly graded by GL in the input layer may happen to be
degraded by GL in the subsequent layers and vice versa.
GL on only the input layer localizes variable selection to
avoid such cancellation. Moreover, it is easy to embed and so
enables NNR-GL to accept various NNRs. The reason why
not all the weights are included in the measure value is the

following. Neurons in the subsequent layers are indirectly
but commonly connected to neurons in the input layer. Their
weights are common for the input variables and unnecessary
in measure value calculation.

QA5: ‘‘Is it reasonable to use RCs and RSS for variable
dependence detection?’’ When the least squares is used in
single-input linear regression, RC becomes the covariance
between input and output variables x and y divided by the
variance of x [67], [68]. RC is thus equivalent to the CC
between x and y when y has a variance of 1. Remember
that CC is a measure formulating the difference between the
left and right sides of Equ. (1). Therefore, RC is a kind of
measures. RSS normalized by the total sum of squares is
called the coefficient of determination. It equals the square of
CC between x and y [67], [68], and so RSS can be a measure
as well as RC. The above applies to multi-input nonlinear
regression and supports the use of RCs and RSS.

QA6: ‘‘NNR-GL requires training, validation, and test sets
split from a dataset. Is NNR-GL really better than measures
with no split?’’ This issue is not specific to NNR-GL. The
ultimate goal of a measure is to detect dependences in a
population (namely, generalized dependences) using a finite
sample. For that, going through training, validation, and test is
essential. Strict assumptions such as linearity make ameasure
free from training (optimizing the shape of a dependence
function) and validation (optimizing the family of depen-
dence functions). In return, the measure sacrifices a chance
to detect generalized dependences that are unexpected and
nonlinear. To overcome this problem, NNR-GL goes through
training, validation, and test without too many assumptions.

QA7: ‘‘How much is the computational complexity of
NNR-GL?’’ Most of the computational complexity depends
on what NNR is used in NNR-GL. One needs to select
a NNR suitable for the speed required in his/her specific
task, especially considering if real-time processing is required
or not. The number of combinations affects the time for
computation, too. For the conventional measures, it is N 2

z
due to their pairwise processing. For NNR-GL, it is Nz ×
Nrnd , where Nz and Nrnd are the numbers of variables and
initializations, respectively. The experimental results given
later in Section V indicated that the number around 3 was
sufficient for Nrnd . Therefore, the number of combinations
for NNR-GL becomes considerably smaller than that for the
conventional measures, when dealing with many variables.

IV. EXPERIMENTAL DESIGN
To fairly evaluate our proposed measure NNR-GL through
comparison with the conventional measures, the experiment
should be well designed. Section IV discusses the design of
experiment in various aspects below: the direction and outline
in Section IV-A, the competitors and settings in Section IV-B,
the datasets in Section IV-C, and the evaluation criteria and
methods in Section IV-D.

A. DIRECTION AND OUTLINE
Generally, the evaluation of variable dependence measures
should be done stepwise [27]. At first, it is examined whether
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a measure behaves as expected and detects the known correct
dependences (that is, fundamental effectiveness is examined).
Artificially synthesized datasets meet this purpose. Such
datasets enable to mathematically design variable depen-
dences and to check the success or failure in detection using
the known dependences. Next, it is examined whether a
measure detects known correct dependences for real data
(practical effectiveness). Using benchmark datasets on real
domains with known dependences is appropriate for that.
Finally, it is examined whether a measure detects unknown
useful dependences in real world problems (practical use-
fulness). The present experiment examines the fundamental
effectiveness of NNR-GL.

B. COMPETITORS AND SETTINGS
The hyperparameters, parameters, and settings of NNR-GL
are listed in Table 3. To identify the baseline of performance,
we decided to use the most traditional NN structure for NNR-
GL, which was a MLP with sigmoid activation functions.
NNR-GL is compared to the four representative measures
reviewed in Section II-B, namely CC, DCC, HSIC, and MIC.

CC does not involve any hyperparameters and parameters
because of its linearity [18], [21]. DCC is based on the
norm of the distance of characteristic functions. It has no
hyperparameters and parameters to preset or optimize [22].
HSIC is based on the covariance of data mapped by ker-
nelization. The width of a Gaussian kernel function σ and
the test statistic a are hyperparameters, which we set to the
recommended values [25]. HSIC has no parameters. MIC is
based on the mutual information over the segments dividing
a variable space. Its hyperparameters are the coefficients α
and c to determine the maximal grid size and segment size.
We use their recommended values [27]. MIC has parameters
to determine the segmentation pattern, and how to set them is
discussed in Section IV-C.
The hyperparameters of NNR-GL are the number of layers

(NL+1), the number of neurons in a hidden layerNN , and the

TABLE 3. The hyperparameters, parameters, and settings of the
conventional and proposed measures. Regarding †, we follow the
literature [27].

FIGURE 3. The left shows the true dependences between horizontal x1
and vertical x2. The middle are the graphs plotting the 100 points for
training out of 300 points sampled from a true dependence with 1 [%]
noise. The right shows the learned dependences by NNR of NNR-GL.

weight on the GL regularization term λ. (NL + 1) and NN are
optimized by Grid Search of which detail is in Table 3. λ is
fixed to 0.1 that performed best in preliminary experiments.
With regard to training, the learning rate and the maximum
epoch are fixed to 0.01 and 15000 respectively, based on
preliminary experiments. The weights are initialized using a
Gaussian distribution with the mean 0 and the standard devi-
ation 1. Unlike the conventional measures, NNR-GL is appli-
cable to both single and multi input variables. We try both
and call NNR-GL with a single input variable NNR-GL(S)
and that with multi ones NNR-GL(M).

For a fair comparison, NNR-GL and the competitive mea-
sures were implemented on the common platformMATLAB.
For CC, we used its library equipped in MATLAB. For
DCC, we downloaded its MATLAB program [69], which
was not developed by the proposers of DCC. We carefully
did the code review, added a function for normalization,
and then used this program. For HSIC, we downloaded and
used its MATLAB program developed by the proposers of
HSIC [70]. The same applies to MIC [71]. We developed a
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TABLE 4. Artificial datasets where there is a dependence x2 = f (x1) with independent x3.

program of NNR-GL ourselves using the standard commands
of MATLAB.

C. DATASETS
To analytically examine the fundamental effectiveness
of NNR-GL, we synthesize artificial datasets of which
variable dependences are known, basically following
Reshef et al. [27]. Data size is a dominant factor affecting
detection performance, and so the robustness of eachmeasure
to data size is investigated. The robustness to another domi-
nant factor, observation noise, is investigated as well. In the
literature [27], they added simulated observation noise only
to the output variable of a dependence function. It is more
realistic to add noise to both input and output variables, and
we do so.

Each dataset consists of the dependent variables x1 and x2
and the independent one x3. There are five dependence func-
tions mapping x1 to x2 as in Table 4. Line is linear, and
the others are nonlinear with Exp for exponential, Parab for
parabolic, Cubic for cubic, and Sine for sinusoidal. The true
dependences are visualized in the left of Fig. 3. The values
of x1 are generated at even intervals. By substituting them
into a dependence function, the values of x2 are obtained. The
values of x3 are generated in the same way of x1. Assuming
the generated points (x1, x2, x3) to be a population, N points
are extracted from the population according to a uniform
distribution. N is set to 3000, 1500, 300, or 150 [points].
To simulate real sampling, observation noise following a
Gaussian distribution with the mean 0 and the standard devi-
ation SD is added to the x1, x2, and x3 of the extracted points.
SD is varied from 0 to 40 with the step size 5 [%] of the
variable range. For example, the training set of 100 points,
which are split out of 300 sampled points with 1 [%] noise,
is plotted for each dependence in the middle of Fig. 3.

A dataset is evenly split into three sets for training (param-
eter setting), validation (hyperparameter setting), and test
(generalized detection performance estimation). Only a test
set is used for CC and DCC, since they have no parame-
ters and hyperparameters. A test set is used for HSIC as
well. HSIC has no parameters but has hyperparameters fixed
to the recommended values [25]. In our opinion regarding
MIC, a training set should be used to set the segmentation
pattern which is a kind of parameters. However, that was
not mentioned in the literature [27]. We presume that they
used a dataset for both training and test, and we follow this.
The hyperparameters of MIC are fixed to the recommended

values [27]. For NNR-GL, parameter setting, hyperparameter
setting, and generalized detection performance estimation are
done using training, validation, and test sets, respectively.

D. EVALUATION CRITERIA AND METHODS
The following evaluation criteria seem reasonable, because
the correct dependences of artificial datasets are known: True
Positive (TP) representing that a measure correctly identi-
fies an existent dependence and True Negative (TN) rep-
resenting that a measure correctly identifies a non-existent
dependence. However, TP and TN require the binarization of
measure values. For detailed analysis, it is better to estimate
how close measure values are to TP and TN without bina-
rization. We hence define two criteria called True Positive
Certainty (TPC) and True Negative Certainty (TNC). TPC
estimates whether a measure value is sufficiently large when
a dependence exists. It equals the measure value itself. TNC
estimates whether a measure value is sufficiently small when
a dependence does not exist. It is (1 − the measure value).
To discuss the robustness to data size and noise rate,

the curves of TPC and TNC of a measure are drawn over
noise rates for each data size as in Fig. 4. In general, a signal
is buried in strong noise; an existent dependence becomes
difficult to detect when the noise rate is high. A TPC curve
appears like an inverted sigmoid function, of which higher
position represents the better TP detection. It is rare tomisrec-
ognize noise as a signal, but it becomes slightly more frequent
for stronger noise. A TNC curve appears like an inverted
and compressed sigmoid function, of which higher position
represents the better TN detection. We qualitatively estimate
performances based on the TPC and TNC curves.

Moreover, we calculate the Area Under Curve (AUC) of
a curve over noise rates for each data size, as a quantitative
estimation. We call the AUC of a TPC curve TPC-AUC, and

FIGURE 4. Illustration of TPC curve (left) and TNC curve (right) plotted
over an increasing noise rate. The higher a curve locates at, the better the
performance to detect true positives or true negatives.
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that of TNC TNC-AUC. The upper limit of integration in
AUC calculation, i.e. a vertical line in Fig. 4, is determined
fairly for measures by the procedures below. The noise rates
on the horizontal axis are picked up, where a TPC curve falls
down to the measure values 0.6, 0.5, and 0.4 on the vertical
axis. These noise rates are accumulated and averaged over
all the measures. The upper limit for both TPC-AUC and
TNC-AUC is set to this average commonly to all the mea-
sures. Themean of TPC-AUC and TNC-AUC is also used as a
comprehensive detection performance criterion called CDP-
AUC. Detection performances are quantitatively discussed
based on TPC-AUC, TNC-AUC, and CDP-AUC.

The past studies [27], [37] qualitatively discussed TP
detection performance by visualization. They did not con-
sider TN detection performance, and such a one-sided view
might lead to overestimate measures that output a large mea-
sure value even if there is no dependence. They also did
not have a quantitative discussion. We design the evaluation
criteria to overcome these past issues.

V. EVALUATION EXPERIMENT ON FUNDAMENTAL
EFFECTIVENESS USING ARTIFICIAL DATASETS
We carried out the experiment designed in Section IV and
report its details here in Section V. Sections V-A and V-B
are devoted to the purpose and conditions and the results and
discussion, respectively.

A. PURPOSE AND CONDITIONS
We conducted a set of experiments to examine whether
NNR-GL detects co-nonlinearities correctly, compared to the
conventional measures. Artificial datasets with known true
variable dependences were used to estimate the correctness
of detection. The experimental design and conditions were
as given in Section IV. In short, the dependences Line, Exp,
Parab, Cubic, and Sine were assumed between x1 and x2
accompanied with independent x3. Datasets were sampled
with observation noise from each dependence, where the data
size was 3000 to 150, and the noise rate was 0 to 40 [%]. Each
dataset was divided into training, validation, and test sets.

The competitors CC, DCC, HSIC, and MIC were applied
to each pair of x1, x2, and x3. There were two conditions
for NNR-GL: NNR-GL(S) applied to a single-input vari-
able similarly to the competitors and NNR-GL(M) applied
to multi-input variables. The hyperparameters and parame-
ters of measures were optimized or set to the recommended
values. Three different random initializations were tried for
NNR-GL. Detection performances were estimated based on
TPC and TNC curves and their AUCs.

B. RESULTS AND DISCUSSION
1) BEHAVIORS OF NNR AND GL
Prior to discussing the performance of NNR-GL, we confirm
the behaviors of NNR and GL inside of NNR-GL. A part of
the results learned by NNR is visualized in the right of Fig. 3.
This was obtained under the multi-input NNR-GL(M), using
a training set of 100 sample points out of 300 with 1 [%]

TABLE 5. The weights on input variables optimized by GL of NNR-GL,
under 1000 sample points out of 3000 with 0 [%] noise for training. R1,
R2, and R3 correspond to the 3 random initializations.

noise. The learned dependences in the right look similar to
the true ones in the left; NNR succeeded in modeling true
dependences behind sampled data in the middle. To save the
space, we briefly report that NNR worked well for the other
data sizes and noise rates.

Let us mention about hyperparameter setting. As is
common for NNs, the hyperparameter values optimized by
validation in the experiment differed depending on variable
dependence, data size, and noise rate. As a guide, we provide
the average number of total layers including input, hidden,
and output ones (# of layers) and that of neurons in each hid-
den layer (# of neurons). These numbers are hyperparameters
with the most significant effect on regression performance.
In the case of large and noiseless data with the data size
3000 and the noise rate 0 [%], # of layers were from 4 to 16,
and # of neurons were from 60 to 86 for all the 5 dependences.
In the case of small and noisy data with 150 and 10 [%], # of
layers were from 4 to 13, and # of neurons were from 20 to 73.
It is not possible to say definitely, but these numbers would
be reasonable for our datasets which were not image or sound
but numerical.

Regarding GL, we focus on NNR-GL(M) using a training
set of 1000 sample points out of 3000 with 0 [%] noise,
because this condition clearly demonstrates the behaviors of
GL. A part of the results optimized by GL is summarized
in Table 5. For example, 0.2092 in the left top is the L2 norm
of weights on the edges connected to the input variable x2.
This numeric value, namely the RC of x2, was obtained in the
regression of x1 on x2 and x3 with the random initialization
R1. Although differences appear to some extent depending on
initialization, the trend of the results is basically consistent.
Therefore, we discuss the overall trend regardless of initial-
ization.

Logically speaking, the RC of x1 should be the largest to
represent its contribution to regression when the output vari-
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FIGURE 5. The TPC curves, TNC curves, and comprehensive detection performances CDP-AUCs obtained under the data size of 3000 (1000 for training,
1000 for validation, and 1000 for test). The higher CDP-AUCs between the proposed and conventional measures are in boldface.

able is x2, because x2 = f (x1). Moreover, the RC of x2 should
be the largest only for Line due to linearity. As expected,
the RCs of x1 when x2 is regressed on x1 and x3 are the largest
for any dependences in Table 5. In case of Line, the RCs of x2
when x1 is regressed on x2 and x3 are the largest, too. In the
other conditions, this trend gets somewhat blurred but still
appears with the decrease of sample size and the increase
of noise rate. GL worked well to differentiate dependent and
independent variables.

2) EFFECTIVENESS OF NNR-GL
We move onto discussing the detection performance of
NNR-GL. Figs. 5 to 8, which correspond to data sizes
from 3000 to 150, show the TPC curves, TNC curves, and
CDP-AUCs of the proposed and conventional measures. The
results are aligned from top to bottom according to the depen-
dences Line, Exp, Parab, Cubic, and Sine. They are aligned
from left to right according to the variable combinations x1
and x2, x1 and x3, and x2 and x3. The dependent x1 and x2 have
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FIGURE 6. The TPC curves, TNC curves, and comprehensive detection performances CDP-AUCs obtained under the data size of 1500 (500 for training, 500
for validation, and 500 for test). The higher CDP-AUCs between the proposed and conventional measures are in boldface.

TPC curves representing TP detection and no TNC curves.
The independent x1 and x3 have TNC curves representing
TN detection and no TPC curves, and the independent x2
and x3 have the same. Refer to Section IV-D on how to
read TPC and TNC curves. The values of CDP-AUC, which
is the mean of TPC-AUC and TNC-AUC over the variable
combinations, are listed in the rightmost. NNR-GL behaved
quite similarly under three different initializations, and so
we provide only the mean measure values of NNR-GL over
initializations.

In principle, NNR-GL(M) which is the original use of
NNR-GL can detect multi dependences simultaneously and
efficiently. However, there is a possibility that NNR-GL(M)
is disadvantaged in learning, compared to NNR-GL(S). The
reason is that NNR-GL(S) devotes its all learning resources
to a single-to-single dependence, while NNR-GL(M) assigns
those to multi-to-single dependences. Despite this possibility,
the curves of NNR-GL(S) and NNR-GL(M) are almost the
same in Figs. 5 to 8. Concretely, the downward triangles for
NNR-GL(S) and the upward triangles for NNR-GL(M) over-
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FIGURE 7. The TPC curves, TNC curves, and comprehensive detection performances CDP-AUCs obtained under the data size of 300 (100 for training,
100 for validation, and 100 for test). The higher CDP-AUCs between the proposed and conventional measures are in boldface.

lap and look like stars. The weights on multi input variables
were successfully optimized to make NNR-GL(M) equiva-
lent to NNR-GL(S), as we expected. Hereinafter, we simply
regard NNR-GL(S) and NNR-GL(M) as the same NNR-GL.

In the left graph of Fig. 5 where the data size is 3000
(1000 for training, 1000 for validation, and 1000 for test),
the TPC curve of NNR-GL is located in the highest posi-
tion for all of Line, Exp, Parab, Cubic, and Sine. In the
middle and right graphs, the TNC curves of NNR-GL
lie highest as well. In the rightmost table, the values of

CDP-AUC of NNR-GL(S) and NNR-GL(M) are the high-
est. NNR-GL outperformed the other measures consistently
in terms of all of TP detection, TN detection, and the
kind of dependences. NNR well modeled a variety of
co-nonlinearities, and GL on the NNR’s input layer well
differentiated dependent and independent variables. That
brought the high TP and TN detection performances of
NNR-GL.

Paying attention to the other measures in Fig. 5, the TPC
curve of CC takes the highest position for Line as well as
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FIGURE 8. The TPC curves, TNC curves, and comprehensive detection performances CDP-AUCs obtained under the data size of 150 (50 for training, 50 for
validation, and 50 for test). The higher CDP-AUCs between the proposed and conventional measures are in boldface.

NNR-GL. It appears unstably in the lower positions for the
other dependences. The TNC curves of CC stay in the third
highest position for all the dependences. Reflecting the TPC
and TNC trends, the values of CDP-AUC differ depending on
the kind of dependences. These results are a matter of course,
since the model of CC is fixed to be linear. The TPC curve of
DCC takes the highest position for Line, but it takes the third
for the other dependences. Its TNC curves stay in the second
lowest position for all the dependences. With respect to CDP-
AUC, DCC is slightly better and more stable than CC. The

model of DCC is nonlinear but in a limited function family.
This limitation would lead to these results. For almost all
the dependences, the TPC curve of HSIC takes the lowest
position, while its TNC curves stay in the highest or close
to the highest. Reflecting those, the values of CDP-AUC are
comparatively low in spite of the broader family of nonlin-
ear functions that HSIC has. There is a possibility that the
hyperparameters fixed to the recommended values hindered
HSIC from its best performance. The TPC curve ofMIC takes
the fourth position for Line and the second position for the
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TABLE 6. Results for Pima diabetes dataset. The detected sets matching
the correct ones are highlighted in bold.

other dependences. Its TNC curves stay in the lowest position
for all the dependences. Due to those, the values of CDP-AUC
are not so high. The flexible nonlinear model of MIC would
end up with somewhat overfitting to TPs by using the same
data for segmentation and detection.

Comparing Figs. 5 to 8, the TPC and TNC curves of all
the measures gradually get down and unstable as the data
size decreases from 3000 to 150. However, their trends are
consistent throughout the figures; the TPC and TNC curves
of NNR-GL are located in the highest for all the dependences
and data sizes. Under some conditions with the data size of
300 or 150, the TPC curves of NNR-GL quickly fall outside
of the upper limit of noise rate. That suggests that NNR-GL
refrained from the overdetection of dependences under too
high noise and led to better TN detection. In contrast, themea-
sures of which TPC curves stay higher outside of the upper
limit tend to have lower performances in TN detection. The
success of NNR-GL in Figs. 7 and 8, of which data sizes
are 300 and 150, is noteworthy. The result suggests that
overfitting for small data was avoided by GL and the use
of training, validation, and test sets, which are equipped in
NNR-GL but not in the other measures.

Here, the findings above are summarized and concluded.
In both TP and TN detections, NNR-GL outperformed the
conventional measures. Its performance was stable to initial-
ization, robust to noise rate, and robust to data size, commonly
for all the dependences. Therefore, the fundamental effective-
ness of NNR-GL was confirmed.

VI. PILOT EXPERIMENT USING
REAL BENCHMARK DATASETS
In Section V, the experiment and analysis using artificial data
suggested that NNR-GL works robustly and better than the
conventional measures. It is time to broaden the horizons to
the practicality of NNR-GL. Full-scale experiments will be
in the next stage of our research, but we started case studies
using real benchmark datasets. Section VI reports those. One
case study is given in Section VI-A, and the other is given in
Section VI-B. In Section VI-C, we discuss the perspectives
found in all the experiments in the present research.

A. CASE STUDY USING PIMA DIABETES DATASET
To try the potential of NNR-GL for real world problems,
we demonstrated a pilot experiment including two case
studies using real benchmark datasets. This paper aims to pro-

TABLE 7. Results for US-130 Hospital dataset. The highest performances
are highlighted in bold.

pose and analytically evaluate NNR-GL, and thus we briefly
report the pilot experiment. NNR-GL(M)was employed here,
since it worked as well as NNR-GL(S) in the evaluation
experiment in Section V. The conditions of NNR-GL and
the competitive measures were the same in the evaluation
experiment, too. The best performances of NNR-GL and
the competitive measures were estimated in the following
manner, which was common to the two case studies. For
each measure, the threshold of measure values was set to
find the correct sets of dependent variables as much as
possible. Variables exceeding the threshold were detected
and assigned to the corresponding detected set of dependent
variables.

The first dataset was Pima Diabetes Dataset in the web-
site [72], of which 8 variables except the class and 768 sample
points were used. We prepared the correct sets of dependent
variables based on common sense and medical literature
survey using [73]. There were 3 correct sets of dependent
variables, {x1, x8}, {x2, x3, x4, x5, x6}, and {x7}. The first set
means that the number of pregnancies x1 and age x8 are
dependent. That was judged as correct based on the common
sense. The second set contains glucose concentration x2,
blood pressure x3, triceps skin thickness x4, insulin level x5,
and body mass index x6. Their dependence was supported by
a collection of medical literature [73]. The third set consists
of diabetes pedigree x7, which was a kind of genetic factor
possibly less dependent on the other variables. We applied
NNR-GL and the competitive measures and obtained the
detected sets of dependent variables. As shown in Table 6,
NNR-GL detected all the correct sets, but the other measures
did not.

B. CASE STUDY USING US-130 HOSPITAL DATASET
The second dataset was US-130 Hospital Dataset in the web-
site [74], of which 10 variables were picked up referring
the literature [75]. This dataset was split into 10 subsets
consisting of 1000 sample points for 10 trials. We converted
the following 6 symbol variables into the sets of indicator
variables representing the absence of symbol with 0 and
the presence with 1: race, admission source, specialty of
the admitting physician, primary diagnosis, hemoglobin A1c,
and readmission rate. These sets were obviously the correct
sets of dependent variables and so targeted.

We estimated the performances of NNR-GL and the com-
petitive measures using Equ. (11). The number of trials T is
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10. S(d)t denotes the set of variable sets detected by a measure
in the tth trial. S(c) denotes the set of the 6 correct variable
sets. By setting St = S(d)t , the term in the summation becomes
the precision obtained in the tth trial. Hence, Equ. (11) is the
averaged precision Pave over all trials. Similarly, Equ. (11) is
the averaged recall Rave when St = S(c). In Table 7, NNR-
GL achieved the highest Pave and Rave compared to the other
measures.

1
T

T∑
t=1

(
|S(d)t ∩ S

(c)
|

|St |

)
(11)

where

St = S(d)t for Pave and St = S(c) for Rave

C. PERSPECTIVES FOUND IN THE EXPERIMENTS

There were only two case studies under limited conditions
in the pilot experiment. However, the fact that NNR-GL
outperformed the conventional measures in both case stud-
ies indicates the potential of NNR-GL in real world prob-
lems. Furthermore, we found three perspectives in the pilot
experiment and also the evaluation experiment in Section V.
The first perspective is inspired by the success of NNR-GL
in detecting common senses and indicator variable sets.
We come up with the following. By adaptively updating
the groups in GL, NNR-GL will be able to gather detected
dependent variables into a group as prior information. Under
this prior information like a common sense, NNR-GL will
detect other latent dependences in the next turn. This spiral
process will carve out important novel dependences.

For ease of understanding the experimental results,
wemanually incorporated the detected dependences into their
sets in Table 6. The same will be needed when NNR-GL
is applied to real world problems. Therefore, the second
perspective is a framework that automatically organizes the
sets of detected dependent variables. In addition, it will be
helpful for human awareness to accompany which variable is
the representative of each of these sets. Although this idea
was partially achieved in our past study [34], it should be
improved and evaluated in detail.

It was experimentally confirmed that NNR-GL works well
for the first step to detect potential dependences in Fig. 1.
To more ensure the fundamental effectiveness of NNR-GL,
we are planning to conduct additional experiments using
different types of dependences and noise distributions. To go
beyond the first step, in other words, to bridge the first step
to the second and third ones, the third perspective is a way
to mathematically formulate the detected dependences. The
inverse mapping problem in Section III-A gives us a hint
that causalities ‘‘which variables cause which ones’’ can be
detected by bidirectional regressions.

Our idea is to achieve this causality detection by assuming
the following: As inputs, variables yielding one-to-one or
many-to-one mapping (namely, forward mapping) should be
‘‘causes.’’ Variables yielding one-to-many or many-to-many
mapping (inverse mapping) should be ‘‘results.’’ We actually

introduced the part of this idea to identify representative vari-
ables in the past study [34], but a thorough investigation on
that should be one of our future work. Furthermore, we think
that the number of turning points on a detected dependence
helps to formulate the dependence function, because this
number suggests the shape and degree of the function.
Recently, we started working on the three perspectives above.

VII. CONCLUSION
The detection of variable dependences is essential for a broad
range of disciplines. To detect nonlinear dependences among
multi variables, we proposed a measure called NNR-GL.
It consists of nonlinear modeling by Neural Network Regres-
sion and variable selection by Group Lasso, accompanied by
detected dependence quantification and averaging for robust-
ness. For evaluating the fundamental effectiveness of NNR-
GL, we demonstrated several experiments. NNR-GL was
applied to artificial datasets with several dependences under
different data sizes and noise rates, and its correctness of
detection was estimated. A criterion CDP-AUC, which is the
overall representation of true positive and true negative detec-
tions, was used for the estimation. The values of CDP-AUC
by NNR-GL were 0.7472 to 0.9681. They were higher than
the values of CDP-AUC by the conventional measures, which
were 0.5972 to 0.9259, for all the experimental conditions.
It was confirmed that NNR-GL can detect co-nonlinearities
correctly and robustly to data size and noise rate. Our future
work will be the improvement and extension of NNR-GL and
the confirmation of its practicality for real world problems.
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