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ABSTRACT Photovoltaic (PV) systems are subject to failures during their operation due to the aging
effects and external/environmental conditions. These faults may affect the different system components
such as PV modules, connection lines, converters/inverters, which can lead to a decrease in the efficiency,
performance, and further system collapse. Thus, a key factor to be taken into consideration in high-efficiency
grid-connected PV systems is the fault detection and diagnosis (FDD). The performance of the FDDmethod
depends mainly on the quality of the extracted features including real-time changes, phase changes, trend
changes, and faulty modes. Thus, the data representation learning is the core stage of intelligent FDD
techniques. Recently, due to the enhancement of computing capabilities, the increase of the big data use,
and the development of effective algorithms, the deep learning (DL) tool has witnessed a great success in
data science. Therefore, this paper proposes an extensive review on deep learning based FDDmethods for PV
systems. After a brief description of the DL-based strategies, techniques for diagnosing PV systems proposed
in recent literature are overviewed and analyzed to point out their differences, advantages and limits. Future
research directions towards the improvement of the performance of the DL-based FDD techniques are also
discussed. This review paper aims to systematically present the development of DL-based FDD for PV
systems and provide guidelines for future research in the field.

INDEX TERMS Fault diagnosis, deep learning, photovoltaic systems.

I. INTRODUCTION
Photovoltaic (PV)-based electrical power generation has
been a growing research area in the academia and indus-
try fields [1], [2], where the grid-connected PV systems
have witnessed the highest growth rate. Therefore, the high-
performance/reliability operation of PV systems has become
a top priority. PV systems’ faults can be divided, according
to their time characteristics, into three major categories: inter-
mittent, abrupt, or incipient faults. Temporary or intermittent
faults refer to faults that clear or change over time such as
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partial shading or environmental stress (e.g., dust or contam-
ination). Permanent or abrupt faults refer to faults that occur
instantaneously often as a result of a damage to the PV array
such as line-to-line or line-to-ground short circuits, junction
box faults, connector disconnection, open-circuit faults, and
hot spots. Incipient faults are considered as themost challeng-
ing failures due to their small amplitudes and slow dynamics.
If not detected at an early stage, they can result in gradual
damage to the PV cells leading to serious faults. Incipient
faults can occur in both DC and AC sides. Examples of
DC-side (PV modules and DC/DC converter) incipient faults
are PVmodule defects such as yellowing and browning of the
solar cells, delamination, bubbles, cracks, gaps, and defects
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in the anti-reflective coating. The AC-side (inverter and grid
side) faults include Insulated Gate Bipolar Transistor (IGBT)
faults, wiring degradation, aging, islanding, and overheating.

Therefore, it is essential to develop enhanced FDD algo-
rithms aiming at increasing the reliability and efficiency of
PV systems [3]. With the rapid development of information
and automation technologies, the demand and requirements
for FDD algorithms are increasing, and data-driven process
control methods are also being continuously developed and
improved. Thanks to the powerful representation learning
ability of DL algorithms, intelligent FDD become more auto-
mated and effective in the context of big data. However,
PV systems are complex [4], generally including nonlinear
[5], [6], uncertain [7], time-correlated [8], multimodal [9],
multi-period [10], large-scale [11], or intermittent charac-
teristics [12], resulting in the following problems with the
collected data: (1) The characteristic dimension of samples
under multi-sensor measurement is relatively high and has
high relevance (the data relevance in both decision-making
and decision-taking has exponentially increased); (2) Differ-
ent sampling rates or random loss of data lead to missing
observations of some sensors at a specific point in time;
(3) Unbalanced data types, such as a limited number of faulty
samples under extreme conditions; (4) The data distribution
is not uniform: the information from different data sources
may be inconsistent. In addition, the PV systems are uncertain
with the influence of external disturbances, and the mea-
surements collected are not represented with single values.
These problems result in uncertain characteristics of the data
and diagnosis spaces and severely limit the representation
learning ability of DL algorithms. To improve the safe and
stable operation of PV systems, the use of a DL framework
for FDD still needs improvement. Generally, the main steps
of DL-based FDD are the following: data preprocessing, deep
network design, and decision-making. Data preprocessing
problem includes (a) the small sample problem. In practical
applications, due to problems such as difficulty in data col-
lection and the high cost of sample labeling, the size of the
training sample is not large or the amount of data is large
but the effective information is insufficient resulting in the
problem of small samples in the field of learning. Methods
such as transfer learning and generative adversarial networks
can be used to solve design problems of deep network-based
diagnosis approaches in the case of small samples. (b) Big
data storage and analysis: The basis of big data analysis is
to extract useful values, suggest conclusions and/or support
decision making, and focus on solving problems that cannot
be handled within a limited time with existing methods. The
priority can be established by several factors such as data
preprocessing, fast response speeds, effective reduction of
data size, data regularization, relative principal component
analysis, etc. In addition, the performance of any diagnosis
method depends on the quality of the available process data
[13]. Practical measurements usually contain high levels of
noise/auto-correlation and are infected with errors that mask

the important features in the data and limit the effectiveness
of any process monitoring techniques [14].

Regarding the deep network design, although DL tools
have greatly promoted developments in the field of FDD,
integrating professional knowledge will help the DL model.
Thus, the representation learning of discriminative features
can help in reducing the structure of the DL model, and
the data regularization processing for specific tasks can help
to improve the performance of the FDD. The application
of reasonable professional knowledge and prior information
helps to reduce the complexity of the monitoring model
and improve the diagnosis performance. Besides, the perfor-
mance of the DL-based FDD relies mainly on the historical
data. The rapidity and accuracy of the analysis and effec-
tive simplification of the online data to achieve incremental
learning of complex dynamic system models and parameter
adaptation is a challenging and difficult point. In addition,
several issues may have an impact on the diagnosis perfor-
mance of the DL-based approaches. In general, they are built
using default parameters and it is yet to investigate theway the
parameter variations affect these approaches. Consequently,
DL based on the selection of optimal parameters for FDD
must enhance the diagnosis performance.

Faults can be divided into two types depending on their
evolution: significant faults and minor faults. The design of a
multi-level diagnosis framework in the deep network model
will help achieving the real-time monitoring of significant
faults and effectively improve the diagnosis of random faults.
In addition, significant faults affect the system performance
differently, and small faults are also very likely to cause con-
siderable damage. Thus, it is important to develop DL-based
algorithms that consider the fusion of faults from different
manufacturing environments with different characteristics.
Moreover, classical DL algorithms are generally utilized to
model the dynamic nature of multivariable PV systems in
both the offline training and online updating phases using the
updated measurements. Instead, using online extensions of
DL models for diagnosis in the first place may reduce the
training and update time. In addition, complex PV systems
often have problems such as uncertainty, multiple fault occur-
rence, and fault levels changing with time. If only a single
FDD technology is used, the accuracy and generalization
will be low. Thus, combining multivariate statistical analysis
(such as: PCA [15]–[17], kernel PCA [18]–[20]), signal pro-
cessing (such as: Fourier transform, multiscale representation
[13], [21], interval-valued data representation [22], [23]), and
other tools with DL models could improve the performance
of the FDD and more specifically decision-making accuracy.
It could also reduce the impact of noise, outliers [24], and
uncertainties and estimate the severity of the fault location.

The DL-based FDD is mainly divided into three kinds
of techniques [25]–[28]: (i) Data preprocessing (DP) →
Features Extraction and Selection (FES) → Faults classifi-
cation (FC) based on DL (FC-DL): This type of method uti-
lizes traditional statistical analysis, signal analysis and other
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FIGURE 1. Simplified flowchart of fault diagnosis based on deep learning
techniques.

methods for data preprocessing and FES, and then applies the
DL tool for FC. This allows to reduce the model complex-
ity and improve the diagnosis rate. (ii) DP → FES-DL →
FC-DL: In this technique, the DL tool is used for FES,
and the FDD is performed based on the extracted high-level
features [29], [30], where multi-hidden-layer networks for
unsupervised extraction of high-level abstract features are
used. It does not require manual intervention or rely on prior
knowledge. Combined with multivariate statistical analysis
techniques, it is able to provide an efficient diagnosis perfor-
mance [31]. (iii) DP→ (FES and FC)-DL: In this method,
the DL tool makes a direct use of the raw-data to perform
the FDD. This method belongs to the ‘‘End-to End’’ family,
which directly computes the output from the input [32]. The
parameters for FES and FC in multi-hidden-layer networks
can be optimized collaboratively, and the feature self-learning
strategy is adopted to automatically extract the effective fea-
tures from the large data set to perform the FDD.

This paper mainly discusses the different DL-based FDD
techniques for PV systems from the perspective of method-
ology and five basic architectures: stacked auto encoder
network, deep belief network, convolutional neural net-
work, recurrent neural network and deep transfer learning
(see Figure 1). The network structure not only determines
the effectiveness of feature extraction and selection, but
also relates to the complexity of the solution. This paper
will explore the research status of these five types of
methods respectively, and study their development direc-
tion based on the existing problems in the DL-based FDD
technology.

The following section presents the most occurring failures
in PV systems.

II. COMMON FAILURES IN PV SYSTEMS
In PV systems, the produced PV power depends on various
factors such as the nominal characteristics of the components,
the power electronics interface, the weather conditions, and
failures that may occur in the different stages during the
operation (Figure 2).

A. PV MODULE FAILURES
The PV array is the main component of PV systems, where
any deficiency associated to the module has a significant

FIGURE 2. Classification of faults in PV systems.

effect on the system performance. In the literature, the fol-
lowing failures have been commonly reported [33]:

1) MISMATCH FAULTS
Grouping non-homogeneous or poorly matched PV cells
(non-identical I-V characteristics) causes mismatch faults.
This mismatch leads to a reduction of the Maximum Power
Point (decreased PV power generation).

2) BYPASS DIODE FAULTS
Usually, a diode connected in anti-parallel to a group of cells
(bypass diode) is used in PV modules to prevent cells from
shading. Generally, a bypass diode fault is represented by
an impedance, short/open circuit, or inverted diode, which
causes a mismatch in the I-V characteristics of the cell.

3) CONNECTIVITY FAULTS
Usually, the corrosion/decrease in contact adhesion between
two modules lead to a lack of connectivity in PV strings.

4) GROUND FAULTS
A ground fault (GF) in PV modules can be considered as an
accidental electrical short-circuit involving ground and one or
more current-carrying conductors [40]. The GFmay generate
DC arcs (and even fire hazards) at the fault point, which raises
serious safety concerns.

5) PARTIAL SHADING FAULTS
The operation of PV modules is highly susceptible to partial
shading failures, where multiple peaks appear on the P-V
characteristics due to the use of a bypass diode.

B. POWER ELECTRONICS INTERFACE FAILURES
Usually, the operation of PV systems is accompanied with
failures at different stages. As one of the most important
components in PV systems is the power electronics interface,
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FIGURE 3. Architecture of convolutional neural networks (CNN).

it has been shown thatmost of the failures are due to the power
semiconductor failures.

Many factors may lead to the fatigue of the power electron-
ics components (transistors, diodes). The component fatigue
affects mainly the time response and therefore may lead
to additional switching losses. Besides, switching of power
semiconductors might cause different types of faults.

The three most common power semiconductor failures are
the wear-out, open-circuit, and short-circuit faults

C. GRID SIDE FAILURES
Islanding is one of the most important failures to address/
detect in grid-connected PV systems. Islanding occurs when a
portion of the utility system remains energized while isolated
from the grid. This phenomenon can cause safety problems
to utility service personnel or related equipment [34].

III. RESEARCH STATUS OF FAULT DIAGNOSIS
TECHNOLOGY BASED ON DEEP LEARNING
The DL-based FDD performance is based on the mathemat-
ical tool and process models of the plant [35]. The devel-
opment of deep networks helps to extract high-level and
abstract features from the data. When the effective feature
representation in the data is relatively extracted, whether it
is used for fault classification or regression, better results can
be obtained.

A. CONVOLUTIONAL NEURAL NETWORK
BASED FAULT DIAGNOSIS
Convolutional Neural Networks (CNN) are built using three
types of layers: convolutional layer (CL), pooling layer (PL),
and fully connected layer (FCL) [36], [37] (see Figure 3). The
CL combines multiple convolution kernels to extract features
from the input data or upper layer features, adds matrix
element multiplication to the input features in the perceptual
field, and adds the deviation [38]. The size of the convolution
kernel in the CL controls the extraction of local spatial corre-
lation features in the input information, which can enhance
certain features of the original signal while reducing the
impact of noise [36]. The PL is responsible for reducing the
spatial size of the Convolved feature. It aims to decrease
the computational power required to process the data using
dimensionality reduction schemes [39]. Furthermore, it is
useful for extracting relevant features that are rotationally and
positionally invariant, thus maintaining the process of effec-
tively training the model [39]. Adding an FCL is an effective
way of learning nonlinear combinations of the high-level
features, as represented by the output of the CL. The FCL

is learning a possibly nonlinear function in that space [40].
CNN-based FDD has the following advantages: (i) Industrial
system data has multi-source heterogeneity [41]–[44]. The
input of CNN can be time series [45]–[47], spectrogram [48],
[49], and images [50]–[52], which is suitable for multi-source
information processing [41], [53]; (ii) Complex PV systems
are often accompanied by random strong magnetic interfer-
ence, high temperatures. The features extracted by CNN have
translation invariance [54], [55], which increases the robust-
ness of the diagnosis algorithm and improves the generaliza-
tion ability of CNN; (iii) The data that can characterize the
faults in PV systems is often submerged in massive real-time
data. The generated countermeasure networks can generate
samples based on the learning of the probability distribution
of real data [56], which is suitable for small sample sizes.
The authors in [57]–[60] presented a vector matrix containing
statistical characteristics such as the root mean square of the
frequency domain signal, the standard deviation, skewness,
and kurtosis of the time domain signal as the input to CNN for
classification purposes. In addition, in [61], [62], the authors
used a Morlet wavelet decomposition tool to obtain the
wavelet scale map of the signal, which was used as the input
of the CNN for the classification phase. In the developed
method, the Rectified Linear Unit (ReLU) was applied as an
activation function and used to introduce non-linearity into
the network. Thework in [63] introduced an adaptive learning
rate to construct a hierarchical framework consisting of two
CNNs. Therefore, the size of the mode and the adjustment
of the adaptive learning rate could promote the algorithm to
accelerate the convergence in addition to the prevention of the
gradient from disappearing. In addition, given that the tradi-
tional linear model cannot capture the complex relationship
between sensor data and remaining effective life, the authors
in [40], [64] used the time series of multi-channel sensor data.
Evidently, one-dimensional (1D) time series can be also used
directly as the input of the CNN. For this purpose, the authors
in [65] developed a 1D kernel filter to convolve the signal.
The proposed method aims to extract high-resolution features
for fault detection. The work in [66] used 1D CNN to detect
faults by merging feature extraction and post-processing of
the raw signal. The authors in [67] presented a comparative
study of CNN-based feature learning. The features include
raw data, spectrum, and time-frequency data. In [68], a novel
full closed-loop -based CNNmethod for power quality distur-
bances detection and classification was proposed. The devel-
oped approach was able to capture multiscale features and
reduce overfitting. To address the problem of small samples,
the authors in [69] used prior knowledge to convert normal
data into coarse fault data combined with an improved gen-
erative adversarial networks (GAN). The proposed technique
aims to refine the coarse fault data into data more similar to
real faults. The authors in [70] applied a GAN to generate
samples with similar distribution to the original signal and
utilized a stacked denoising auto-encoder (SDAE) method
to pre-train the network, extract fault features, and identify
the authenticity of the samples. The developed approach was
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FIGURE 4. Architecture of recurrent neural networks (RNNs).

robust to noise and showed a good anti-noise capability in
the case of small samples. The work in [71] used a GAN
for oversampling the fault operation data to obtain missing
fault data. The developed method was proposed to achieve
high-precision classification of induction motor faults under
different conditions. To repair the ‘‘fuzzy’’ range of the
intermediate probability value and enhance the credibility
of the reasoning for the fault overlapping area, the authors
in [72] applied a GAN to the seismic image in which the
feature extraction network was used to extract local and
global features from the high-quality image. The reconstruc-
tion network then built a high-sensitivity image with a denser
sampling rate while retaining the original data and frequency
domain information.

B. RECURRENT NEURAL NETWORK BASED
FAULT DIAGNOSIS
Recurrent Neural Networks (RNN) are network structures for
which the inputs are time-series data and all the nodes are
connected in a chain [73]. Unlike multi-layer perceptrons,
the RNN have a sense of time and memory of earlier network
states allowing them to learn sequences that vary over time
[74] (see Figure 4). At present, the most commonly used
RNNs are Long Short-Term Memory networks (LSTM) and
Gated Recurrent Unit (GRU) networks. By introducing gates,
each recurrent unit can adaptively capture the dependence
of different time scales to avoid long-term dependence [75].
However, due to gradient exploding and vanishing, there is a
length limitation when applying the RNN [76]. Subsequently,
RNN variants such as LSTM [76] and GRU [76] neural
networks have been developed to deal with long sequence
prediction problems. The RNN-based FDD has the following
advantages: (1) The inputs of the RNN are time-series data
and the depth depends on the length of the input sequence,
which is suitable for dynamic PV systems monitoring and
prediction; (2) RNN are Turing complete, the chain con-
nection mode is conducive to the extraction and representa-
tion of the dynamic nonlinear characteristics of PV systems;
(3) The RNN is stable when the length of the learning and
testing sequence are different (PV system control is often
of variable length and the sampling is irregular). For the
time-series signals of PV systems, the authors in [77]–[79]
used monotonicity and correlation values to select features
as the RNN network inputs, and verified experimentally the

FIGURE 5. Architecture of stacked auto encoder (SAE) network.

performance of the proposed RNN-based method. The work
in [80] proposed an LSTM-based encoder-decoder archi-
tecture. The encoder structure converts the input sequence
to a fixed-length vector and the decoder structure uses the
vector to generate the target sequence and calculate the recon-
struction error to use it later for decision making. In the
case of multiple faults and large noise, the authors in [81]
developed three RNN-based models (vanilla RNN, LSTM,
and GRU) for FDD and showed that the LSTM and GRU
models outperformed the vanilla RNN. The authors in [82]
used GRU in the RNN model as it reduces the parameters
by controlling the gate mechanism to alleviate the problem
of gradient explosion or disappearance. The authors in [83]
proposed sequential FDD based on an LSTM neural network.
The developed method can directly classify the raw process
data without specific feature extraction and classifier design.
It can also adaptively learn the dynamic information in raw
data. In [84], the proposed method applies LSTM networks
for feature extraction and the selected features are fed into a
softmax regression classifier for fault diagnosis. PV system
data are characterized by the time relevance in addition to the
spatial dependence in the measurement space. For this pur-
pose, the authors in [85] developed a multiscale RNN model
for learning both hierarchical and temporal representation.
The authors in [86] combined the benefits of both CNN and
LSTM to establish a convolutional bidirectional LSTM. In the
developed approach, the CNN was used to extract the local
features from the original data. Then, a bidirectional LSTM
[87] was applied to extract temporal correlation and finally
stack a fully connected layer and linear regression layer for
predicting the remaining life.

C. STACKED AUTO ENCODER BASED FAULT DIAGNOSIS
Stacked Auto Encoder (SAE) networks are multi-hidden
neural networks formed by stacking multiple autoencoder
networks [88]. The output of one layer of the auto-encoder
network is used as the input of the next layer [89]. Each
auto-encoder network consists of two parts: an encoder and
a decoder (refer to Figure 5). The encoder converts the net-
work input into the hidden layer representation while the
decoder returns the hidden layer representation to the original
input [90].
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In general, faults tend to occur in high-frequency infor-
mation corresponding to the higher-order moments of ran-
dom processes. From the perspective of Taylor expansion,
the value of a function in the neighborhood of a point can
be represented by infinite series composed of the value of the
function at that point and the derivative values of each order.
Although the coefficient of the higher-order term is small, it is
different from the background details. In these cases, the fea-
tures are difficult to characterize using traditional methods.
The characterization of this information directly affects the
performance of the FDD algorithms, especially for small
faults that are difficult to detect. As a multi-level network
structure model, an SAE network computes higher-order
feature representations through multiple nonlinear mappings
and expresses more effectively a larger set of functions than
shallow networks [91]. FDD based on SAE networks has the
following benefits: (i)Most of the data collected fromPV sys-
tems are 1D signals, and the SAE network structure is simple
and suitable for this kind of signal; (ii) In PV applications,
data often has unlabeled characteristics and SAE networks
are self-learning mechanisms suitable for unsupervised train-
ing; (iii) As PV system data contains complex information,
the layer-by-layer training method of SAE networks helps
to extract the high-order nonlinear features from the data
samples and prevents dispersion of the deep network.

Traditional FDD methods are mainly based on the
time-frequency analysis of the collected signals [92]. The
work in [93] summarizes the traditional feature extrac-
tion methods based on frequency domain features. In the
auto-encoder network, the depth features obtained using
the frequency-domain features, such as low-level inputs,
are more suitable for diagnosis systems using Support
Vector Machines (SVM) as classifiers. The authors in [94]
showed that the features extracted by the stacked denoising
auto-encoder network are robust. The performance of the
developed technique was assessed by evaluating the impact
of the size of the input, the depth of the structure, and
the constraint parameters such as sparsity and denoising.
Considering that the frequency spectrum reflects the fre-
quency distribution of the data, the authors in [95] intro-
duced the time series frequency spectrum as the input to
the SAE network. In [96], a novel SAE-based multiple FDD
approach was developed. The proposed technique uses the
signal analysis to construct hybrid features and obtain more
distinguishing information to overcome the non-stationarity
caused by multiple cracks. Finally, the final features are fed
as inputs into the SAE network for multiple fault classifica-
tion. Considering that fault information is mainly reflected
in high-frequency mode, the parameters extracted from the
previous four modes are used as the network input, which
effectively improves the diagnosis performance while sim-
plifying the computation [97]. Given the inadequacy of tra-
ditional auto-encoder networks for processing the original
input signal, local features, and shifting features, the authors
in [98] proposed a local connection network based on a reg-
ular sparse auto-encoder. The paper [99] proposed a weight

regularization technique to learn weight-invariant facial rep-
resentations using sparse-stacked denoising autoencoders and
deep Boltzmann machines. Due to the limited training data
and to prevent data from overfitting, the authors in [100]
introduced the ‘‘discard’’ technique in the hidden layer of
the auto-encoder network. The authors in [101] developed
a classification tool using an auto-encoder network. The
developed approach applies a prior distribution to the latent
space and then uses the mutual information between the sam-
ple and predicted distributions for unsupervised clustering.
The proposed solution is characterized by its robustness and
cross-cutting of the extracted features in a noisy environ-
ment. For cross-machine FDD, the work in [102] proposed
an approach that holds the potential to largely reduce the
expensive labor in data collection for model establishment.
Given the process faults under PV multi-modal operation,
the authors in [103], [104] introduced the Maximum Square
Difference (MSD) to estimate the non-parametric distance
between two distributions and proposed a migration learning
FDD framework based on sparse auto-encoder networks. The
approach developed provided good results, more specifically
when the distribution of the testing data was different from
that of the training data. The authors in [105] proposed using a
time series as the network input to improve the application of
time-related information in dynamic PV systems. The work
in [106] used a sparse SAE network to limit hidden layer
information redundancy, which significantly improves the
detection performance of minor faults. The authors in [106]
conducted a statistical analysis on the hidden layer features
extracted from the SAE network and achieved multi-level
FDD based on high-order correlation. The direct use of
normal data effectively avoids the imbalance between data
categories. To address this issue, the authors in [107] consid-
ered the importance of online data diagnosis in the dynamic
process and proposed a threshold based on an SAE network.
Threshold-adaptive process monitoring technology performs
well in diagnosis and reduces the cost and complexity of
process modeling.

D. DEEP BELIEF NETWORK BASED FAULT DIAGNOSIS
A Restricted Boltzmann Machine (RBM) is a two-layer neu-
ral network composed of a visible layer and a hidden layer.
It describes the high-order interaction between variables
based on an energy function. The term ’Restricted’ means
that each edge in the bipartite graph must be connected to one
visible unit and one hidden unit [108]. The RBM assumes
that when the input data is given, the activation conditions
of each hidden unit are independent. Conversely, when the
hidden unit state is given, the activation conditions of the
visible layer units are independent [109]. The RBM can be
a sub-block of a Deep Belief Network (DBN) and a Deep
Boltzmann Machine (DBM) (refer to Figure 6). DBN is a
multi-hidden-layer probability generation model composed
ofmultiple RBMs and an output layer (usually a classification
layer). The joint distribution between observation data and
labels is established through layer-by-layer training [110].
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FIGURE 6. Architecture of deep belief network (DBN).

In contrary to the directed/unidirectional connection of the
hidden layer in DBN, the DBM is a Boltzmann network with
multiple hidden layers. The hidden layer transmits the infor-
mation and conducts feedback adjustment from top to bottom
[110]. Roux and Bengio proved theoretically that as long as
the number of hidden units is large enough, the RBM can fit
any discrete distribution [109]. FDD based onDBN/DBMhas
the following advantages: (i) The sample distribution does not
necessarily obey restrictive assumptions. RBM uses genera-
tive learning to predict the probability distribution of input
samples without restrictive assumptions (the PV system has
random uncertainty). (ii) RBM expresses data as a probability
model through unsupervised learning, which is suitable for
sample generative expansion in the case of small samples
in PV systems; (iii) The DBN creates activation value sets
through feature grouping sequences, which is suitable for
simulating and controlling multivariable nonlinear systems
(as the PV system control is mostly an unstructured system).
The authors in [111], [112] proposed a DBM-based approach
considering different characteristics of multi-modal features.
The developed approach aims to use the representation learn-
ing on time, frequency, and time-frequency domain features,
and perform fusion diagnosis in the decision-making phase.
In [113], the authors developed an improved convolutional
DBN for FDD. First, they used an auto-encoder to compress
data and reduce the dimension. Then, the deep model was
built with Gaussian visible units to learn the representative
features. The presented results showed that the developed
strategy provided better accuracy compared to classical DL
models. To improve the modeling, [114] added hidden units
to the activation function of the sparse SAE network to build
a DBN model and to extract the most representative features
of the data. In addition, in [115], the authors presented a
dual-tree complex wavelet packet method to design the orig-
inal feature set and constructed an adaptive DBN to improve
the network convergence speed and enhance the accuracy
of the diagnosis. Paper [116] proposed an improved RBM
with a new regularization term to automatically generate
features that are suitable for predicting remaining useful life.
In [117], the authors proposed a Teager-Kaiser energy opera-
tor to estimate the envelope of the instantaneous signal and
extract the statistical feature of the data, and then propose

Gaussian-Bernoulli RBM (GRBM) to construct a DBN for
real-valued classification [118].

The work in [119] proposed an improved FDD method
based on DBN. The so-called DBN developed with a global
back-reconstruction (GBR) approach was applied for early
crack diagnosis of turbine blades using three-dimensional
blade-tip clearance. The authors in [120] proposed a real-time
online FDD method that can improve the accuracy of detec-
tion, classification, and prediction, while being effective
for incipient faults that cannot be detected using statisti-
cal tools. A stacked sparse auto-encoder was applied to
learn the deep models of fault data and minimize the loss
of information. Conversely, [121] merged the benefits of
fuzzy Petri nets (FPN) and DBNs to present an adaptive arc
generation scheme that presents the label-weight based on
confidence-weight tomark the occurrence of a fault. In [122],
the authors developed an effective DBN-based approach for
detection and diagnosis. An effective DBNmodel was imple-
mented with an effective distribution of features at each layer
of the network to improve the accuracy of the diagnosis at
each instant. The authors in [123] proposed an enhanced
DBN-based FDD approach that combines the information
from multiple sources and enhances the robustness of fault
diagnosis.

E. DEEP TRANSFER LEARNING BASED FAULT DIAGNOSIS
The performance of DL-based FDD is closely related to the
amount of collected data. To achieve high performance, it is
required to generate a large number of samples from the same
domain to train the models [124]–[127]. Thereby, when using
a large amount of data, DL-based FDD models with complex
structures outperform other diagnosis models. Conversely,
when a small number of training datasets is generated,
the accuracy and reliability of these approaches inevitably
decrease [128]. In addition, deep models with a large number
of hidden layers can affect the performance of the FDD [129].
Moreover, the training and testing datasets, applied for deep
models, have the same feature space and the same distribution
[105]. Most statistical models must be rebuilt from scratch
using the newly generated training data as the distribution
changes. In PV systems, the cost required to collect data
again and rebuild the models is very high [130]. Deep transfer
learning (DTL) is a promising technique to address these
problems [131]. The DTL is a new DL technique that applies
existing knowledge to tackle problems in different but related
fields, which eases the requirements for data features [132].
The DTL tools can reduce the training time and enhance the
classification accuracy by using data in different operating
conditions where there is only a small amount of target data
[133]–[135]. Recently, it has been widely used for FDD as
it can provide accurate results in complex situations where
the transfer strategy can help to design a universal diagnostic
model [132]. Its main goal is to apply knowledge and skills
learned from a data-rich source domain followed by the appli-
cation to a related target domain with only a small amount
of data [133], [136], [137]. The difference between DL and
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FIGURE 7. Flowchart of deep learning and transfer learning based fault
diagnosis.

DTL-based FDD is shown in Figure 7. DL-based FDD aims
to split the normal and faulty data into training and testing
datasets. Training datasets are applied to train the model for
FDD purposes, and then testing datasets are used to measure
the performance of the model. The faulty dataset is smaller
than that of the normal dataset, which can lead to poor classi-
fication performance [128]. InDTL-based FDD, there are two
groups of data from different domains: the source and target
domains. The source domain is applied to extract knowledge
and the target domain uses the extracted knowledge for FDD
purposes. In this case, the faulty data in the source field is
relatively larger than the one of the target field, which will be
exploited for FDD in the target field. The DTL can extract
relevant features and perform knowledge transfer between
the target and source domains. According to the knowl-
edge transfer, transfer learning techniques can be classi-
fied into four categories [133], [138]–[141]: Instances-based
DTL [142]–[144], Feature-based DTL [46], [145], [146],
Network-basedDTL [147]–[149] andAdversarial-basedDTL
[150]–[153]. Instance-based DTL consists in re-weighting
samples from the source field for target field tasks. The
Feature-based DTL aims to find the common feature space
between the target and source fields. Network-based DTL is
based on the assumption that some model parameters can be
shared by the source and target fields. Adversarial-basedDTL
consists in determining the relationship between the samples
in the target domain and source domain. Adversarial-based
DTL has been proven to provide good results in finding a
common latent space between the target and source domains.
Thus, it has attracted more attention in the field of trans-
fer learning. DTL has attracted more and more attention
in the recent years [154]–[156] and approaches have been
applied to several applications such as image recognition
[157], text recognition [158], and software defect-recognition
[159], as well as FDD. For instance, the authors in [160]
developed an adaptive FDD method under different oper-
ating conditions to improve the classification accuracy. In
[161], the authors developed an automatic DTL based FDD
technique for PV systems. The experiments confirmed the
very good diagnostic accuracy of the proposed diagnostic
method under different simulation conditions. A transfer
component analysis approach in [162] was also proposed

for FDD. Despite DTL having been successfully applied for
FDD, it still suffers from some limitations. For example,
the data used for DTL are all from the same source domain,
the knowledge is transferred from just one operating con-
dition to another. However, when multiple related source
domains are available, it is difficult to effectively explore
general knowledge from those fields and use the information
learned in a new related field. Moreover, these methods
are not verified with practical data, and the generalization
abilities of these methods have not been confirmed. Some
previous studies extracted features before applying DTL,
which suggests greater requirements for scholars’ engineer-
ing experience and professional knowledge.

As presented in Table 1, different enhancements were
developed in recent years. The table shows improved
DL-based FDD techniques and discusses their performance.
The proposed techniques focus on the enhancements of basic
performance, including reducing the computational complex-
ity, strengthening the robustness of uncertainty and increasing
precision. However, in cases of multivariate, uncertain, large
and noisy data, it is important to more enhance effectiveness,
such as the diagnosis capability, the intelligence level of fault
diagnosis, the speed and cost of large data processing, and
the integration of statistical and multivariate fault features.
Therefore, fault detection and diagnosis more adaptive to the
characteristics of data has become a very important topic of
research.

IV. EXISTING PROBLEMS AND FUTURE
RESEARCH DIRECTIONS
After reviewing the recent literature related to the field of
fault detection and diagnosis in PV systems, the following
procedure will be adopted.

1) Enhance Data Preprocessing in Deep Learning
In PV systems, the data distribution across the dif-
ferent categories is extremely imbalanced. To address
the problem of FDD in the case of imbalanced sam-
ples, different solutions can be developed, including
focal loss function, under-sampling and over-sampling
methods at data level, cost-sensitive learning, imbal-
anced learning, and other models for preprocessing at
model level, and then applied as inputs into existing
DL-based approaches. Moreover, the larger the size of
the training data set is, the lower the effectiveness of
the diagnosis is in terms of computation time. This
issue limits the implementation of DL methods in
practical applications with massive data. To overcome
this limitation, improved techniques based on data size
reduction frameworks (such as Kmeans metric, Hier-
archical K-Means Clustering, Euclidean distance) will
be proposed to select the more effective features that
can be used as inputs for the DL models for faults
classification. In addition, the performance of any diag-
nosis method depends on the quality of the available
process data. The PV measurements usually contain
high levels of noise and autocorrelation and are infected
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TABLE 1. Summary of DL-based methods for fault diagnosis of PV systems.
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TABLE 1. (Continued.) Summary of DL-based methods for fault diagnosis of PV systems.
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TABLE 1. (Continued.) Summary of DL-based methods for fault diagnosis of PV systems.
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TABLE 1. (Continued.) Summary of DL-based methods for fault diagnosis of PV systems.

VOLUME 9, 2021 126297



M. Mansouri et al.: DL-Based Fault Diagnosis of PV Systems

TABLE 1. (Continued.) Summary of DL-based methods for fault diagnosis of PV systems.
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with errors that mask the important features in the data
and limit the effectiveness of any process monitoring
techniques. Therefore, multiscale data representation
is a forceful data analysis tool that decomposes the
original process samples into multiscale components to
provide an effective separation of the deterministic and
stochastic features from the data. The data is decom-
posed at multiple scales using low-pass and high-pass
filters and the noise is separated from the important
characteristics. Thus, the implementation of diagnosis
frameworks that unify DL methods and multiscale rep-
resentation schemes may improve the performance of
classical FDD using DL approaches. Therefore, mul-
tiscale DL methods combining the advantages of the
former with those of multiscale representation should
improve the diagnosis results. The developed tech-
niques will provide the grid operators and power sys-
tem designers with significant information to design an
optimal solar PV plant, as well as to manage power
supply and demand. This task aims to develop various
data preprocessing methods in terms of characteristics
and performance. The developed techniques will be
used due to their ability to solve non-linear, dynamic,
and multivariate data structures of PV systems.
• Enhance Data Preprocessing using Multiscale
Representation
Data preprocessing approaches are completely
based on the process data. Therefore, the quality
of the data plays an important role in the accu-
racy of the derived features. It is known that the
measured process data are contaminatedwith noise
that degrades their usefulness in the diagnosis.
Therefore, the measurement noise needs to be fil-
tered to enhance the quality of the extracted fea-
tures. Multiscale data representation is a powerful
data analysis tool that has been effectively used to
enhance the quality of various process data pre-
processing methods [14], [163], [164]. In addition,
multiscale filtering can also be used to further
enhance the data preprocessing accuracy by devel-
oping multiscale data preprocessing techniques.
The developed techniques will be utilized to
enhance the monitoring and diagnosis taking into
account the measurement noise and the dynamics
of the PV systems. Multiscale filtering is an effec-
tive data filtering method. However, pre-filtering
the data before constructing the models may not
provide the desired advantages of multiscale filter-
ing. This is due to the fact that the data pre-filtering
may eliminate some features in the data that are
important to the model [165]. Therefore, data
preprocessing and multiscale filtering need to be
integrated to achieve the desired model accuracy.
One way to do that is to filter the data using mul-
tiscale filtering at different decomposition depths,

construct data preprocessing methods using the
filtered data from each decomposition depth, and
then select the model that provides the opti-
mum prediction accuracy. The proposedmultiscale
data preprocessing technique will combine the
advantages of both multiscale estimation and data
preprocessing.

• Develop Data Preprocessing Methods for Unce-
rtain PV Systems using Interval-Valued Data
Representation and Dimensionality Reduction
New interval data preprocessing approaches can
be developed to deal with uncertainties in PV sys-
tems. In fact, real PV systems are often affected
by different types of uncertainties, mainly due
to the measurement errors and noise, as well
as current and voltage variability. The uncer-
tainty in the model may be addressed by con-
sidering the interval-valued data. The developed
techniques will enhance the above-proposed data
preprocessing approaches by taking into account
the irradiance, current, voltage, and temperature
uncertainties.
Neither measurements nor estimations are 100 %
accurate, so in reality the actual value x∗j (k) of a
variable can deviate from the measured one xcj (k).
The measurement errors are defined as δxj(k) =
xcj (k) − x

∗
j (k). Usually, the sensors manufacturers

provide an upper bound δxj(k) on the measurement
error. Hence, once a measurement xcj (k) is avail-
able, one should know that the actual (unknown)
value x∗j (k) of the measured variable belongs to the
interval x∗j (k) = [x−j (k) x+j (k)], where x

−

j (k) =
xcj (k)− δxj(k) and x

+

j (k) = xcj (k)+ δxj(k).
An interval valued data [x(k)] refers to a set of
numbers enclosed in an interval on the real line,
usually expressed as [x] = [x−(k) x+(k)], where
x−(k), x+(k) ∈ R and x−(k) ≤ x+(k).
We will start by describing the properties of the
interval-valued variables [166]. An interval-valued
variable [Xj] ⊂ R is represented by a series
of sets of values delimited by ordered cou-
ples of bounds referred as minimum and maxi-
mum: [Xj] = {[xj(1)], [xj(2)], . . . , [xj(n)]}, where
[xj(k)] ≡ [x−j(k), x

+

j (k)] ∀ k ∈ {1, . . . , n} and
x−j (k) ≤ x+j (k). The generic interval [xj(k)]
can be also expressed by a couple {xcj (k), x

r
j (k)}

and that this is a bi-univocal relationship,
where:

xcj (k) =
1
2
(x+j (k)+ x

−

j (k)), (1)

and

xrj (k) =
1
2
(x+j (k)− x

−

j (k)). (2)
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The interval-valued data matrix [X ] is an n×m data
matrix, given by,

[X ] =


[
x−1 (1), x

+

1 (1)
]
. .

[
x−m (1), x

+
m (1)

]
. . .

. . .[
x−1 (n), x

+

1 (n)
]
. .

[
x−m (n), x

+
m (n)

]
 ,

(3)

where x−j (k) ≤ x+j (k) for all k = 1, 2, . . . , n and
j = 1, 2, . . . ,m.
Two Euclidean Distance (ED)-based interval-
valued data can be developed to remove the
irrelevant and redundant samples during the data
preprocessing task.
The use of interval-valued data is motivated by the
need of size reduction of massive datasets in some
applications. An interval-valued variable [xj,k ], can
be determined using a lower and upper bound
[167], such as [xj(k)] = [x j,k , x j,k ], where k ∈
{1, . . . ,N }, x j,k ≤ x j,k , and N is the number of
samples.
Given an N × m classical training data matrix X ,
where m is the number of variables and N is the
number of samples, the interval datamatrix [X ] can
be constructed as per:

[X ] =


[
x1,1, x1,1

]
. .

[
x1,m, x1,m

]
. . .

. . .[
xN1, xN ,1

]
. .

[
xN ,m, xN ,m

]
 (4)

where, the lower XL and upper XU bound matrices
are respectively defined by:

XL =


x1,1 . . x1,m
. . .

. . .

xN ,1 . . xN ,m

 (5)

XU =


x1,1 . . x1,m
. . .

. . .

xN ,1 . . xN ,m

 (6)

The interval-valued variable [xj,k ] can be also
expressed by a couple {xcj,k , x

r
j,k )}.

The center xcj,k of the interval is given by:

xcj,k =
1
2
(x j,k + x j,k ) (7)

and the range xrj (k) of the interval is defined by:

xrj (k) =
1
2
(x j,k − x j,k ) (8)

In this case, the center and range matrices are
respectively defined by:

X c =
1
2


x11 + x1,1 . . x1m + x1,m

. . .

. . .

xN ,1 + xN ,1 . . xN ,m + xN ,m

 (9)

X r =
1
2


x11 − x1,1 . . x1,m − x1,m

. . .

. . .

xN ,1 − xN ,1 . . xN ,m − xN ,m

 (10)

By the concatenation of the center and range matri-
ces, the new data matrix XCR can expressed by:

Xcr =
[
Xc Xr] (11)

2) Enhance Deep Network Design in Deep Learning
The representation learning of features can help in
reducing the structure of the DL model, and the
data regularization processing for specific tasks can
improve the performance of FDD. The application of
reasonable professional knowledge and prior informa-
tion helps to reduce the complexity of the process mon-
itoring model and improve the diagnosis performance.
Moreover, the performance of DL-based FDD mainly
relies on the historical data. Although historical data
contains the operating mechanism of complex systems,
PV systems are dynamic production processes and the
latest changes in the current operating state also include
the cumulative relevance of the production process. The
rapid/accurate analysis and effective simplification of
the online data to achieve the incremental learning of
complex dynamic system models and parameter adap-
tation is in fact a challenging and difficult task. In addi-
tion, several challenges may have an impact on the
FDD results using DL-based approaches. In general,
the DL approaches based FDD are built using default
parameters and it is yet to investigate how the param-
eter variations affect these approaches. Consequently,
the DL based on optimal parameter selection for diag-
nosing faults can be developed. The parameters to be
optimized include the number of hidden layer nodes
and the activation function for extracting features and
reconstructing inputs. This task reduces the require-
ments for research experience during parameter tuning
and avoids the need for tedious manual tuning. More-
over, the optimized DL model can achieve improved
diagnosis performance. The optimization tools includ-
ing Orca Optimization Algorithm (OOA), Particle
SwarmOptimization (PSO), Genetic Algorithms (GA),
and Multi-Objective Optimization (MOO) will be
employed to optimize the DL parameters.

3) Enhance Decision Making in Deep Learning
In PV systems, the significant faults affect consider-
ably the system performance. However, small faults
are also very likely to cause a considerable damage.
Thus, DL-based algorithms, merging faults with differ-
ent characteristics, can be developed. Moreover, clas-
sical DL algorithms are generally utilized to model
the dynamic nature of multivariable PV systems in
both the offline training and online updating phases
using the newly arrived measurements. Instead, using
the online extensions of DL models for diagnosis
may reduce the training and update time. In addition,
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complex PV systems often have problems such as
uncertainty and multiple fault concurrency. If only a
single FDD technique is used, the accuracy and gen-
eralization will be low. Thus, combining multivariate
statistical analyses (such as PCA and kernel PCA),
signal processing (such as Fourier transform, multi-
scale representation, interval-valued data representa-
tion), and other tools with DL models could improve
the performance of FDD and more specifically the
decision-making accuracy. It could also reduce the
impact of noise, outliers, and uncertainties, and esti-
mate the severity of the fault location. It has been
shown in [168] that the introduction of selected fea-
tures using PCA in the DL classifiers (i.e. NN and
RNN) enhances the classification accuracy compared
to conventional raw data-based classifiers. However,
in the analysis, we assumed that the features were
extracted and selected using a linear PCA, and the PV
faults were classified using classical DL classifiers.
There are different ways to enhance the performance
of the techniques developed in [27]. To solve the main
problem of the linear characteristics of the PCA in
high-dimensional spaces, the kernel PCA (KPCA) will
be applied to extract high-order statistical informa-
tion in the DL parameter space. Although KPCA can
extract nonlinear features in high-dimensional spaces,
it increases the space and time complexity compared to
PCA. To improve the use of KPCA, reduced extensions
will be proposed. The reduced KPCA (RKPCA) uses
different dimension reduction metrics (such as Kmeans
metric, Hierarchical K-Means Clustering, Euclidean
distance) so that only the effective samples are selected
and applied to build the KPCA model. To address the
problem of uncertainties in the PV systems, interval
RKPCA models will be also proposed.

4) Develop Enhanced Multiple Deep Learners
The last task in FDD is to build a learner model. For
this purpose, an enhanced DL technique can be devel-
oped. The developed technique that merges different
learners should improve the diagnosis performance.
In this task, a novel design optimization technique
based on multiple deep learners, which includes the
above improvements (Tasks 1-3), can be developed.
In this technique, a hybrid method incorporating mul-
tiple deep learners that fits high-level information will
be deployed. However, the diagnosis accuracy is based
on the weighting factors linking the deep learners.
Thus, an optimal selection procedure of the weighting
factors is required to further improve the FDD perfor-
mance of the deep learner. The optimization problem is
addressed so that the miss-classification and execution
time are jointly minimized. Therefore, an enhanced
multiple deep learnermethodwill be proposed to obtain
better diagnosis ability compared to classical stan-
dalone deep learners. The developed technique will
contribute to the reduction of the overall diagnosis error

and will have the ability to combine various models.
To do that, multivariate and dynamic features will
be considered in designing multiple learning models.
Classical multiple models ignore the time-dependence
of PV measurements. However, the PV system data are
frequently time-correlated. Accordingly, the dynamic
and multivariate nature of the measurements will be
considered when designing the prediction models by
using multivariate and dynamic techniques (such as
PCA, kernel PCA, and Dynamic kernel PCA).

V. CONCLUSION
Data-based fault detection and diagnosis (FDD) is an effec-
tive solution towards high performance and reliability PV
systems. The most well-known data-driven methods are deep
learning (DL) approaches. Therefore, this paper discussed
the DL-based FDD in PV systems. In the present review
paper, the DL-based FDD have been classified into five cate-
gories: FDD based on convolutional neural network (CNN),
FDD based on recurrent neural network (RNN), FDD based
on stacked auto encoder network (SAEN), FDD based on
deep belief network (DBN) and FDD based on deep transfer
learning (DTL), where their main advantages and drawbacks
were indicated. Finally, the topic has been studied at three
levels including data preprocessing, deep network design, and
decision-making module. Furthermore, other FDD solutions
have been proposed by considering uncertainties, complexity,
multivariate and dynamic natures of industrial systems. The
biggest advantage of the DL-based FDD algorithms is their
capability to learn high-level features from data in a high-
order, non-linear, and adaptive manners. Because of this pow-
erful feature representation learning effectiveness, intelligent
FDD techniques become more effective. Although DL-based
FDD has greatly promoted the development of the diagnosis
research field, it is relatively considered as a new concept and
further in-depth investigations are required.
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