IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received August 2, 2021, accepted August 18, 2021, date of publication September 7, 2021, date of current version September 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3111008

A Performant Protocol for Distributed
Health Records Databases

MICAEL PEDROSA “1:2, RUI LEBRE “12, AND CARLOS COSTA"'!

Unstitute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, 3810-193 Aveiro, Portugal
2Faculty of Computer Science, University of A Corufia, 15405 A Coruiia, Spain

Corresponding author: Rui Lebre (ruilebre @ua.pt)

This work was supported by the National Funds through the FCT—Foundation for Science and Technology under Project
UIDB/00127/2020.

ABSTRACT Electronic Health Records (EHR) have a distributed nature and can be managed by distinct
affinity domains. Sharing patient health information across distinct organisations helps to deliver a well-
informed diagnosis, improving the quality of healthcare service. The federation of those information systems
can take the form of a distributed database where data are partitioned and possibly replicated across
distinct computational systems. However, the benefits of having a distributed system, such as consistency,
availability, and data protection, are mostly absent. This article proposes a distributed database consensus
protocol designed to improve the performance of EHR insertion operations, a particularly critical issue in
medical imaging cases due to the data volume. It explores the personal and non-transferable nature of EHR
and the proposed methodology reduces the data contention through data isolation, improving the overall
retrieval performance and detection of misbehaving parties. Furthermore, the proposal follows the recent
European General Data Protection Regulation (GDPR), which states that appropriate mechanisms should be
used in order to protect data against accidental loss, destruction, or damage, using appropriate technical or
organisational measures.

INDEX TERMS Blockchain, consensus protocol, distributed ledger, distributed databases, electronic health

records.

I. INTRODUCTION

The proliferation of medical imaging acquisition equipment
and the introduction of new modalities with high temporal
and space resolution has resulted in a data explosion crisis
in healthcare institutions [1], [2]. This presents a challenge
for storage [3], data flow, security [4], interoperability [5]
and document sharing. Health records are increasingly elec-
tronic but are often still trapped in silos. Teleradiology [6]
is becoming an important model to access Electronic Health
Records (EHR) anywhere, at any time and through any
device. Providing direct access to these records will not
only be a right under the most recent European legisla-
tion (i.e. GDPR'), but it can also improve collaboration
between physicians and researchers. Computer-Aided Diag-
nosis (CAD) systems and annotation platforms [7]-[9] could
benefit greatly from easily shareable EHR, and consequently
relieve the burden on physicians already in short supply [10],

The associate editor coordinating the review of this manuscript and

approving it for publication was Gang Wang
IGDPR: https://gdpr-info.eu

125930

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

especially in mass screening programs where disease cov-
erage is low. However, for such a scenario to emerge, it is
necessary to provide a good foundation for EHR to be avail-
able in many different organisations, in a GDPR-compliant
manner [11].

The main goal is to lay down the foundation for high
throughput, high availability and secure federation for health-
care records, and in particular for medical imaging, which
represents an extreme scenario due to the volume of data pro-
duced. Fig. 1 presents the architecture overview for the main
scenario of image storage and retrieval. The usual data flow
is to collect images from acquisition devices (X-Ray, MRI,
CT, etc.) commonly denominated as modalities, store them
in a Picture Archiving and Communication System (PACS)
and later retrieve them from visualisation workstations. Our
goal is to provide a similar scenario under a federation of dis-
tributed parties where records of the same patient, held by dif-
ferent organisations, are merged in the same system. The final
system can be seen as a distributed database where patient
medical imaging data are partitioned and possibly repli-
cated across distinct computational systems. In a single-client

VOLUME 9, 2021

https://orcid.org/0000-0003-4155-6147
https://orcid.org/0000-0002-3230-0732
https://orcid.org/0000-0002-2707-5331
https://orcid.org/0000-0001-5859-3724

M. Pedrosa et al.: Performant Protocol for Distributed Health Records Databases

IEEE Access

Patient Centric Records

(% UDI / PID [-]
[1] [2] [c] [r] BFT-PNT

Client API

X-Ray

MRI
Write-Only

WorkStation
Read-Only

FIGURE 1. A scenario with two types of clients. Write-only X-Ray and MRI
devices, and a read-only visualisation workstation. These clients write
and read patient’s records through a federation of BFT-PNT parties.

database, a client can modify the database without concern
about other users modifying the same data at the same time.
However, in a multi-client database, simultaneous transac-
tions can try to update the same data at the same time leading
to write contention or busy state (performance impacts). So,
it is vital to control data concurrency and data consistency to
produce meaningful and consistent results.

This article proposes and specifies a Byzantine Fault
Tolerant (BFT) [12] consensus protocol for Personal and
Non-Transferable records (BFT-PNT), which optimistically
assumes that clients are aware of their own transactions and
optimises the write contention issue in the EHR context.
Under normal conditions the protocol should work as a repli-
cation mechanism with minimum overheads and, in the case
of client failures, it works mostly as a protection and recovery
mechanism. The BFT-PNT protocol is the primary founda-
tion for the proposed system architecture, providing some
advantages over more generic BFT protocols due to the nature
of the EHR data and the specificity of the protocol. The BFT-
PNT features can leverage existing PACS workflow manage-
ment [13] and cloud-based frameworks [14] as a source of
reliable and secure data. It is expected to be competitive due
to its low contention.

In the validation section we have set feasibility tests that
show the results for inserts/updates and retrieval operations,
as well as a Tendermint? comparison of transactions through-
put and latency.

Il. BACKGROUND
In healthcare many small-medium institutions do not have
the resources or specialists to be able to review all kinds
of modalities and are forced to contract external services,
resulting in EHR being spread over distinct organisational
domains. Moreover, data outsourcing to the cloud alleviates
institutions from the burden of local storage and maintenance
while providing high availability and scalability [15].
Several reports in the literature are related to distributed
PACS issues, including studies about the performance of
DICOM routing and cache mechanisms [16], leveraging

2Tendermint: https://www.tendermint.com

VOLUME 9, 2021

cloud services to reduce IT infrastructure and improv-
ing availability [17] or scaling to big data [18]. Efforts
are also being made to provide cross-enterprise document
sharing (XDS) in the Integrating the Healthcare Enter-
prise (IHE) initiative. However, there are concerns about data
integrity [19] and security [20] within third-party providers.
Moreover, distributed architectures may be a good fit to
improve disaster response in healthcare [21]-[24] and also
to apply different big data processing paradigms, such as
MapReduce [25].

Cloud providers are commonly seen as ‘‘honest-but-
curious” [26]. To protect data in those environments, some
common methods include, searchable encryption [27]—[29]
and pseudonymity [30], [31] schemes. Nevertheless, high
availability through fault tolerance is only within the reach
of some distributed technologies. Healthcare is evolving from
traditional to more robust and distributed solutions with peo-
ple encouraged to put their personal healthcare data into cloud
applications [32], [33]. In parallel, distributed ledger tech-
nologies (DLT) are being increasingly adopted to exchange
patient data [24], [34]; build Healthcare Data Gateways [35]
prevent scattered information throughout multiple healthcare
systems; integrate distributed health records [36]; secure
patient records [24], [37], and turn the ledger into an auto-
mated access-control manager [38]. Solutions are being stud-
ied? [39]-[42] and deployed to handle the natural difficulties
of decentralised EHR.

A. CONSENSUS PROTOCOLS
Associated with these DLT technologies are very important
Byzantine Fault Tolerant (BFT) consensus protocols [43].
These protocols protect the underlying data from many types
of faults, such as node failures, dishonest and misbehav-
ing nodes, network partitions or even predictive failures
due to maintenance. Several consensus protocols and vari-
ants are available in the historical bibliography [44]-[46].
These sometimes proved to be more difficult to implement
than originally anticipated [47] and even harder if byzantine
faults [12] are considered. Any byzantine consensus solution
must comply with two basic conditions in the presence of ¢
faulty processes up to 3¢ + 1 total processes: the finalisation,
where every non-faulty processes eventually chooses an irre-
versible decision value for the transaction; and agreement,
where the decision value is unanimous for every non-faulty
process related to the same transaction. Classic distributed
consensus protocols fall into two major categories:
Leader-Based is defined when a leader is selected on the
network to decide what transactions are to be committed, such
as RAFT [45], [48]. In this way, concurrent transactions are
resolved at one central point. Leader election is an expensive
process, but it is supposed to be a rare occurrence. Networks
of this type are moderately fast, around 10000 transactions
per second with a latency in the order of 100ms. Yet, due to
the existence of a central decision-maker, pure leader-based

3Medibloc: https://medibloc.org/en

125931

IEEE Access

M. Pedrosa et al.: Performant Protocol for Distributed Health Records Databases

byzantine protocols are not possible and the network is sus-
ceptible to denial-of-service (DoS) attacks.

Vote-Based. These have no leader election, i.e. Hash-
graph [49]. In a rough definition, consensus is determined
when votes from a majority (over 50%) or super-majority
(over 33% for byzantine protocols) are collected. Since there
is no single point of failure, it is resilient to DoS attacks, main-
taining the high availability status. When every vote is known
and confirmed by every other node, byzantine protection is
possible. However, this normally requires O(n?) messages of
n participants and multiple phases (prepare, commit) before
reaching agreement, and thus, pure vote-based consensus
systems have (in general) throughput and scalability issues.

Modern BFT protocols [49]-[52] consider all types of
data and clients as the same, and are not designed to handle
specific cases of data concurrency, storage and retrieval of
big chunks of data, or to collaborate with the client in the
consensus process. The characteristics of EHR, such as being
personal and non-transferable, can provide some optimisation
paths to these protocols. For instance, sequential consistency
and linearisability [53] (cause of major performance impacts)
are not always necessary if records have no change history,
and the client can be trusted to control the sequence of events.
In fact, this is already assumed for DICOM files where acqui-
sition timestamps are part of the content and are provided by
the acquisition device. Furthermore, patient centric records
are isolated from each other and even sessions from the same
patient, making certain concurrency management procedures
unnecessary, unless those records need updates.

B. DATA INTEGRITY

Data integrity is the system’s capacity to maintain data intact
and unaltered throughout its life-cycle. Possible ways of
corrupting data fall into two categories: technical issues and
security flaws. Ledger integrity is maintained by using cryp-
tography, in order to detect incorrect blocks of data (normally
related to security flaws), and by decentralisation, in order
to protect against technical issues. Our proposal uses both
methods to maintain data integrity. In the context of this
article, there are two important concepts related to integrity:

« Data consistency means that each user sees a consistent
view of the data, including visible changes made by their
transactions and those of other users.

« Data concurrency means that many users can access the
same segment of data at the same time in a consistent
view.

Maintaining consistency under data concurrency is the cor-
nerstone of consensus protocols, and in the end, the require-
ment with the biggest impact on read/write contention and
system performance.

C. bicom
DICOM [54] is a standard defined by the NEMA? with uni-
versal level acceptance amongst imaging equipment vendors.

4NEMA: https://www.nema.org

125932

It is used to store and transmit medical images, and includes
simple workflow capabilities, such as the Modality Work-
list [55]. Apart from the pixel data, DICOM files have a rich
metadata structure with patient demographics and a detailed
description of how the image was produced. DICOM was
essentially designed for communication between image sta-
tions, archives and acquisition equipment, with simple query
capabilities and no concerns about data consistency, availabil-
ity and data protection.

When manipulating big chunks of data such as Whole
Slide Imaging (WSI) [56] where an acquisition is split in
thousands of tiles that can reach the Gigabyte scale, we can
leverage the distributed nature and replication mechanisms of
BFT protocols to retrieve different image blocks (or slices)
from multiple parties. However, in BFT environments, each
slice must be individually checked for consistency [57].
Although this methodology can be deployed using existing
protocols by providing simple replication mechanisms in
parallel with the consensus protocol, the proposed approach
additionally simplifies the protocol by adding more elab-
orated client participation. A pre-serialisation mechanism
was added to decide the order of some transactions, already
described in Singh et al. [58]. The main difference is that this
pre-serialisation is provided directly by the client using a
round counter for each client.

IIl. PROTOCOL PRELIMINARIES

This article proposes the BFT-PNT consensus protocol,
which starts by assuming that the client is trustworthy enough
to resolve some consensus conflicts and pre-serialise the
sequence of updates, improving read/write contention. Our
transaction proposer is always the client, with their separate
database and round counter. Each client has their independent
consensus state where records are isolated from each other,
defining those records as personal and non-transferable. From
these assumptions, some optimisations can be made to exist-
ing BFT protocols in the context of EHR and in particular
medical imaging records. Our proposal improves on other
general BFT schemes by adding some semantics into its
architecture, creating a distinction between two types of
transactions:

o Inserts represent the creation of an isolated record.
These transactions are idempotent and non-ordered, and
there are no conflicts or write contentions. Inserts are
performed by direct commits to the database.

« Updates have order and may generate conflicts requir-
ing rounds of proposals and commits until a value is
established.

These are reasonable assumptions due to the described nature
of healthcare records. Order of inserts does not matter (we
trust in the original data timestamps) and there are no interre-
lated data references between records. It was also assumed
that the source of the data (hospitals, clinics, healthcare
organisations) is responsible for the integrity of the submitted
data content. Moreover, we optimistically assume that the pri-
mary workload is provided by inserts and that updates should

VOLUME 9, 2021

M. Pedrosa et al.: Performant Protocol for Distributed Health Records Databases

IEEE Access

be infrequently used. Other characteristics of the proposed
protocol are:

« Update conflicts are explicitly resolved by the client,
minimising the number of consensus messages. With the
help of the client, update transactions can be completed
in two rounds using a minimum of 2¢ 4 1 parties.

o Hash fingerprints provide integrity checks. These are
also used as record identifiers. Incremental integrity
checks of data slices are also provided by the core pro-
tocol, both in storage and retrieval. This can promptly
identify faulty parties and discard them before the whole
data block is downloaded.

« Write-only clients cannot update records without having
access to the original data. Hash fingerprint verification
will fail in such cases. This adds additional protection
against compromised write-only clients.

« Records are not persisted as blockchain structures, and
the “right to erasure” can be supported via adminis-
trative procedures. However, tamper-resistance is still
achieved via digital signatures.

A. DEFINITIONS
Some definitions are needed before describing the system
architecture:

Definition 1: Let Hy (D) — {0, 1} define a deterministic
one-way hash function with pre-image and collision resis-
tance, outputting a ¢ number of bits.

Definition 2 (Liveness): If t is the number of Byzantine
fails allowed, the protocol can only progress with a minimum
of 2t 4 1 parties.

Definition 3 (Conflict): Two or more conflicting updates
are defined for the same client and update index (UDI, I)
with different fingerprints (D1, D>, .., D¢), independently of
the round.

Definition 4 (Consistency): By consistency, we mean that
the most up-to-date finalised commit is always available, and
the commits are retrieved in the same order as the client
submitted them.

Definition 5 (Finalisation): A commit is finalised when
n — t parties or more have the same commit message,
where n—t > 2t + 1. The finalisation is true even if
the client does not receive the set of acknowledges; this
only signifies that the client does not yet know about the
finalisation.

An important note about finalisation and the FLP impossi-
bility [59]. The FLP result states that it is impossible to reach
consensus in a deterministic asynchronous setup. For that
case, the BFT-PNT works in two modes. From the point of
view of the parties it is non-deterministic and asynchronous.
Parties have no time assumptions, and do not know if a
transaction is ever finalised, not being their responsibility.
From the point of view of the client it is deterministic and
synchronous. The client waits for all n — ¢ responses in order
to finalise the transaction.

SGDPR Att. 17: https://gdpr-info.eu/art-17-gdpr

VOLUME 9, 2021

B. SETUP CONDITIONS

Concerning the network conditions, the existence of a quo-
rum of parties Q; with pre-configured (t, n) parameters, net-
work addresses and public keys for each party is assumed,
where n > 2t + 1, and 3¢ + 1 is the minimum necessary
to tolerate ¢ Byzantine failures. Each party is identified by
the public key P; = s; x G. It is assumed that clients
have a unique digital identity (UDI) and an authentication
key pair P, = s; x G. The s,/P, key pair is used as a
simplified mechanism to authenticate in the system, but we
open our model to changes that would not require permanent
asymmetric keys. Instead, ephemeral keys can be used with
other authentication mechanisms such as user/password and
multi-factor authentication (MFA) schemes.

Authorisation procedures are not part of the core proto-
col. However, any extensions to the protocol can be created
by plugging modules capable of intercepting and interpret-
ing the content of the data blocks. In this way, we assume
that such extensions can provide authorisation procedures,
data representation transformations, storage providers, cus-
tom constraint validators, indexation services, etc.

1) COMMUNICATION MODEL

The existence of open channels for broadcast and point-to-
point messaging is assumed, connecting a set of parties P;,
i € [1, n] and a client C. Secure stream channels are provided
by Diffie-Hellman key exchange and symmetric encryption,
assuming that clients already known the public keys of the
parties.

2) FAILURE MODEL

t parties may fail intermittently leaving only a quorum of
usable n — ¢ parties, where 2¢ + 1 is the minimum required
for the protocol to progress.

3) THE ADVERSARY

It is assumed an adversary that can corrupt up to ¢ parties
of the usable quorum n — ¢, learning all the individual state
of the corrupted parties, listen to all messages and deviate
from the protocol in arbitrary ways. Clients are responsible
for maintaining their security.

IV. SYSTEM ARCHITECTURE

This article proposes a vote-based consensus protocol for per-
sonal and non-transferable health records. BFT-PNT is based
on the ideas of Practical-BFT [43], Istanbul-BFT [60] and
Conflict-free Quorum-based BFT Protocols [58] by remov-
ing some features of the protocol and assigning those as
the client’s responsibility. The next sections will describe in
detail the mechanism developed.

A. PROTOCOL MESSAGES

Transmitted messages are specified in the form s-Tx(S),
where s represents the origin of the message corresponding
to a s/P; key pair, T, is the message type T and sub-type x,

125933

IEEE Access

M. Pedrosa et al.: Performant Protocol for Distributed Health Records Databases

and S the transmitted structure representation. These are all
digitally signed with the origin key s. The UDI is the client
identification implicitly present in every message, where
aq/P, is the client’s authorisation key pair and R, is the
respective round for the client. Each message is related with a
genesis data block B where F' = H,(B) is the hash fingerprint
that uniquely identifies the record. The corresponding data
for F may be present at the end of the message, or a stream
channel may transmit it. The public key Py is assumed to be
in the message if the respective implementation requires it (in
order to have all the required fields to verify the signature).

Insert and update messages can have extended data that is
not part of the message signature, such as the data block B (for
small block sizes) and a replica set (R}, where 'R = (P}, 0;)
contains the party replica signature o; for the message. The
main messages are defined as:

Propose (Update) - a-P,(F, P,) with P, = (I, D¢, Ry)
is a proposal that must be submitted and accepted before
committing an update. I is the update order index in relation
to the original data F', Dy = H,(By) is the hash fingerprint
for the updated data block and R, the proposal round number
of the client. By can only be correctly derived if the client has
the most up-to-date block, where By = BU A1 U .. U Ay is
the union of the original B with all delta changes.

Reply (Vote, No-Data, Receiving, Ack) - i-Ry . r.o(F, Oi,
P;, P,?,0;7). These are sent by parties P; in the quorum
index configuration Q; in response to proposals or commits,
referencing the corresponding F data. P, is only needed for
update replies, and o; is the replica signature of the insert or
update message, only used in Ack replies.

Commit (Insert) - a-C;(F, T, S?) with § = (s, {S;}), is a
direct commit to insert a data block. There are no concurrent
or conflicting inserts, and so there is no need to propose the
value. T is the type for the data representation, i.e. DICOM.
S is an optional data slice structure defining the size of each
slice s and {S;} an ordered set of slice fingerprints. These
fingerprints are useful to validate the individual integrity of
each slice.

(Update) - a-C,(F, Q;, P,, {{V}, §?) is an update commit
where the client must collect n — t vote replies to construct
a set of {{V}, where the vote structure 'V = (P;, o;) is
composed of the party P; public key and the signature o; from
the reply vote. The signature is verifiable since the update
message has all the required information to reconstruct the
vote reply. The n — ¢ value should be consistent with the
reported value in the Q; quorum configuration.

Get (Consult) - a-G.(F, I} ?). Requested by the client to
n —t parties to get the most up-to-date committed data block.
I is optional and explicitly specifies the required update
index.

(Retrieve) - a-G,(F, I, i?). Requested via a stream chan-
nel for the selected party that has access to the respective
record F', the update index [; and slice index i. The slice
index is an optional field to balance the retrieve request
through several parties; if not present, the whole data block is
assumed.

125934

Error - i-E(F, E,, I 7, M?). A message to report different
classes of errors. I is only used to respond to updates. The
message includes the error code E. and an optional error
message M.

Expected error codes are:

0: Internal Server Error. For any non-identifiable

error.

1: Unauthorised. To report a non-existent UDI or an

unauthorised client key P,.

2: Invalid Information. To report incorrect signatures,

fingerprints or parameters.

3: Constraint Error. To report failures of custom con-

straints.
Error Handling. Errors cannot usually be handled by the
normal flows of the protocol, although a specified number of
retries should be performed before the failure is considered
unresolved. Errors should be reported to the client user inter-
face if they make sense; otherwise, they should be part of the
local log and reported to a central log repository if available.
Parties should also report logs to this repository.

B. CONSENSUS RULES
Some general rules are:

« Parties should always verify the correctness of digital
signatures before accepting any messages and any fin-
gerprints of the data block.

o Parties should accept concurrent inserts since only
updates can generate conflicts.

o Proposals are assigned to monotonically incremental
rounds, and each client has only one designated round
in an instant of time. However, a client may try to force
the use of an incorrect round.

« Each record has a unique active proposal status or alter-
natively the corresponding vote. Proposals from differ-
ent records do not interfere with each other.

Other specific rules that the BFT-PNT protocol should strictly
obey are:

« Proposals can only be overridden by other proposals of
higher rounds, commits of the same or higher rounds,
or a commit of a lower round with n — ¢ replicas.

o Commits can have concurrent proposals of higher
rounds for the same value.

o Conflicting commits can only be overridden by other
commits of higher rounds.

« An update commit is only valid if it has n — ¢ votes from
different parties for the same proposal.

« Reads should consult n — ¢ parties to get the most up-to-
date commit.

o If a read detects less than n — t replicas for the most
up-to-date commit, it should resume the commit until
it reaches n — t parties before accepting the read as
consistent.

C. SUBMISSION PROTOCOL
All requests are idempotent, i.e. there is no additional
effect if they are called more than once with the same

VOLUME 9, 2021

M. Pedrosa et al.: Performant Protocol for Distributed Health Records Databases

IEEE Access

input parameters. The BFT-PNT protocol has the following
defined procedures:

Common Replies define the state of a data block on the
local storage of a party. A no-data reply requests to submit
the block via a secure streaming channel. A receiving reply
reports that it is receiving the data from other sources and
it will reply with an acknowledge once it is finished. When
such a response is received, the request is re-transmitted via
the streaming channel followed by the data block.

1) SUBMITS

The client initiates a data submission by sending an insert
commit or an update proposal to a randomly selected party
(the coordinator) from the illegible client quorum. The coor-
dinator acts as a forward proxy; however, it may be preferable
to send those requests directly from the client, depending on
the client’s network throughput. Only the original block B or
corresponding Ay is sent through the secure stream channel.
The coordinator replicates the submission and data to other
parties. The client expects to receive n — t acknowledges or
votes (for inserts or updates, respectively). Parties reply with:

« Insert commits are acknowledged if accepted or trigger
a common reply for non-existing data.

o A proposal triggers a new reply vote i-R, (F, Q;, P;, P,?,
0;?) if accepted, a reply vote for an already accepted
proposal (refusing the submitted one) or returns an exist-
ing commit. It triggers common replies for non-existing
data.

2) UPDATE COMMITS

Once the required votes for the proposal are gathered,
the client requests a commit a-C,(F,j, Py, {iV}, S?) from
the coordinator expecting to receive n — t acknowledges,
finalising the commit. These commit proofs are stored with
the data in all parties. If it fails in this phase, the client cannot
conclude that the data is committed, and it must resume the
commit procedure (a different coordinator can be selected).

3) RESOLVING CONFLICTS
When a client identifies a conflict, they should try to resolve
it. Possible conflicts are in the following range:

o The client receives a vote for a different proposal than
the one submitted. The client should increase the round
number to be higher than any received vote and propose
the value with this new round.

o The client gets an existing commit when proposing a
value. If the current round is higher than the received
one, the client can resume the proposal, trying to get a
commit of a higher round and override the existing one.
If there are no illegible n—t > 2t + 1 votes the client
is forced to resume the received commit if not already
finalised.

« The client gets a vote for a higher round proposal when
trying to commit. The client should try to propose the
same value with a higher round. Commits of equal value
will accept this proposal.

VOLUME 9, 2021

4) REPLICATION

Parties that already have commit messages can resend those
messages to other parties with included replicas {/R}. Each
party then proceeds to update the local representation of the
commit message with the new replicas of the received mes-
sage and reply with an acknowledge i-R,(F, Q;, P;, P,?, 0;).
The reply is then used to construct a replica ‘R = (P;, 0;)
to update the original commit message. A replication process
can receive common replies from other parties if it lacks the
data block. Replication may fail due to a conflict with the
local state. Conflict resolution should be made as follow:

o If it conflicts with an existing local commit of higher
round it should reply with the local commit. In this pro-
cess, parties having the most up-to-date commits should
win the replication process.

« If it conflicts with an existing local proposal of higher
round it should reply with the current vote for that
proposal. If n—¢ commit conflicts are received, the party
should accept the commit as finalised and reply with an
acknowledge.

D. RETRIEVING PROTOCOL

All received data should be verified against the fingerprints
(F or {S;}) of the corresponding requested commit. Invalid
fingerprints should be reported with an invalid information
error.

1) CONSULT

The client starts by sending a get-consult a-G.(F, I};?) ton—t
parties to get the most up-to-date commits (inserts or updates)
for F, expecting to receive the same number of replies. A no-
data reply or only one up-to-date commit may be received if
there are byzantine failures.

2) RETRIEVE

The client selects the most up-to-date commits and opens
secure stream channels to any chosen number from these
chosen parties. The whole data or selected slices are requested
via get-retrieve. Note that, although the client may start to
retrieve the data immediately after identifying the correct
party, they should not consider the commit as finalised until
seeing n — t consistent commits for that data.

Clients may try to force the commit finalisation to acceler-
ate the retrieve process. Even clients that are not the original
creators of the commit messages can try to force finalisation,
which can be done by just replicating the already existing
commits. Clients should also check the integrity of individual
slices; if any of those checks fails, the client can select another
eligible party to get the corresponding slices.

E. QUORUM MANAGEMENT

The quorum configuration is maintained in a special store
uniquely identified by the “admin™ UDI in a record type
“quorum”’. This configuration is set for the first time using
an insert to that store containing ¢ and a set of party

125935

IEEE Access

M. Pedrosa et al.: Performant Protocol for Distributed Health Records Databases

configurations {(P;,‘A)}, with the public key P; and the
network address ‘A. The size of the set corresponds to .
Changing the quorum is done by an update with a proper
client authorisation, as in any other record.

Each store maintains a quorum state with a record of the
same type referencing the update index of the original quorum
configuration. This defines the quorum configuration of the
store. A submitted proposal can only be accepted if the store is
referencing the last quorum index, otherwise it is considered
“out of sync”. This error state is resolved by updating the
quorum index; however, the proposed quorum change is only
accepted if all existing commits are already replicated to n—¢
parties. The process may lock the storage momentarily, but
this is minimised since it is not a global database lock, and
many stores may already have all the commits replicated.

Only proposals can disrupt data consistency by trying to
create concurrent commits that are not supposed to exist.
Those inconsistent commits can be created if there are enough
gaps in the new quorum to obtain n — ¢ proposals. The
replication process fulfils those gaps with existing commits,
preventing those proposals from being accepted. In this case,
it is essential that commits are still accepted in ““‘out of sync”
states and for old quorum indexes. These types of messages
can be sent as part of an unfinished replication process.

V. ANALYSIS OF CORRECTNESS

This section describes a proof of correctness for the BFT-PNT
protocol by proving the consistency of inserts, updates and
reads with a set of lemmas and theorems. These proofs will
be set first on a static quorum of » parties and then extended
to handle (n, t) quorum changes.

A. UNDER A STATIC QUORUM

Lemma 1: Inserts cannot provoke inconsistent states if the
one-way hash function is assumed to be preimage and colli-
sion resistant.

Proof: As previously defined, records are isolated from
each other. From the lemma assumptions, if the F, finger-
prints are distinct, inserts belong to different records. Records
may refer to other records but this is part of the data content
(not the protocol), and it is the client’s responsibility to verify
if foreign references are already finalised.

Lemma 2: On a set of n parties, there cannot be two
concurrent commits of the same round.

Proof: A commit requires n — t consistent votes of the
same round. In the presence of ¢ dishonest parties there are
(n — t)—t = n — 2t honest proposals for the current round
and commit. A second commit has (n) — (n — 2t) = 2t
free parties without proposals, but it will always require to
increase the round to override the proposal of the missing
party and acquire the minimum of 2¢ 4 1 votes.

Lemma 3: Once a commit is finalised, it is not possible to
create a second concurrent commit of a higher round.

Proof: From lemma 2 one can also conclude that there
are at most 2¢ parties without the finalised commit. Since
proposals cannot override commits, there is no way to get the

125936

minimum of 2¢ 4+ 1 proposals to emit a commit of a higher
round.

Lemma 4: A set of t dishonest parties cannot force the
finalisation of multiple concurrent commits.

Proof: In a total set of P" parties where n > 3r + 1,
t parties can split this set in honest O and dishonest D sets
of optimal sizes 0"~% + D' + O0' = P". The dishonest set
D' is only able to finalise commits for the joining partition
D' + 0" 2 = A" and from lemma 2 the O"~% partition
must have the higher round of honest proposals. From the
finalisation lemma 3, it is not possible to create a concurrent
commit from the O’ + D' = B partition, since the minimum
is2t + 1.

Theorem 1: The client or any dishonest party cannot force
an incorrect round to make the protocol progress to an incon-
sistent state.

Proof: From lemma 1, there are no round parameters
to use in inserts. From lemmas 2, 3 and 4 one can conclude
that, even if a client or party forces an incorrect round, only a
commit with a higher round can win the conflict forcing the
abortion of all other concurrent commits.

Theorem 2: Consistent updates are guaranteed if the
client always uses n — t parties to finalise the update.

Proof: If two conflicting updates (D1, D) for the same
index I; are both to be committed, there must be at least (2¢ +
1) + (2t 4+ 1) = 4t + 2 proposals of the same round, a value
out of the range of lemma 2.

Theorem 3: Consistent reads are guaranteed for finalised
commits if the client consults n — t parties.

Proof: 1t is easily seen that, in a configuration of n >
3t + 1 tolerating a ¢-partitioned network and z-dishonest
parties, since the finalised commit is replicated to n— parties
by removing all the failures we get (n —) — 2t = 3t.
At least one honest party from the 3¢ + 1 set has the most
up-to-date commit. That party should respond to the client
get-consult and should be selected to retrieve the correct data
block. It should also be able to proceed with the replication
process to other working parties.

B. EXPANDING TO QUORUM CHANGES
Theorem 4: A change in n does not affect the finality of
existing commits.

Proof: Let the new configuration be n, = n; + x.
From lemma 4, ¢ dishonest parties can divide the quorum
into 072 + D' + O 0"~ 4+ D' + O™ where
O™~2 are the honest parties that have the commits from
the n; configuration. Dishonest parties can try to finalise
an inconsistent commit for the joining partition D' + O'**,
resulting in 2¢ +x = 2t + (np —np). Butsince 2t +x > 2t + 1
should always be true, a value of x < 1 does not produce an
effect. For the minimum n; > 3t + 1then 2t +x = np—t — 1
is one less than necessary to emit a conflicting commit, and
so the x change does not affect the original proof of lemma 3.

Theorem 5: A change in t does not affect the finality of
existing commits as long as the replication is finished to the
new configuration.

VOLUME 9, 2021

M. Pedrosa et al.: Performant Protocol for Distributed Health Records Databases

IEEE Access

Proof: Let the new configuration be t, = #; &= x. In the
transition phase #; is maintained and theorem 4 holds. The
new configuration is activated when n — t; > 2¢; + 1 parties
vote in the migration, which assures that old commits are
replicated to n—t, > 2, + 1 before the new quorum is active,
maintaining the finality of existing commits.

Theorem 6: A change int cannot finalise multiple conflict-
ing commits.

Proof: Let the new configuration be 1, = #; + x. If ¢
dishonest parties divide the quorum into two non-finalised
conflicting commits 0" 21~ 14 ph+l L oh = gn—20+2x—14
D2=**1 4 02~ Then the joining partitioning should be
2t) —2x + 1 > n — tp. For the minimum n > 3#, + 1, the last
equation is reduced to —2x > 0. Then we must have x < 0 to
produce an effect, but this means that the other partition with
n — 2ty + 2x — 1 cannot finalise. We can generalise this to
multiple conflicts since the requirements are higher than for
two conflicting commits.

VI. VALIDATION
This section describes the performance evaluation that was
carried out for a prototype implementation of BFT-PNT pro-
tocol. The report assumes the optimistic case where all nodes
are behaving honestly. This validation aims to prove the
feasibility of the protocol scheme under low contention.

Implementation details. A prototype implementation® of
the BFT-PNT protocol was developed in Xtend/Java. We used
the Ed25519 signature primitive and the SHA-256 hash func-
tion for fingerprints from the bouncycastle’ library. Messages
are delivered via UDP channels using the netty.io® library.
Stream channels or encrypted transmissions are not imple-
mented in this prototype.

Unit tests are available at the bft4pnt .test package
to verify the correct implementation of the consensus rules,
replication process and quorum evolution.

A. EVALUATING FEASIBILITY

We carried out validation tests using a machine equipped
with a Intel i7-7700HQ CPU with 4 physical cores
and 16GB of memory. Storage is simulated in memory,
and therefore the validation has high memory require-
ments. Network latency is not taken into account. The
results from this section were performed by running
the scripts testTransactions.sh <n-parties>
<batch-size> and testRetrieves.sh
<n-parties> <file-size>.

1) TRANSACTIONS FROM INSERTS VS UPDATES

Distinctive tests were performed for inserts and updates
in 4, 16 and 64 database nodes for 1024, 2048, 4096, 8192,
16384 transactions (inserts and updates). The average results
of 5 runs are depicted in Fig 2 and Fig 3. These runs are

6Source code: https://github.com/shumy-tools/bft4pnt
7Bouncycastle: https://www.bouncycastle.org
8Netty.io: https://netty.io

VOLUME 9, 2021

H: E6 W6
1000

/s

1024 2048 4096 8192 16384

Nurnber of Inserts

FIGURE 2. Transactions per second for the corresponding number of
inserts in 3 distinct configurations: 4, 16, and 64 node instances.

I R R
400

300

200

/s

100

1]
1024 2048 4096 8192 16384

Number of Updates

FIGURE 3. Transactions per second for the corresponding number of
updates in 3 distinct configurations: 4, 16, and 64 node instances.

performed under synchronisation constraints; transactions
are performed sequentially waiting for finalisation before
initiating the next transaction. This means transactions are
defined as a full round trip to n servers.

The results show a clear distinction in throughput between
inserts and updates. The throughput does not significantly
change with the number of transactions (as expected),
although it is more stable at 16 and 64 nodes, most prob-
ably due to the Ed25519 signature verification impact that
grows with the number of nodes. In a code profile evaluation,
we found that the Ed25519 signature verification has the
most significant impact on performance, occupying 36% of
the running time for inserts and close to 50% for updates,
with an average of 4818 ops/s, reflecting a more accentuated
variance in Fig 2. Other Ed25519 implementations such as
Tink” have reports of 5065 ops/s, and would not be much of
an improvement.

2) RETRIEVES FROM SINGLE VS SLICED BLOCKS
Retrieve tests were also performed from single source vs

sliced files from 4 and 8 different data sources and for differ-
ent file sizes, 100, 200, 400, 800 and 1600 MB. A network

Hi gh-performance Ed25519 and X25519 cryptography comes to Nimbus
JOSE+JWT: https://connect2id.com/blog/nimbus-jose-jwt-6

125937

IEEE Access

M. Pedrosa et al.: Performant Protocol for Distributed Health Records Databases

speed constraint was imposed at 10MB/s per connection
to avoid congestion of the local interface and CPUs. The
average results of 5 runs are shown in Table 1. There is
an expected difference between sliced and non-sliced (sin-
gle) block retrieves with a small distance to the theoretical
limit. This is what happens in general since there are other
overheads to take into account in real implementations (flow
control, concurrent disk writes, etc). In our local test, we are
also limited in the number of physical cores for all running
threads, both for the node parties and the client, meaning we
have at least 2 * n threads heavily processing data.

TABLE 1. Average throughput of file retrieve at MB/s for 100MB, 200MB,
400MB, 800MB, 1600MB file sizes, using single vs sliced retrieve protocol
for 4 and 8 nodes. Avg. displays the average of all columns. The fold
column compares the throughput to the single slice retrieve.

| | 100 | 200 | 400 | 800 | 1600 | Avg. | Fold |

Single | 9.6 9.5 9.6 9.5 9.5 9.6 1
Sli.4 | 40.0 | 383 | 356 | 355 | 374 | 374 | 391
SL.8 | 739 | 779 | 76.8 | 69.1 | 72.8 | 741 | 1.76

B. TENDERMINT COMPARISON

For a simplistic comparison with a blockchain BFT case,
a benchmark was set for Tendermint version 0.31.5 on one
node using tm-bench -T 100 -r 100000, pushing
for the maximum allowed transactions in 100s. Tendermint
was setup with tendermint testnet -v <nodes>
for 1, 4 and 8 nodes. The Tendermint setup did not run
for a 16 local node configuration. Transactions throughput
and latency are shown in Tables 2 and 3 respectively. The
BFT-PNT runs were done with the average number of trans-
actions from the tm—bench output (using only inserts).

TABLE 2. BFT-PNT vs Tendermint comparison of average transactions
throughput per second for 1, 4, and 8 database nodes.

1 4 ‘ 8
BFT-PNT 1820 | 988 | 548
Tendermint | 2630 | 714 | 330

TABLE 3. BFT-PNT vs Tendermint comparison of transactions latency in
ms for 1, 4 and 8 database nodes.

| 48
BFT-PNT 0.55 1.01 1.82
Tendermint | 1961 | 4545 | 7692

Existing blockchain techs use mined blocks with batches
of transactions, and some benchmarks do not consider the
signature overhead. This aggregation artificially raises the
transaction throughput at the cost of worse latency. To be fair,
our measured performance should be compared with mined
blocks throughput; however, this is not always possible to

125938

control. BFT-PNT commits are set after receiving (n — t)
acknowledges, where Tendermint commits are only finalised
after the block is completed. This difference is noted in the
discrepancy of the latency results. Nonetheless, BFT-PNT
achieves a gain of 1.4 times for 4 nodes and 1.7 times for
8 nodes in a scenario of low write contention.

VII. CONCLUSION

This article proposes a distributed database consensus proto-
col to improve the performance of EHR insertion operations.
The proposed methodology is able to extend the nature of
distributed EHR and improve consistency, availability, and
data protection. The proposal adds custom semantics to the
traditional Byzantine Fault Tolerant consensus protocols to
optimise specific use-cases. Moreover, it can maintain con-
sistency checks of individual data slices in a Byzantine setup,
meaning that an inconsistent slice from a misbehaving node is
promptly detected before the final aggregation and with the
extra advantage of improving the performance of retrieves.
The evaluation process demonstrates the feasibility of the
proposed approach and moderate gains on 4 and 8 nodes
in transaction throughput and considerable gains in latency.
Furthermore, our data slice scheme can retrieve files close to
the theoretical limit in relation to the number of slices.

REFERENCES

[1] S. Kothari, J. H. Phan, T. H. Stokes, and M. D. Wang, “‘Pathology imaging

informatics for quantitative analysis of whole-slide images,” J. Amer. Med.

Inform. Assoc., vol. 20, no. 6, pp. 1099-1108, 2013.

S. Shilo, H. Rossman, and E. Segal, “Axes of a revolution: Challenges and

promises of big data in healthcare,” Nature Med., vol. 26, no. 1, pp. 29-38,

Jan. 2020.

[3] K.H.Lee, H.J.Lee,J. H. Kim, H. S. Kang, K. W. Lee, H. Hong, H. J. Chin,

and K. S. Ha, “Managing the CT data explosion: Initial experiences of

archiving volumetric datasets in a mini-PACS,” J. Digit. Imag., vol. 18,

no. 3, pp. 188-195, Sep. 2005.

M. Meingast, T. Roosta, and S. Sastry, “Security and privacy issues with

health care information technology,” in Proc. Int. Conf. IEEE Eng. Med.

Biol. Soc., Aug. 2000, pp. 5453-5458.

[5] S. Schulz and C. Martinez-Costa, ‘““How ontologies can improve semantic

interoperability in health care,” in Process Support and Knowledge Rep-

resentation in Health Care. Cham, Switzerland: Springer, 2013, pp. 1-10.

P. Ross, R. Sepper, and H. Pohjonen, “Cross-border teleradiology—

Experience from two international teleradiology projects,” Eur. J. Radiol.,

vol. 73, no. 1, pp. 20-25, Jan. 2010.

M. Pedrosa, J. M. Silva, J. F. Silva, S. Matos, and C. Costa, “SCREEN-DR:

Collaborative platform for diabetic retinopathy,” Int. J. Med. Informat.,

vol. 120, pp. 137-146, Dec. 2018.

R. Lebre, R. Jesus, P. Nunes, and C. Costa, ““Collaborative framework for a

whole-slide image viewer,” in Proc. IEEE 32nd Int. Symp. Comput.-Based

Med. Syst. (CBMS), Jun. 2019, pp. 221-224.

R. Lebre, E. Pinho, J. M. Silva, and C. Costa, “Dicoogle framework for

medical imaging teaching and research,” in Proc. IEEE Symp. Comput.

Commun. (ISCC), Jul. 2020, pp. 1-7.

[10] D. C. Goodman and E. S. Fisher, “Physician workforce crisis? Wrong
diagnosis, wrong prescription,” New England J. Med., vol. 358, no. 16,
pp. 1658-1661, Apr. 2008.

[11] E. Chukwu and L. Garg, “A systematic review of blockchain in health-
care: Frameworks, prototypes, and implementations,” IEEE Access, vol. 8,
pp. 2119621214, 2020.

[12] L.Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382-401, Jul. 1982.

[13] J. R. Almeida, T. M. Godinho, L. B. Silva, C. Costa, and J. L. Oliveira,
“Services orchestration and workflow management in distributed medical
imaging environments,” in Proc. IEEE 31st Int. Symp. Comput.-Based
Med. Syst. (CBMS), Jun. 2018, pp. 170-175.

2

—

[4

[l

[6

—

[7

—

8

[l

9

—

VOLUME 9, 2021

M. Pedrosa et al.: Performant Protocol for Distributed Health Records Databases

IEEE Access

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

W. Lin, W. Dou, Z. Zhou, and C. Liu, “A cloud-based framework for
home-diagnosis service over big medical data,” J. Syst. Softw., vol. 102,
pp. 192-206, Apr. 2015.

G. Hayes, K. El-Khatib, and C. McGregor, ““Supporting health informatics
with platform-as-a-service cloud computing,” in Advanced Technologies,
Embedded and Multimedia for Human-Centric Computing. Dordrecht,
The Netherlands: Springer, 2014, pp. 1149-1158.

T. M. Godinho, C. Viana-Ferreira, L. A. B. Silva, and C. Costa, ‘A routing
mechanism for cloud outsourcing of medical imaging repositories,” IEEE
J. Biomed. Health Informat., vol. 20, no. 1, pp. 367-375, Jan. 2016.

L. A. B. Silva, C. Costa, and J. L. Oliveira, ‘A PACS archive architecture
supported on cloud services,” Int. J. Comput. Assist. Radiol. Surg., vol. 7,
no. 3, pp. 349-358, May 2012.

C. T. Yang, J. C. Liu, and S. T. Chen, “Implementation of a big data
accessing and processing platform for medical records in cloud,” J. Med.
Syst., vol. 41, no. 10, p. 149, 2017.

L. Zhou, A. Fu, S. Yu, M. Su, and B. Kuang, ““Data integrity verification
of the outsourced big data in the cloud environment: A survey,” J. Netw.
Comput. Appl., vol. 122, pp. 1-15, Nov. 2018.

S. Subashini and V. Kavitha, “A survey on security issues in service
delivery models of cloud computing,” J. Netw. Comput. Appl., vol. 34,
no. 1, pp. 1-11, 2011.

H. Bala, V. Venkatesh, S. Venkatraman, and J. Bates, ‘If the worst happens:
Five strategies for developing and leveraging information technology-
enabled disaster response in healthcare,” IEEE J. Biomed. Health Infor-
mat., vol. 20, no. 6, pp. 1545-1551, Nov. 2016.

A. Shahnaz, U. Qamar, and A. Khalid, “Using blockchain for electronic
health records,” IEEE Access, vol. 7, pp. 147782-147795, 2019.

S. Tanwar, K. Parekh, and R. Evans, “Blockchain-based electronic health-
care record system for healthcare 4.0 applications,” J. Inf. Secur. Appl.,
vol. 50, Feb. 2020, Art. no. 102407.

Y. Zhuang, L. R. Sheets, Y.-W. Chen, Z.-Y. Shae, J. J. P. Tsai, and
C.-R. Shyu, “A patient-centric health information exchange framework
using blockchain technology,” IEEE J. Biomed. Health Informat., vol. 24,
no. 8, pp. 2169-2176, Aug. 2020.

A. Pashazadeh and N. J. Navimipour, “Big data handling mechanisms
in the healthcare applications: A comprehensive and systematic literature
review,” J. Biomed. Informat., vol. 82, pp. 47-62, Jun. 2018.

C. Fang, Y. Guo, N. Wang, and A. Ju, “Highly efficient federated learning
with strong privacy preservation in cloud computing,” Comput. Secur.,
vol. 96, Sep. 2020, Art. no. 101889.

Y. Zheng, R. Lu, and J. Shao, “Achieving efficient and privacy-preserving
k-NN query for outsourced eHealthcare data,” J. Med. Syst., vol. 43, no. 5,
p. 123, May 2019.

D. Suresh and M. L. Florence, “Securing personal health record system
in cloud using user usage based encryption,” J. Med. Syst., vol. 43, no. 6,
p. 171, Jun. 2019.

L. S. Ribeiro, C. Viana-Ferreira, J. L. Oliveira, and C. Costa, “XDS-I
outsourcing proxy: Ensuring confidentiality while preserving interoper-
ability,” IEEE J. Biomed. Health Informat., vol. 18, no. 4, pp. 1404-1412,
Jul. 2014.

J. M. Silva, A. Guerra, J. E. Silva, E. Pinho, and C. Costa, “Face de-
identification service for neuroimaging volumes,” in Proc. IEEE 31st Int.
Symp. Comput.-Based Med. Syst. (CBMS), Jun. 2018, pp. 141-145.

B. Riedl, T. Neubauer, G. Goluch, O. Boehm, G. Reinauer, and
A. Krumboeck, “A secure architecture for the pseudonymization of med-
ical data,” in Proc. 2nd Int. Conf. Availability, Rel. Secur. (ARES),
Apr. 2007, pp. 318-324.

M. R. Patra, R. K. Das, and R. P. Padhy, “CRHIS: Cloud based rural
healthcare information system,” in Proc. 6th Int. Conf. Theory Pract.
Electron. Governance, Oct. 2012, pp. 402-405.

C. O. Rolim, F. L. Koch, C. B. Westphall, J. Werner, A. Fracalossi, and
G. S. Salvador, “A cloud computing solution for patient’s data collection in
health care institutions,” in Proc. 2nd Int. Conf. eHealth, Telemed., Social
Med., Feb. 2010, pp. 95-99.

M. Mettler, “Blockchain technology in healthcare: The revolution starts
here,” in Proc. IEEE 18th Int. Conf. e-Health Netw., Appl. Services
(Healthcom), Sep. 2016, pp. 1-3.

X. Yue, H. Wang, D. Jin, M. Li, and W. Jiang, ‘‘Healthcare data gateways:
Found healthcare intelligence on blockchain with novel privacy risk con-
trol,” J. Med. Syst., vol. 40, no. 10, p. 218, 2016.

VOLUME 9, 2021

(36]

(371

(38]

(391

[40]

[41]

[42]
(43]
[44]
[45]

(46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

[55]

[56]

(57

[58]

(591

[60]

M. Misbhauddin, A. Alabdulatheam, M. Aloufi, H. Al-Hajji, and
A. AlGhuwainem, “MedAccess: A scalable architecture for blockchain-
based health record management,” in Proc. 2nd Int. Conf. Comput. Inf.
Sci. (ICCIS), Oct. 2020, pp. 1-5.

D. Ivan, “Moving toward a blockchain-based method for the secure storage
of patient records,” in Proc. ONC/NIST Use Blockchain Healthcare Res.
Workshop. Gaithersburg, MD, USA: ONC/NIST, 2016, pp. 1-11.

G. Zyskind, O. Nathan, and A. Pentland, “Decentralizing privacy: Using
blockchain to protect personal data,” in Proc. IEEE Secur. Privacy Work-
shops, May 2015, pp. 180-184.

T. McGhin, K.-K.-R. Choo, C. Z. Liu, and D. He, “Blockchain in health-
care applications: Research challenges and opportunities,” J. Netw. Com-
put. Appl., vol. 135, pp. 62-75, Jun. 2019.

S. Khezr, A. Yassine, and R. Benlamri, “Blockchain technology in health-
care: A comprehensive review and directions for future research,” Appl.
Sci., vol. 9, no. 9, p. 1736, 2019.

H. Kaur, M. A. Alam, R. Jameel, A. K. Mourya, and V. Chang, ““A proposed
solution and future direction for blockchain-based heterogeneous medicare
data in cloud environment,” J. Med. Syst., vol. 42, p. 156, Aug. 2018.

H. Tian, J. He, and Y. Ding, “Medical data management on blockchain
with privacy,” J. Med. Syst., vol. 43, no. 2, p. 26, Feb. 2019.

M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in Proc.
0SDI, vol. 99, 1999, pp. 173-186.

L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4,
pp. 18-25, 2001.

D. Ongaro and J. K. Ousterhout, ““In search of an understandable consensus
algorithm,” in USENIX Annu. Tech. Conf., 2014, pp. 305-319.

B. Temkow, A.-M. Bosneag, X. Li, and M. Brockmeyer, ‘“PaxonDHT:
Achieving consensus in distributed hash tables,” in Proc. Int. Symp. Appl.
Internet (SAINT), Jan. 2006, p. 9.

T. D. Chandra, R. Griesemer, and J. Redstone, ‘“Paxos made live: An
engineering perspective,” in Proc. 26th Annu. ACM Symp. Princ. Distrib.
Comput. (PODC), 2007, pp. 398-407.

D. Kim, I. Doh, and K. Chae, “Improved raft algorithm exploiting feder-
ated learning for private blockchain performance enhancement,” in Proc.
Int. Conf. Inf. Netw. (ICOIN), Jan. 2021, pp. 828-832.

L. Baird, “The Swirlds hashgraph consensus algorithm: Fair, fast,
Byzantine fault tolerance,” Swirlds, College Station, TX, USA,
Tech. Rep. SWIRLDS-TR-2016-01, 2016.

H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo, “A survey of state-
of-the-art on blockchains: Theories, modelings, and tools,” ACM Comput.
Surg., vol. 54, no. 2, pp. 1-42, Apr. 2021.

P. Chevalier, B. Kaminski, F. Hutchison, Q. Ma, S. Sharma, A. Fackler,
and W. J. Buchanan, “Protocol for asynchronous, reliable, secure and
efficient consensus (PARSEC) version 2.0,” CoRR, vol. abs/1907.11445,
2019. [Online]. Available: http://arxiv.org/abs/1907.11445

S. Zhang and J.-H. Lee, “Analysis of the main consensus protocols of
blockchain,” ICT Exp., vol. 6, no. 2, pp. 93-97, Jun. 2020.

H. Attiya and J. L. Welch, “Sequential consistency versus linearizability,”
ACM Trans. Comput. Syst., vol. 12, no. 2, pp. 91-122, May 1994.

J. Lennerz, D. A. Clunie, A. Fedorov, S. W. Doyle, S. Pieper, V. Klepeis,
L. P. Le, G. L. Mutter, D. S. Milstone, T. J. Schultz, and R. Kikinis,
“Implementing the DICOM standard for digital pathology,” J. Pathol.
Informat., vol. 9, no. 1, p. 37, 2018.

M. E. Gale and D. R. Gale, “DICOM modality worklist: An essential
component in a PACS environment,” J. Digit. Imag., vol. 13, no. 3,
pp. 101-108, Aug. 2000.

T. M. Godinho, R. Lebre, L. B. Silva, and C. Costa, “An efficient architec-
ture to support digital pathology in standard medical imaging repositories,”
J. Biomed. Informat., vol. 71, pp. 190-197, Jul. 2017.

S. Wan, M. Li, G. Liu, and C. Wang, “Recent advances in consen-
sus protocols for blockchain: A survey,” Wireless Netw., vol. 26, no. 8,
pp. 5579-5593, Nov. 2020.

A. Singh, P. Maniatis, P. Druschel, and T. Roscoe, “Conflict-free quorum-
based BFT protocols,” Max Planck Inst. Softw. Syst., Saarbriicken,
Germany, Tech. Rep. 2007-1, 2007.

M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of dis-
tributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374-382, 1985.

Y.-T. Lin. (2017). Istanbul Byzantine Fault Tolerance. [Online]. Available:
https://github.com/ethereum/EIPs/issues/650

125939

IEEE Access

M. Pedrosa et al.: Performant Protocol for Distributed Health Records Databases

MICAEL PEDROSA received the master’s degree
in computer engineering from the University of
Aveiro, Portugal. He is currently pursuing the
Ph.D. degree with the University of A Coruiia,
Spain.

He is currently a Researcher at IEETA, Portugal.
His research interests include data privacy, health-
care, medical information systems, authorization
policies, data protection, public-key cryptography,
and security of data in medical contexts. He was a

recipient of the Best Student Paper Award at the 19th International Confer-
ence on Biolnformatics and BioEngineering, given by the BIBE2019 Steer-
ing and Awards Committee.

e

RUI LEBRE received the master’s degree in com-
puter engineering from the University of Aveiro,
Portugal, in 2017. He is currently pursuing the
Ph.D. degree in information technology with the
University of A Coruila, Spain.

Later that year, he turned himself as a
Researcher at IEETA, Portugal. During the past
few years, his research topics include medi-
cal imaging, medical informatics, and infor-
mation technologies. Simultaneously, he is the

Co-Maintainer of Dicoogle Open-Source PACS. His research interests
include the decentralization of the storage and index of healthcare solutions
and providing high-fidelity architectures in the healthcare field.

125940

CARLOS COSTA received the Ph.D. degree
in medical informatics area. He is currently
an Associate Professor with the Department of
Electronics, Telecommunications and Informatics,
University of Aveiro. He is also a Researcher with
the Institute of Electronics and Telematics Engi-
neering of Aveiro (IEETA) and a Partner of BMD
Software Company. He is the author or coauthor
of more than 150 publications in this area. His
research interests include PACS-DICOM (medi-

cal imaging systems and networks), telemedicine, healthcare information
systems, and other areas of research, such as machine learning, databases,
security, and access control.

VOLUME 9, 2021

