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ABSTRACT Features Selection (FS) techniques have been applied to several real-world applications which
contain high dimension data. These FS techniques have main objectives that aim to achieve them, such
as removing irrelevant features and increasing classification accuracy. This is considered a bi-objectives
optimization problem that requires a suitable technique that can balance between the objectives. So, different
sets of FS techniques have been developed, and those techniques that depend on meta-heuristic (MH)
established their performance overall traditional FS techniques. However, these MH approaches still require
more enhancement to neutralize their exploration and exploitation abilities during the searching process.
Enhancing the meta-heuristic optimization algorithm using the perspective of fractional calculus (FC) is an
attractive and novel approach. In this paper, the slime mould algorithm (SMA) is modified using the FC for
handling the optimizer drawback of the inefficient diversification phase. As a result, a fractional-order SMA
is proposed to avoid the local solutions and discover the search landscape efficiently via considering a historic
memorize of agents’ positions. The proposed FOSMA is applied to extract features from a set of real-world
data and increase classification accuracy. For boosting the optimizer performance while processing with
these datasets, the rough set (RS) is used as the fitness function to handle the uncertainty inside the real-
world data. Finally, the proposed FOSMA’s results are compared with a set of well-known FS techniques
to investigate its performance. The comparison illustrates the superiority of FOSMA in providing high
accuracy.

INDEX TERMS Feature selection (FS), fractional calculus, slime mould algorithm (SMA), meta-heuristic

(MH).

I. INTRODUCTION

The high advancement achieved in information and com-
munication devices and technologies had led to an increase
in the dimension of the collection and the stored data at
an exponential rate. This has been performed in different
real-world fields including medical [1], engineering [2], [3],
industrial [4], and agriculture [5]. However, most of the fea-
tures of this collected data can be considered as irrelevant
and redundant, which leads to degradation of the perfor-
mance of data analysis techniques [6]. So, the dimension
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reduction (DR) methods have been more attentive, and they
have been applied to several applications [7]-[10].

In that circumstance, there are several DR methods
have been proposed, such as transformation and selec-
tion approaches [11]-[14]. In the transformation methods,
the data is mapped into another domain, and these methods
including principal component analysis, independent compo-
nent analysis, and factor analysis. However, the main limi-
tation of this type of DR is the changing of the originality
of the collected information. The second type of DR is the
feature selection (FS) approach which aims to find the rele-
vant features without changing the originality of the data [15],
[16]. These methods including several methods that can be
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categorized into the wrapper and filter-based methods. The
wrapper approaches depend on the learning approach to find
the relevant subset of features, while the filter method doesn’t
rely on the learning approach.

Recently, several FS techniques based on meta-heuristic
(MH) algorithms have been manifested and utilized for vari-
ous optimization problems. We have some examples for these
MHs such as Moth-Flame Optimization (MFO) [17], Salp
Swarm Algorithm [18], Runner-Root Algorithm (RRA) [19],
arithmetic optimization algorithm (AOA) [20], Aquila Opti-
mizer (AO) [21], Differential Evolution (DE) [22], genetic
algorithm (GA) [23], and Grey-wolf optimization Algo-
rithm [24]. Moreover, Shukla et al. [25] proposed a hybrid
metaheuristics approach for cancer type classification, and
diao et al. [26] used modified PSO for identifying or
detecting and expectation of the existence and usefulness of
pipelines leakage. This technique depended on sufficient pro-
cessing of signals that has acoustic emission and enhanced the
variational mode decomposition (VMD) for signal denois-
ing using the particle swarm optimization (PSO) algorithm.
Ibrahim et al. [27] improved the Grey Wolf Optimizer (GWO)
for developing the potency of the exploitation and the explo-
ration of GWO utilizing the approach of chaotic with the
map of kind logistic, the popular approach of differential
evolution, the Opposition-Based Learning, and a physical
operator named the disruption operator. Jingwei et al. [28]
used the binary form of the Harris hawk optimization (HHO)
algorithm for solving some classification missions like fea-
ture selection and compared the results of HHO technique
with other feature selection methods based on metaheuris-
tics, genetic algorithm (GA), binary multi-verse optimizer
(BMVO), as well as binary salp swarm algorithm (BSSA),
in addition to the binary differential evolution (BDE).

In that context more FS works depended on combinations
of such MH techniques, for example Wenlong et al. [29]
enhanced a proper active mechanism for forecasting
hybridizing decomposition of two layers and enhanced
hybrid differential evolution with Harris hawks optimization
(IHDEHHO), and kernel extreme learning machine (KELM),
in addition to phase space reconstruction (PSR) for wind
speed forecasting of kind multi-step based on a decom-
position of two layers. Ranyaet al. [30] proposed binary
GWO with HHO for obtaining a memetic approach noted
HBGWOHHO. The sigmoid is one of the transfer functions
that are utilized for transferring the continuous search space
into a binary one for satisfying the feature selection nature
requirement. A wrapper-based k-Nearest neighbor is utilized
for evaluating the goodness of the selected features. Thaher
et a. [31] proposed a model for the task of classification
that is represented in expectation of the news that is fake
through Arabic tweets that use Natural Language Processing
(NLP), Machine Learning, and HHO for selecting features
task. Where several popular learning algorithms are examined
with hybrids of features, obtaining content-based, and word
features, in addition to a user profile. The obtained results
proved that the Logistic Regression with an approach known
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as Term Frequency-Inverse Document Frequency (TF-IDF)
model gets the rank which is the finest one. Furthermore,
feature selection by utilizing the binary version of the HHO
algorithm plays is useful in reducing dimensionality, thereby
developing the performance of the model for learning for the
detection of not true news.

By inspecting the literature, one can detect that the pre-
vious works need further investigations in other aspects
such as deficiency and uncertainty of information. There-
fore, the Rough set (RS) theory attracted some researchers
as it is not considered just a target as fitness and operative
mathematical gadget, to deal with deficient and uncertainty
information, but also a proper active and effective paradigm
for computing in order to realize feature selection [32], [33].
We have some examples such as Priyanga ef al. [34] pre-
sented a novel filter-based FS method for the identification
of relevant features using RS theory and Hyper-clique based
Binary WOA (RS-HCBWOoA), where the authors tested their
technique on the dataset of the power system attack where the
performance of RS-HCBWOoA was evaluated according to the
size of the reduction, precision, recall, the accuracy of classi-
fication, and time complexity. Sahu et al. [35] utilized the RS
approach for aiding the student to choose a suitable subject
and thus give a good service or contribution to the society,
especially in such domain. The principal aim of it is to analyz-
ing student’s features regarding career, memory, knowledge,
interest, environment, and attitude after that, predicting the
suitable path for making the career comfortable where the stu-
dent can conveniently explore much in that area. For choosing
the career of the students, the authors proposed a hybridized
distance measure under a picture fuzzy environment where
the evaluating information regarding students, subjects, and
student’s features are given in picture fuzzy numbers. They
introduced two types of hybridization approaches that are the
hybridization of Hausdorff and Hamming distance measures
and the hybridization of Hausdorff and Euclidean distance
measures. Then, they applied the rough set theory for iden-
tifying if a certain subject is appropriate for a student even if
there is controversy to select a path. Even though some of
the proposed literature has shown remarkable contributions,
merging the RS and offering an efficient algorithm for the FS
approach is still challenging.

In the context of MH techniques, the Slime mould algo-
rithm (SMA) has been recently proposed to mimic the nat-
ural conduct of the slime mould’s oscillation. Its simplicity,
sensitiveness for controlling parameters, and flexible struc-
ture attracted some researchers to implement and modify
the optimizer to handle their applications. Kumar et al. [36]
applied the basic SMA to get optimal parameters of the
solar cell models. The SMA has been combined with an
artificial neural network (ANN) to enhance the prediction
of the demand of urban water [37]. The performance of
the resultant combination between ANN and SMA exhibited
better performance than traditional ANN. Precup et al. [38]
presented SMA to tuning parameters of fuzzy controllers
for the servo systems. Moreover, there are several fields,
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SMA has been applied such as photovoltaic modeling [39],
[40], Bearing defect identification [41], dynamic monitor-
ing health [42], feature selection [43], fuel cells [44] and
others [45]-[49]. Furthermore, Chen et al. [50] proposed a
chaotic variant for SMA to act as an SVR-based predic-
tion approach. Hassan et al. [51] introduced an enhancement
version of SMA by using a sine-cosine algorithm opera-
tor to solve the economic and emission dispatch (EED)
problems. Recently, Rizk-Allah ef al. [52] presented a chaos-
opposition-developed slime mould algorithm (CO-SMA)
for reducing the cost of the energy for the high-altitude
sites, including wind turbines. In the proposed CO-SMA,
the crossover-opposition methodology was conducted to
boost the exploration phase. On the other hand, the chaotic
search methodology was proposed to enhance the intensifi-
cation phase of the classical SMA while handling the non-
linear tasks [52]. Improving the SMA optimizer is a newly
opened avenue that is why it is still several approaches can
be proposed to modify the SMA performance. However, there
is much room for further modifications for SMA to explore
reinforced regions within search landscape and high-quality
solutions. In this circumstance, the principal perspective of
the ‘no free lunch’ (NFL) theorem [53] states that the uni-
versally preponderant optimizer that can behave with all out-
standing optimization features in the best way does not exist.
Therefore, based on the NFL, proposing novel algorithm fit is
challenging to achieve a remarkable performance compared
to state-of-the-art techniques.

In the context of MH modification approaches, a robust
tool in mathematics named fractional calculus (FC) has
been recently integrated into the MH to provide a mem-
ory of all past solutions to behave as a guide for the indi-
viduals while discovering the search space [54]. The FC
proved its efficiency with MH in several applications: for
example; FC with harries hawk optimizer (FMHHO) for
fuel cell modeling [54], FC with cuckoo search (FOCS)
for identifying the financial chaotic systems [55] and fea-
ture selection [1], furthermore, FC with Marian predator
optimizer (FMPA) for COVID-19 image classification [56],
Fractional-order Manta ray foraging optimizer (FOMRFO)
for image segmentation [57], and fractional-order flower pol-
lination (FOFPA) algorithm for image segmentation [58],
moreover fraction-order firefly optimization algorithm for
handling chaotic systems [59]. As the SMA suffers from
the limitation of using the vector of the individual solutions
only while updating the agents’ positions, which the local
operator knows. This strategy is not adequate to escape from
the local solutions. Therefore, this motivated us to present
an alternative version of SMA, which aims to enhance the
updating process of the solutions through achieving reliable
exploration and exploitation. Accordingly, we are attracted to
adopt the remarkable features of FC with SMA to overcoming
its drawback of the local operator via considering some his-
torical knowledge about the agents’ motions throughout the
iterations. In addition, the degree of dependency is used as
fitness function to assess the performance of each agent inside
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the population. This leads to improve the final classification
process since the selected features are more depended on the
target label.

Therefore, the main contribution of this study can be sum-
marized as:

o Enhancing the ability of SMA using fractional cal-
culus (FC) perspective; as a result, fractional-order
SMA (FOSMA) is proposed. In addition, the rough set
is used as part of the fitness value to increase the devel-
oped method’s ability to tackle the uncertainty inside the
dataset.

« Using the degree of dependency to evaluate the qual-
ity of selected features during the process of searching
about the optimal subset of features.

o Assessing the performance of FOSMA using a set of
UCI datasets.

o Evaluating the efficiency of the developed FOSMA
through massive comparison with well-known FS state-
of-art-techniques.

The present study is organized as: Section II presented the
mathematical formulation of Slime mould algorithm (SMA),
Rough set and Fractional Calculus. In section IV, the devel-
oped feature selection method is introduced. The results and
discussion are given in section IV. The conclusion and future
work are given in section V.

Il. BACKGROUND

This section describes the basic concepts of the Slime mould
algorithm (SMA), Rough set, and Fractional Calculus. Here
each of the key steps is detailed and explained for better
comprehension.

A. SLIME MOULD ALGORITHM
Li et al. [60] presented the algorithm of the Slime Mould
Algorithm (SMA) as an efficient technique for global opti-
mization.

The SMA imitates the slime mould’s oscillation conduct in
nature. The SMA procedures can be modeled mathematically
as:

1) The First Stage (The Food Approach): The slime mould
approach can be modeled through such stage as in the
following:

7 Zy+vp X (W XxZy—2Zp) r<p )

Ve X Z r=p

In Eq. (1), vy can be determined through the interval
[—a, a] and v, is reduced from 1 to 0. Z;, identifies
the finest solution. Z4 and Zp are arbitrary solutions,
W exemplifies the slime mould weight. As well as p is
determined by utilizing Eq. (2).

p =tanh|S(i) —DF|, i=1,2,...,N 2)

In Eq. 2, S(i) exemplifies the fitness value of the solu-
tion Z and DF exemplifies the finest fitness value.
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The value a that identifies v;, in Eq. (1) is determined
as in Eq. (3).

a = arctanh (— ( ! ) + 1) 3
max;

In addition, the value of W can be determined using the
following formula:

W(Sma(D) _
1+rxlog<w+l) Cond
_ (br — wr)
1 —r x log (wl> otherwise
(br — wr)
“

In Eq.(4), Cond exemplifies that S(i) has the rank of the
population first half. » € [0, 1] is generated randomly.
wr and br denote the worst and the best local fitness
value, respectively. Sj,q stores the sorted fitness values
and it is defined as:

Sina = sort(S) 5)

2) The Second Stage (Wrap Food): SMA simulated the
slime mould modernized position. The next equation
can be used for performing this modernization:

LB + rand(UB — LB) rand < 7
Z(t +1) = Zp(t) + vi(WZa(t) — Zp(t)) r <p
VeZ(t) rzp
(6)

where LB and UB exemplify the search space lower
and upper bounds. r and rand are determined randomly
through the interval [0, 1].

3) The Third Stage (Oscillation): The v;, value is modern-
ized in the interval [—a, a] and v, in the range [—1, 1].

B. FRACTIONAL CALCULUS CONCEPT

The Fractional calculus (FC) concept depends on several
definitions like the Grunwald-Letnikov (GL) definition, and it
can be mathematically modeled as podlubny1998fractional:

1 o0
DPZ(1) = lim - > (~1)* (ﬁ) Z(t kb, (D)
k=0

where

(ﬂ)_ rp+1
k] 7 T+ DI(B—k+1)
_BB-=DB=2)...(B-k+1
k! ’

®)

where, DP(x(¢)) exemplifies the Grunwald-Letnikov (GL)
derivative of kind fractional of order S. I'(¢) identifies gamma
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function. The GL in Eq. (7) for discrete-time case can be
formulated as:

DPIZ()] =

&)

i Z (—=DET(B + 1)Z(t — kT)
T# & T(k+ DI (B —k+1)

In Eq. (9), T denotes the period of sampling and r cor-
responds to the number of expressions from the memory.
B identifies the derivative order coefficient.

In particular, while the derivative order has a special value
of B = 1, the formula of Eq. (9) can be rewritten as:

D'[Z(t+ D] =Z(t+1)—Z(z) (10

where D![Z(#)] denotes the variation between two tailed
juveniles.

C. ROUGH SETS

Recently, a new approach which had been used with optimiza-
tion algorithms for enhancing their efficiency represented by
the mechanism of the Rough set theory [61]-[65] which is uti-
lized more for controlling the uncertainty in discovering the
dependencies of data, evaluating the attributes prominence,
detecting patterns in data, attribute reduction, and databases
rules extraction which can be used as a classifier for unviewed
datasets. Rough set is one of the techniques that depend on
computational intelligence analysis which doesn’t need extra
parameters and just depends on the information present in
the given data. It can decide if the data is perfect or can not
depend on the same data. In the case of incomplete data,
RS recommends more information of objects for reaching
high efficiency of classification. Unlike that case, in the
case of complete data, RS has the ability for identifying the
minimum required data which is useful for big domain space,
where this can decide the quality of data.

RS can be modeled mathematically as following. Let we
have an information system S =< U,A,V,f > where
U = {x1,...,x,} exemplifies the universe of primitive
objects, as well as A exemplifies the set of features [61].
In addition, V = Ude 4 Va, where V, exemplifies the value
set of feature a.f : U x A — V is an information function
which puts the domains of features values for the objects like
VYaecA,x € Uandf(a,x) eV,

The indiscernibility relation of B C A, symbolized as
IND(B) represents an equivalence relation shown as:

IND (B)= {(x,y) € UxU:Va€eB,f(a,x)=f (a,y)}
(11)

According to Eq. (11), the two objects x and y are indis-
cernible with respect to B, when (x, y) € IND(B). In addi-
tion, the set of all equivalence classes of IND(B) is repre-
sented using U /IND(B) (also called U/B) and it is defined
as:

U/IND(B) = {a € B:U/IND ({a})} (12)
AB={X()Y:VX €A, VY € B. X[ Y ##}
(13)
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The two objects x and y are indiscernible based on the
features of B, when (x, y) € U/IND(B), and the equivalence
classes of the B-indiscernibility relation are represented by
[x]g. Consider X < U, the upper and lower approximations
of X are formulated in Eq. (14) and Eq. (15), respectively:

BX) = {[x]s| [x]s [ )X # 0} (14)
BX) = {lxlp | [x]zg < X} (15)
The set of features A is formulated as A = C U D,

where C and D denote the condition and decision features,
respectively [61]. Thereafter, the positive region is given as:

POS¢ (D) = UQ(X), xeU/D (16)

Rough set reducts can be determined according to comput-
ing the degree of dependency (y¢ (D)) that defined as [61]:

yc (D) = |POSc (D) |/ U] 7)

In general, y¢ (D) is applied to determine the significant
features, and this performed by computing the equivalence
relations obtained by using different features and determine
the best of them.

Ill. DEVELOPED FRACTIONAL-ORDER SLIME MOULD
ALGORITHM

Within such a section, the developed FS technique based on
enhancing the performance of SMA using Fractional-order
and Rough set is introduced. The structure of this section
consists of two parts; the first part is to discuss the process of
combining the SMA with Fractional-order. The second part is
to discuss the general framework of the developed FS method.

A. FRACTIONAL-ORDER SLIME MOULD ALGORITHM
This section presents a detailed description of the innovative
Fractional-order Slime Mould Algorithm. The fractional cal-
culus property is integrated with the second line of Eq. (1),
to boost the behavior of the individuals while discovering the
search landscape. In the basic SMA, Li ez al. [60] utilized the
vector of the individual solutions at iteration () while com-
puting the solutions of (# 4 1), which was known by the local
operator. Utilizing the individual solutions only in updating
their solutions is not adequate to escape from the local solu-
tions. Therefore, in this work, we adopted FC properties to
enhance this equation, to support the updating process of
the solutions. The derivative of kind fractional-order has a
remembrance of all previous values that behaved as a guide
for the individuals while discovering the search space [54].
To model the second part/line of Eq. (1) in an adequate
formula to be merged with fractional calculus, the following
steps are followed:

First subtracting the term of Z(¢) from the two sides as in
the following equation:

Z(t+ 1) = Z(t) = ve.Z(t) — Z(1) (18)
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By inspecting the Eq. (18), one can note that the left-side of
the equation is in the form of the particular case of Eq. (10).
For generalizing Eq. (18) to include several remembrance
expressions based on fractional calculus property the GL
definition in a discrete-time formula of Eq. (9) is utilized with
general derivative coefficient 8 at T = 1 as represented below
in details:

DPIZG+D=Zt+1)—Z(t)=Z(t+ 1)

(—1'T(B + DZ(t + 1 —n)
T T DR —n i D

(19)

n=1

Use the formula of Eq. (19) then substitute in Eq. (18).

The modified recipe of the updated solutions based on the

fractional calculus is written as below for r terms of previous
memory:

r

_ (=B + DZ(t+1—k)
Za+ == Tk+ DIB—k + 1)

+ve.Z(H) — Z(1)  (20)

n=1

If we use only first four memory terms (» = 4) in FOSMA
with derivative coefficient 8, the Eq. (20) of the velocity can
be written as follows:

1 1
Z(t+1) = FﬂZ(t) + 5/3(1 —B)Z(t—-1)
1
+ 5B = A2~ PZ(t ~2)

1
+ ﬂﬂ(l - B2 —-B)3—-pB)Z(t —3)
+ve. Z(t) — Z(2) 1)

Hence the structure of the Wrap food phase of the basic
SMA is modified to be as modeled in the following formula:

LB + rand(UB — LB) rand < z
Z(t+1) = Zo(t) + vp(WZa(t) — Zp(t)) 1 <p (22)
Eq.(21) r>p

The Algorithm 1 sums up the main structure of the pro-
posed FOSMA where the optimizer starts with a set of ran-
domly generated solutions. The previous old solutions have
been initialized and stored in the memory. For a certain
number of iterations, a set of operators are computed and
the initial solutions are modified based on FOSMA main
structure as reported in Algorithm 1. The memorized terms
are updated at each iteration based on the first in first out
approach as depicted in Fig.1. The implementation of the
FOSMA is stopped while the final iterations number has been
satisfied.

B. FRAMEWORK OF DEVELOPED FS METHOD

The main steps of the developed FS method based on the
enhanced SMA along with Fractional-order are introduced
in this section and depicted in Fig.2. The presented method,
named FOSMA, starts by splitting the dataset into training
and testing sets. Then the presented method sets the initial
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Algorithm 1 FOSMA Algorithm

1: Input: N the solutions number and entire iterations num-
ber (t4x), the derivative order 8, the memory length r.

2: Construct a random population (Z).

: Store the initial values for the memory window with
length (7).

4: t = 1.

5: while t <= t,,4 do

6:  For each Z; compute the fitness value (F}).

7

8

9

(98]

Update the value of the finest solution Z.
Calculate W using Eq. (14)

: fori=1:Ndo
10: Modify variables of vy, v, and p
11: Use Eq. (22) to update the position of agents.

12: end for

13:  Update memory window based on first in first out
approach as depicted in Fig.1.

4: t=t+1.

15: end while

16: Return the best solution Xp,.

FIGURE 1. Memory update based on FIFO.

value for the population and computes the fitness value for
each agent using the training set. This fitness value depends
on computing the degree of dependency between the selected
features and target label, as well as, the ratio of selected
features. The next step is to find the agent that has the largest
fitness value. This followed by updating the agent in the cur-
rent population using the operator of FOSMA that discussed
in Algorithm 1. The updating process the agents is conducted
until reached the terminal conditions, then return by the best
agent. The next step is to reduce the testing set according to
the best agent and evaluate the performance measures. The
stages of the developed method are given in the following
sections.

1) INITIAL PHASE

The developed FS approach starts by dividing the input
dataset into testing and training set which represents 20%
and 80%, respectively. This followed by forming the initial
population X which has N solutions and this modeled as:

Z; = LB; + rand x (UB; — LB;) (23)

In Eq. (23), UB; and LB; denote the limits of search
domain.
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2) UPDATING POPULATION PHASE

The presented method starting this phase by computing the
fitness value for each agent. This achieved in two steps; the
first step is to allocate the relevant and irrelevant features
which corresponding to ones and zeros, respectively, in the
Boolean version of the current agent. This process performed
using the following equation.

Bzijz{l if Zj > 0.5

(24)
0 otherwise

The second step is to compute the degree of dependency
based on the selected features from the training set and
calculate the ratio of selected features. This formulated as
maximization problem which defined as:

. |BZ;|
Fitt=Axyi+(0-)x|1———], (25)
Dim

where (%) represents the ratio of selected features. y; is the
degree of dependency which defined in Eq. (17). Whereas, A
is the weight value of the two parts of Eq. (25).

Thereafter, the current population Z is updated using the
operators of FOSMA which discussed in Algorithm 1. The
presented FS method repeats its updating steps until reached
the termination criteria.

3) EVALUATION PHASE

In this phase, the developed FS approach reduces the testing
based on the Boolean version of the best agent by remov-
ing the irrelevant features. Then computing the performance
of classification the testing set using KNN classifier. This
classifier is applied since it is simple and easy to be imple-
mented. The main framework of the proposed method is given
in Figure 2.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The experiments conducted in this paper are performed using
twenty UCI datasets frank2010uci. The description of these
datasets is given in Table 1. It can be noticed from this
description that these datasets are collected from different real
applications. From this table, it can be noticed the characteris-
tics of the tested datasets which collected from different fields
and has a different number of features and instances.

A. PERFORMANCE MEASURES
The performance of the FS methods is computed by using
a set of metrics including Accuracy, and fitness value. The
definition of these measures is formulated as:

o Average Accuracy: Itis defined as the average of the rate

of samples that classified correctly. It is formulated as in
Eq. (26).

N.
1 r
AVGpee = 5 Y " Acchy.
" k=1
TP + TN
Acck,, = (26)

TP + FN + FP+ TN

VOLUME 9, 2021



R. A. Ibrahim et al.: FC-Based SMA for FS Using RS

IEEE Access

e D

> Training set

]

Initialize all the parameters of FOSMA

DataSet

]

Generate initial population Z |

|
ve

e
Testing set

Convert Z; to binary using Eq. (23)

¥

Compute fitness value Fit for selected features of

Z; using Eq. (24) and training set

¥

Reduce

Determine the best solution Z,,

testing set

¥

Evaluate the

Update W using Eq. (4)
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FIGURE 2. Framework for the presented FS method.

TABLE 1. Characteristic of datasets of Low dimensionality (LD) and High

TABLE 2. Confusion matrix.

dimensionality (HD).
ty (HD) Predected class
Datasets Number Number of Number Data Dimension . N
of features instances classes  of category Actual class Positive N egative
Breastcancer (DS;) 9 699 2 Biology LD N . -
BreastEW (DS5) 30 569 2 Biology LD Postive True Positive (TP) | False Negative (FN)
CongressEW(DS3) 16 435 2 Politics LD
Exactly(DS1) 13 1000 2 Biology LD Negative False Positive (FP | True Negative (TN)
Exactly2(DS5) 13 1000 2 Biology LD
HeartEW(D S;) 13 270 2 Biology LD
TonosphereEW(DS7) 34 351 2 Electromagnetic LD
Lymphography(DSs) 18 148 2 Biology LD
M-of-n(DSs) 13 1000 2 Biology LD o Average of Relevant Features: It computes the average
PenglungEW(DS() 325 73 2 Biology LD . .
SonarEW(DS)1) 60 208 2 Biology LD of relevant features that gives the smallest fitness value
SpectEW(DS12) 22 267 2 Biology LD L .
Tic-tac-toc(DS13) 9 958 2 Game LD and it is computed as:
Vote(DS14) 16 300 2 Politics LD
WineEW(DS,5) 13 178 3 Chemistry LD 1 NV "
Zoo(DS) 16 101 6 Artificial LD _
9_Tumors(DS:7) - HD AVG‘BZ”I - N Z BZb ‘ (28)
5726 60 9 Life [t
Leukemia 2(DSis) 11225 n 5 Lif HD
1le
Prostrate Tumors(DS10) HD In Eq. (28), |BZ{,‘| denotes the number of features corre-
10509 102 2 Life . . k th
warpAR10P(DSz0) HD sponding to ones in BZ; at k™ run.
2400 130 10 Face image .
The results of the developed FOSMA are compared with
where N, = 30 is the total number of runs for each other FS methods including Henry gas solubility optimiza-

algorithm while, TN, TP, FN and FP are defined in tion (HGSO), grey wolf optimization (GWO), Harris Hawks

Table 2. Optimization (HHO), and traditional SMA. The parameters
o Average Fitness Value: 1t is defined as the average of of these methods are set according to the original imple-
the ability of the algorithm to minimize the number of mentation. In addition, the common parameter such as the
selected features and simultaneously the error of classi- ~ maximum number of iterations is 50 and the size of the

fication. This formulated as:

population is 10. Each one of these methods is conducted with
30 independent runs. The experiments are conducted using

N,
l r
AVGE; = N E Fitém 27 Matlab R2020b which installed on a PC with a Windows 10
" k=1
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64-bit, system of 3.40 GHz processor with 4GB RAM.
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TABLE 3. Average of the accuracy obtained by each algorithm.

TABLE 4. Standard deviation of the accuracy obtained by each algorithm.

bGWO SMA FOSMA HHO HGSO WOA bGWO SMA FOSMA HHO HGSO WOA
DS, 0.9414  0.9286 0.9671 0.9514 09514 0.9414 DS, 0.0137  0.0295 0.0108 0.0198 0.0155 0.0128
DS, 09298 09246 09263 09193 09281  0.9070 DS, 00206 0.0295 00133 00169 0.0039 0.0192
DS;  0.9471 0.9310 09172 09149 09149  0.9057 DSs 0.0252  0.0244 0.0221 0.0300 0.0192 0.0096
DS, 0700 0@H0 070 0N OGN 0N De oot 00195 0007 0ol 0oor 00w
5 - - . - - - 5 . . . . . .
DS 06741 07037 0.6704 07000  0.7148  0.7185 Ds; 0.0649  0.0655 0.0401 0.0779 0.0903 0.0479
g? 822 8@28(7) (?72‘32535 8?3(1); %369;3709 8?;(})2 DS; 00461  0.0635 0.0126 0.0391 0.0354 0.0263
DS, 09470 09920 09700 0530 09230 0980 O ooces 0os4 0022 00284 0043 001
giﬁ 8:;75; 00;77;1005 g:gg‘l’g 8:322; 8:?2;‘1‘ 8:;8(1)(9) DS;p 00760 00750 0.0298 0.1570 00612 0.1116
DS, 07333 07148 08222 08037 07185 07148 DSy; 0.0353  0.0593 0.0742  0.0682 0.0558 0.0494
DS;3 07729 0.8344 08125 08146 07729  0.7906 D52 00336 00465 00361 00361 00401 00549
DSy 09767 0.9033 0.9067 0.9200 0.9267  0.9200 DSyz 00267 0.0093 0.0285  0.0280 ~0.0282  0.0170
DS;s 08611 08944 08611 08444 09778 09111 DSy 00149  0.0298 0.0190 0.0139 0.0253 0.0506
DSis 09429 08857 09143 08667 09619 09810 DSy 0.0878 = 0.0569 0.0393  0.0576 0.0124 0.0719
DSy- 08500 09000 09644 09155 09231 09367 DSje 00398 0.0261 00398 00398 00621 00261
DSis  0.8667 0.8667 1.0000 09333 09667  0.8667 DSz 0.1414 0.0314 00400  0.1643 0.0786 0.0536
DSi 09048 09476 09752 09619 09143 09429 DSis 0.0000  0.0000 0.0943 04243 0.0000 0.2828
DS 06538 08615 09154 07308 08760  0.7308 DSy9 00673 00337 0.0317  0.1347 02357 0.0337
DSy, 0.0437  0.0742  0.0000 0.0801 0.0165 0.0588
B. RESULTS AND DISCUSSION
The comparison results between the developed FOSMA
method and other methods are given in Tables 3-8. It can be
noticed from the average accuracy results that the developed
FOSMA has the ability to improve the classification accu- g E:gg
racy of nine datasets. Followed by traditional SMA which 3 0:8400
has the best accuracy at four datasets and GWO established % 08300
its performance at three datasets. In addition, by analysis, % 08200 ' l l ' '
the stability of the developed FOSMA represented in Table 4. $ 08100
One can be observed the stability of the developed FOSMA is <>E 0.8000
better than other models. Whereas, the GWO and SMA nearly bGWO ~ SMA  FOSMA  HHO  HGSO  WOA
have the same performance in terms of standard deviation
since SMA and GWO provides a better standard deviation
at four and three datasets, respectively. Figure 3 depicts the
average of accuracy and standard deviation overall for the (a) Average of Accuracy
tested datasets. One can be observed from these results that
the FOSMA model has the largest average of accuracy with
the smallest standard deviation. This indicates the high effect
of FO on improving the performance of SMA.
Moreover, Table 5 depicts the average of fitness value for g oos00
each method and it can be noticed from these results that § 22:22
the fitness value of the FOSMA is the best at seven datasets. g 0.0500
While HGSO has largest fitness value at four datasets, fol- g ggzzz l l
lowed by HHO, SMA and bGWO that have the higher aver- 3 00200
age of fitness at three datasets. Whereas, WOA provides %0-0100 l
better fitness value at only one dataset. From the results of & 00000 bGWO  SMA  FOSMA  HHO  HGSO  WOA

the standard deviation of fitness value, as provided in Table 6,
it can be seen from these results that the FOSMA is more
stable than other models which provide the smallest standard
deviation at eleven datasets. Followed by HGSO and SMA
which provide better standard deviation at seven and two
datasets, respectively. Moreover, by analyzing the results of
each algorithm in terms of best fitness value it can be seen that
nearly HHO, and HGSO have the same performance which
provides the best fitness value at four datasets. Whereas,
FOSMA has better results at ten datasets. Finally, from
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(b) Standard deviation of Accuracy

FIGURE 3. Comparison results between FOSMA and other models in
terms of accuracy.

Table 8 that shows the worst fitness value obtained by each
algorithm, it can be seen that the bGWO, FOSMA, HHO,
and HGSO are better than other methods at five datasets.
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TABLE 5. Average of fitness value for each method.
bGWO SMA FOSMA HHO HGSO WOA
DS;  0.6835  0.6835 0.6819 0.6975 0.7145  0.6928
DS,  0.6867 0.6867 0.7009 0.6767  0.6848  0.6849
DS3;  0.7431  0.7431 0.7191 0.7197  0.7220 0.7014
DSy 0.8154 0.8154 0.8077 0.8308 0.8692  0.8308
DSs; 09359 09359  0.9399 0.9363  0.9308 0.9154
DSg  0.7937  0.7937 0.7893  0.8021 0.7963  0.7979
DS;  0.6264  0.6264 0.6249 0.6236  0.6086  0.6483
DSg  0.6917 0.6917 0.7288 0.6938  0.6950 0.6963
DSy 0.8462  0.8462 0.8000 0.8538 0.8692  0.8097
DS 0.6031  0.6031  0.6868 0.5265 0.5102 0.5622
DS1; 0.5933  0.5933  0.6417 0.5945 0.5778 0.5953
DS12 0.8593  0.8593 0.8560  0.8834 0.8524  0.8673
DSy3 09001  0.9001 0.8918 0.8957  0.8965 0.8928
DSy 0.7475  0.7475 0.7113  0.7500 0.7092  0.7250
DS5  0.9293 0.8500 0.8966 0.8511  0.8160 0.7966
DS 0.7050 0.7050  0.7125 0.6888  0.7088 0.7063
DS17 0.8896  0.8087 0.9995 0.9984  0.9996  0.9997
DS1s  0.8920 0.8274  0.9996 0.9984  0.9975 0.9996
DSi9  0.8934  0.8231  0.9999 0.9991  0.9862 0.9943
DSy  0.5793  0.8384 0.8265 0.6060  0.7266  0.7401
TABLE 6. Standard deviation of fitness value for each method.
bGWO SMA FOSMA HHO HGSO WOA

DSy 0.0154  0.0249  0.0057 0.0253  0.0176  0.0185
DS, 0.0125  0.0252  0.0103 0.0143  0.0192  0.0277
DS3 0.0330  0.0321 0.0166  0.0183  0.0106 0.0376
DS, 0.0501  0.0344 0.0385  0.0439  0.0439  0.0439
DS 0.0176  0.0261  0.0153 0.0181 0.0172  0.0172
DSg 0.0099  0.0171  0.0063 0.0196  0.0115  0.0076
DS, 0.0068  0.0213 0.0186  0.0146 0.0054 0.0371
DSg 0.0230  0.0143  0.0079 0.0183  0.0119  0.0204
DSy 0.0385  0.0471  0.0172 0.0172  0.0439  0.0211
DSip  0.0054  0.0082 0.0042  0.0151 0.0014 0.0509
DSy, 0.0109  0.0831  0.0059 0.0355  0.0063  0.0497
DSy, 0.0208  0.0129 0.0112  0.0076  0.0042 0.0141
DSy3 0.0102  0.0007  0.0006 0.0080  0.0075  0.0085
DSyy  0.0107  0.0100 0.0144  0.0351 0.0119  0.0321
DSy5  0.01437  0.01571 0.0588 0.01392 0.01327 0.03899
DSy 0.0396  0.0440 0.0169  0.0248 0.0137 0.0218
DSy;  0.0009  0.0077  0.0000 0.0020  0.0000  0.0000

DSis 0.0002  0.0049  0.0000 0.0001  0.0009  0.0005
DSy9  0.0022  0.0087  0.0000 0.0001 0.0187  0.0005
DSy 0.0622 0.0794 0.0825  0.0623  0.0888 0.0790

TABLE 7. Best of fitness value for each method.

bGWO SMA FOSMA HHO HGSO WOA
DSy 0.7007 0.7007 0.6953 0.7347 0.7294  0.7240
DSy 0.6998 0.6998 0.7419 0.6995 0.7172 0.7116
DSy 0.7759 0.7759 0.8085 0.7364 0.7320 0.7474
DSy 0.8846 0.8846 0.8846 0.8846  0.9231 0.8462
DS 0.9562 0.9562 0.9408 0.9562 0.9615 0.9512
DSg 0.8063 0.8063 0.8132 0.8332 0.8118 0.8021
DS 0.6333 0.6333  0.6912 0.6466 0.6154 0.6524
DSy 0.7283 0.7283 0.7476 0.7156  0.7114 0.7288
DSy 0.8846 0.8846 0.8462 0.8846  0.9231 0.8308
DS 0.6123 0.6123 0.6915 0.5477 0.5123  0.6923
DS1; 0.6000 0.6000 0.6833  0.6333  0.5870  0.6500
DSy, 0.8783 0.8783 0.8985 0.8907 0.8595 0.8812
DSy3 09137 0.9137 09111 09098 0.9098  0.8959
DSy 0.7604 0.7604 0.7813 0.7896  0.7250  0.7475
DSi5 09293  0.8799 0.9006 0.8873 0.8262  0.8190
DS 0.7563 0.7563  0.7625 0.7188  0.7188  0.7325
DSz 0.8902 0.8142 0.9983 0.9998 0.9925  0.9997
DS1g 0.8922  0.8309 0.9900 0.9999 0.9813  1.0000
DS19  0.8949 0.8292 0.9857 0.9999 0.9794  0.9998
DSsy  0.5524  0.7206 0.8056 0.5945 0.6752 0.6745

TABLE 8. Worst of fitness value for each method.

bGWO SMA FOSMA HHO HGSO WOA
DS, 0.6675 0.6675  0.6730 0.6774  0.6693 0.6792
DSy 0.6665 0.6665  0.6817 0.6630 0.6694 0.6727
DSy 0.6983 0.6983  0.7119 0.6936  0.7047 0.6782
DS, 0.7692  0.7692 0.7692  0.7692 0.8077 0.7692
DSs 09231 0.9231 0.9231 0.9231 0.9231 0.8846
DSq 0.7840 0.7840 0.7831 0.7831  0.7794 0.7947
DS;  0.6176 0.6176 0.6029  0.6065  0.6003 0.6025
DSy 0.6751 0.6751 0.6836  0.6685  0.6794 0.6920
DSy 0.8077 0.8077 0.7692  0.8462 0.8077 0.8077
DS1p  0.5985 0.5985 0.6400 0.5123 0.5092 0.5185
DSy; 0.5750  0.5750  0.6333 0.5667 0.5711 0.5667
DS;o 0.8258 0.8258 0.8391 0.8751 0.8485 0.8649
DSi3  0.8928 0.8928 0.8915 0.8915 0.8928 0.8915
DSy 0.7354  0.7354 0.6958 0.7104  0.6958 0.6958
DSi5 09293 0.8250 0.8319 0.8251  0.8022 0.4733
DS 0.6563  0.6563 0.6800 0.6563 0.6938  0.6875
DSy7  0.8890 0.8033 0.9998  0.9969  0.9998 0.9997
DS1s  0.8919 0.8240 1.0000  0.9998  0.9984 0.9992
DS19  0.8919 0.8170 0.9999  0.9998  0.9887 0.9990
DSsy  0.6925 0.8763 0.8962 0.8716 0.7478  0.7541

Followed by SMA and WOA which have the best value at four
datasets. From Figure 5 shows the average of each algorithm
overall the tested datasets. It can be observed that FOSMA is
the best overall other algorithms among the average, worst,
and best of fitness value. In addition, it is more stable than
other methods.

To analysis the behaviour of the developed FOSMA to
reduce the number of features with preserving the quality
of classification, the average of selected features is given
in Table 9. It can be seen from the results, the efficiency of
FOSMA to select the smallest number of features among the
tested twenty datasets. For example, the developed FOSMA
has the best average of selected features at ten datasets which
represents nearly, the 50% from the tested datasets. In addi-
tion, the HGSO and SMA provide results better than other
algorithm, since each of them has smallest number of selected
features at six and four datasets, respectively. The average of
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selected features overall the tested is given in Figure 4 that
indicates the high efficiency of FOSMA to reduce the number
of features.

To provide more evidence about the high efficiency of the
FOSMA and the impact of FO on enhancing the behavior of
SMA, a non-parametric test named the Friedman test is used.
This test aims to determine if the obtained results by FOSMA
are significantly different from results obtained using other
methods or not. This test is performed at a significant level
of 0.05 and the obtained results (i.e., mean rank) are given
in Table 10. From these results, it can be seen that there is
no significant difference between the competitive algorithms
in terms of accuracy since P-value for the average (standard
deviation) of accuracy is 0.1113 (0.2394) which is greater
than 0.05. However, the FOSMA has the best mean rank in
average and standard deviation of accuracy. Moreover, the
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TABLE 9. Comparison results between FOSMA and other algorithms in
terms of selected features.

bGWO SMA FOSMA HHO HGSO WOA

DS1 2.8 2.4 2.2 32 3.6 32
DS2 9.0 8.6 9.6 8.4 8.0 10.8
DS3 6.4 5.0 52 6.0 6.0 72
DS4 8.2 8.0 6.6 8.6 9.6 8.6
DS5 10.8 10.8 9.0 11.0 11.2 10.8
DS6 6.6 6.8 5.0 7.0 6.2 7.0
DS7 7.6 8.2 8.4 7.8 6.0 9.6
DS8 6.2 5.6 6.6 6.0 5.8 72
DS9 9.0 7.8 6.4 9.2 9.6 8.6

DS10 67.0 121.4 110.4 17.2 6.6 40.4
DS11 11.2 17.0 14.6 11.2 7.6 11.0

DS12 8.0 8.6 8.8 9.0 7.8 8.8
DS13 8.0 6.0 6.0 6.0 7.0 8.0
DS14 6.0 5.4 5.8 7.0 5.2 6.6
DS15 3.6 4.0 34 4.4 4.2 4.8
DS16 52 4.8 5.4 5.6 6.0 6.8

DS17 2257.0 2190.0 21815 23534 27712 2821.6
DS18 2420.0 3797.0 2523.0 3988.7 5304.7 5459.9
DS19 50859 3589.0 2208.0 33279 5101.8 5163.3
DS20  670.0 586.0  488.0 823.0 6520 7263

850

650

50

4!

[l

2

o
=]

Average of selected Features

bGWO FOSMA HGSO

FIGURE 4. Average of selected features.

TABLE 10. Mean rank for each algorithm.

bGWO SMA FOSMA HHO HGSO WOA

Accuracy Average 293 350 450 355 348  3.05
STD 355 335 273 423 3.60  3.55

Average 333 328 378 373 320 370

Fitness value STD 370 440 213 3.68 2.88  4.23
Worst 333 323 403 345 338  3.60

Best 323 313 485 373 2.93 3.15

Number of selected feature 330 275 253 4.03 343 4.98

FOSMA has the first mean rank in terms of best, worst,
and standard deviation of fitness value. However, at average
of fitness value it can be seen that HHO allocates the first
rank followed by FOSMA. In addition, the FOSMA has the
smallest mean rank in terms of number of selected features,
followed by SMA.

V. CONCLUSION
In this paper, a modified version of the Slime Mould Algo-
rithm (SMA) has been developed as a feature selection
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FIGURE 5. Comparison results between FOSMA and other models in

terms of fitness value.
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method. This modification has been performed using the frac-
tional calculus (FC) and Rough set. Each of these techniques
has its task to improve SMA, such as FC has been applied
to enhance the searchability of the agents of the classical
SMA during the search process through counting several
terms from memory based on FC perspective. Whereas the
Rough set is applied to assess the quality of selected features
since it can deal with uncertainty in the dataset. The results of
FOSMA using twenty UCI datasets have been compared with
other FS methods such as Henry gas solubility optimization
(HGSO), grey wolf optimization (GWO), Harris Hawks Opti-
mization (HHO), and traditional SMA. The obtained results
show the ability of FOSMA which has a high capacity to
increase the classification accuracy by reducing the number
of relevant features. In addition, its results are better than
other MH techniques used as FS methods.

Besides the efficiency of the FOSMA, it can be used in
future works in different applications such as cloud comput-
ing, security, image segmentation, and other fields. In addi-
tion, it can be re-implemented as a multi-objective technique.
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