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ABSTRACT The detection of moving objects is a trivial task performed by vertebrate retinas, yet a complex
computer vision task. Object-motion-sensitive ganglion cells (OMS-GC) are specialised cells in the retina
that sense moving objects. OMS-GC take as input continuous signals and produce spike patterns as output,
that are transmitted to the Visual Cortex via the optic nerve. The Hybrid Sensitive Motion Detector (HSMD)
algorithm proposed in this work enhances the GSOC dynamic background subtraction (DBS) algorithm
with a customised 3-layer spiking neural network (SNN) that outputs spiking responses akin to the OMS-
GC. The algorithm was compared against existing background subtraction (BS) approaches, available on
the OpenCV library, specifically on the 2012 change detection (CDnet2012) and the 2014 change detection
(CDnet2014) benchmark datasets. The results show that the HSMD was ranked overall first among the
competing approaches and has performed better than all the other algorithms on four of the categories across
all the eight test metrics. Furthermore, the HSMD proposed in this paper is the first to use an SNN to enhance
an existing state of the art DBS (GSOC) algorithm and the results demonstrate that the SNN provides near
real-time performance in realistic applications.

INDEX TERMS SNN, HMSD, retinal cells, object motion sensitive ganglion cells, background subtraction,
object motion detection.

I. INTRODUCTION
The retina is a tiny tissue of about 1mm depth at the back of
the eye, and it is responsible for the first stage of biological
image processing. All vertebrate retinas possess a variable
number of the same type of retinal cells, namely, photore-
ceptors (rods and cones), horizontal, bipolar, amacrine and
ganglion cells [1], [2]. Light stimuli are sensed by the pho-
toreceptors, which trigger electrical and chemical signals that
propagate through the retinal cells and are transported via
the optic nerve to the Visual Cortex. Retinal photoreceptors
are sensitive to dim light (rods), colour vision (cones) and
bright light (cones), and connect to bipolar and horizon-
tal cells. Horizontal cells are responsible for regulating the
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signals triggered by neighbouring rods and cones. Bipolar
cells receive process and transmit signals from groups of
rods and cones to ganglion cells. Amacrine cells interact
with groups of neighbouring bipolar cells to regulate signals
transmitted to the ganglion cells, responsible for collecting
the visual signals and propagating them to the visual cortex
via millions of parallel channels in the optic nerve [1], [2].
The types of retinal cells vary in concentration, functional-
ity and size. There are thousands of retinal circuits formed
by types and sub-types of retinal cells wired together [1].
Different retinal circuits trigger different functionalities such
as light detection, motion detection and discrimination,
object motion, identification of approaching motion (loom-
ing), anticipation, motion extrapolation and omitted stimulus-
response [3]. Vertebrate retinas are notable for i) incorpo-
rating millions of these retinal circuits, ii) being extremely
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efficient (the whole human brain consumes approximately
20Watts) and iii) still displaying the capability to outperform
any state-of-the-art computer [4].

In computer vision, object motion detection is traditionally
performed using BS methods, where the foreground (pixels
or group of pixels whose light intensity values have suffered
an abrupt variation) are compared with the previous image or
background model [5]–[8]. BS can be static, subtracting the
current image frame from the first image frame, or dynamic,
subtracting the current image frame from previous image
frame(s) [2], [9]–[13]. BS methods can be classified as
1)Mathematical, 2) Machine Learning and 3) Signal process-
ing [7], [8]. Mathematical theories are the simplest way to
model backgrounds using temporal average, temporal median
and histograms, which can be improved using refined models
(such as a mixture of Gaussians, kernel density estimation,
etc.) and require low computational resources [8]. Machine
learning models are more robust for performing BS, but they
must be trained on the target visual features and require
significant computational resources [7]. Signal processing
models used to model the background using the temporal
history of pixels as 1D signals and usually require moderate
computational resources [8]. Although less robust, the clas-
sical mathematical BS models are better suited for real-time
on near real-time applications. As real-time processing is a
key objective of this work, we focus only on mathematical
models in this paper.

The Hybrid Sensitive Motion Detection (HSMD) model
reported in this paper was inspired by the object motion
functionality exhibited by vertebrate retinas, in which object
motion-sensitive retinal cells (OMS-RC) determine the dif-
ference between a local patch’s motion trajectory and the
background [3]. An improved version of DBS using Local
Singular Value Decomposition (SVD) Binary Pattern (math-
ematical model) [14], [15] is enhanced by a 3-layer spiking
neural network (SNN), forming a hybrid architecture.

The main contributions of the work reported in this paper
are i) an object motion detection model inspired by the
OMS-RC designed to work with commercial-of-the-shelf
(COTS) cameras, ii) enhancement of the dynamic BS (math-
ematical model) using the 3-layered SNN and iii) optimi-
sation of the proposed method for processing live capture
feeds in near real-time. The algorithm was tested on the
2012 change detection (CDnet2012) [16] and 2014 change
detection (CDnet2014) benchmark datasets [17] and com-
pared with classical BS algorithms (discussed in sections II
and IV). The HSMD can detect motion using commercial-
off-the-shelf camera feeds and/or video clips using Spiking
Neural Networks (SNN), as opposed to cameras exploiting
dedicated custom architectures.

The remainder of the paper is structured as follows:
related work on object detection using classical computer
vision and bio-inspired computer vision is briefly reviewed in
section II; the HSMD is described in section III; the training
details, use-case scenarios and HSMD parameterisation are
described in section IV; the results are reported and analysed

in section V; and the discussion and future work are presented
in section VI.

II. LITERATURE REVIEW
Reliable and optimised object motion detection in videos and
live streams are an essential feature for a wide range of com-
puter vision applications such as object tracking, intrusion
detection, collision avoidance, etc. Motion detection is per-
formed by analysing/tracking the variation of light intensities
between a set of image frames.

Camera, background and foreground are three factors that
affect the quality of the BS [18]. Current BS challenges
include (i) abrupt illumination changes, which impact the
pixel intensity values and may increase the number of false
positives; (ii) dynamic objects, where background object
movement may interfere with motion detection of static
BS; (iii) relative motion, where both the camera and the
object move at the same time, creating dynamic backgrounds;
(iv) challenging weather conditions such as fog, rain, snow,
air or turbulence generates errors; (v) camouflage, where
camouflage regions occur when the foreground and back-
ground light intensity pixels are similar; (vi) occlusion, when
another object or fixed structure obstructs the object of
interest; (vii) irregular object motion - objects that suddenly
increase or decrease in speed; (viii) noise, possibly arising
from dirty lenses, dust, extremely high/low light intensity,
etc. which decrease the quality of the detection; (ix) bumps
and jitter artefacts which occur when the camera is moved;
(x) image compression, where lossy compression produces a
loss of information, with a consequent reduction in perfor-
mance.

TheOpenCV library [19] is one of themost frequently used
computer vision libraries and is the reference library for com-
puter or robot vision researchers. It includes several BS algo-
rithms. Stauffer and Grimson [20], and KaewTraKulPong and
Bowden [21] suggest modelling each pixel as a mixture of
Gaussians (MOG) where the Gaussian distributions of the
adaptive mixture model are analysed for determining which
ones are likely to belong to the background process. All
the pixel values that do not fit in the background distribu-
tions are considered foreground [20]. Zivkovic [22] proposes
an efficient adaptive algorithm using the Gaussian mixture
probability density (MOG2) for enhancing the MOG algo-
rithm. MOG2 selects automatically the number of compo-
nents per pixel which results in full adaptation to the observed
scene. Zivkovic and Heijden [23] identified recursive equa-
tions for updating the parameters of the MOG, and proposed
an enhanced algorithm using K nearest neighbours (MOG-
KNN) for the automatic selection of the pixel components.
The Gaussian mixture based algorithms (MOG, MOG2 and
MOG-KNN) show good robustness when exposed to noise
and losses due to image compression but lack sensitivity to
intermittent object motion, moving background objects and
abrupt illumination changes. Zeevi [24] proposed the CNT
algorithm, which performed better on the CDnet2014 and tar-
gets embedded platforms (e.g. Raspberry PI). The CNT uses
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minimum pixel stability for a specified period for modelling
the background; this can vary from 170 ms (default for swift
movements) up to hundreds of seconds (the 60s is the default
value) [25].

Godbehere and Goldberg [26] suggested a single-camera
statistical segmentation and tracking algorithm (GMG) by
combining per-pixel Bayesian segmentation, a bank of
Kalman filters and Gale-Shapley matching for the approx-
imation of the solution to the multi-target problem. The
proposed GMG algorithm is limited when processing video
streams susceptible to camouflage, losses due to image
compression and noise. Guo et al. [27] reported an adaptive
BS model enhanced by a local singular value decomposi-
tion (SVD) binary pattern (LSBP) for addressing illumination
changes. The proposed LSBP algorithm enhances the robust-
ness of themotion detection to illumination changes, shadows
and noise. However, it is less effective when processing video
streams susceptible to camouflage, losses due to image com-
pression and noise. More recently, in 2017, OpenCV released
an improved version of the LSBP algorithm, also known as
GSOC [15], [28], developed during the Google Summer of
code, which enhances the LSBP algorithm by using colour
descriptors and various stabilisation heuristics [14], [15]. The
GSOC algorithm demonstrates better performance on the
CDnet2012 and CDnet2014 datasets [14], [29] when com-
pared to other algorithms available on the OpenCV library.
The OpenCV’s BS algorithms (i.e. MOG, MOG2, CNT,
MOG-KNN, GMG, LSBP and GSOC) were designed for
modelling the dynamic background changes (i.e. about two
hundred frames are required to train the background model)
and classifying all the background outliers as foreground.
In this paper, the HSMD algorithm uses GSOC for per-
forming the first stage of BS before enhancement by the
SNN. The GSOC algorithm was selected over the other BS
algorithms available on the OpenCV library because it is the
algorithm that has performed better in the target datasets (i.e.
CDnet2012 and CDnet2014) [14], [29].

Spiking neural networks have also been exploited for
object motion detection. Wu et al. [30] proposed a bio-
inspired spiking neural network to detect moving objects
in a visual image sequence. The SNN was trained to
extract the boundaries of moving objects from grey images.
Cai et al. [31] expanded this work in [30] and mimicked the
basic functionality of motion detection with axonal delays.
These two SNN architectures [30], [31] were to perform basic
detection of moving objects, but neither can process moving
objects in real-time.

Lichsteiner and Delbruck [32] introduced the concept of
an Address-Event Representation (AER) silicon retina chip
capable of generating events proportional to the log intensity
changes. Farian et al. [33] proposed an in-pixel colour pro-
cessing approach inspired by the retinal colour opponency,
using the same AER concept. Brandli et al. [34] proposed
a new version of the AER camera reported by Lichsteiner
and Delbruck [32] called the dynamic, active pixel vision
sensor (DAVIS), which exploits the efficiency of the AER

protocol and introduces a new synchronous global shutter
frame concurrently. In this current paper, the authors used the
HSMD algorithm in conjunction with a DAVIS 240C cam-
era and a standard RGB device, and compared the resultant
performance in an object tracking scenario.

Kasabov et al. [35] proposed the deSNN that combines
the use of Spike Driven Synaptic Plasticity (an unsuper-
vised learning method for learning spatio-temporal repre-
sentations) with rank-order learning (supervised learning for
building rank-order models). The deSNN was tested on data
collected by an Address-Event Representation (AER) silicon
retina chip [32] (which generates spiking events in response
to changes in light intensity) for recognising moving objects.
Although able to recognise moving objects, the deSNN
was designed to work specifically with AER cameras.
Unlike the deSNN, the HSMD has been designed to work
with commercial-off-the-shelf RGB cameras. More recently,
Jiang et al. [36] proposed an SNN based on the Hough Trans-
form to detect a target object with an asynchronous event
stream fed by an AER camera. The algorithm [36] was able
to process up to 40.74 frames per second on an Intel i7-
4770 processor, accelerated by an Nvidia Geforce GTX 645.
However, it is unclear whether the algorithmwould workwith
regular commercial-of-the-shelf (COTS) cameras.

Similar to AER silicon retina chip, the HSMD algo-
rithm mimics the basic functionality of OMS-GC with
the difference that HSMD works with any COTS camera.
Moreover, the HSMD uses a 3-layer SNN to enhance the
GSOC algorithm, which has the best results when tested
against CDnet2012 and CDnet2014 datasets. To the best
of the authors’ knowledge, the HSMD is the first SNN-
based algorithm capable of processing image streams in
near real-time(i.e. 720 × 480@13.82fps [CDnet2014] and
720 × 480@13.92fps [CDnet2012]) as a consequence of the
parallel optimisations performed in terms of making use of
the 96 hyper-threaded cores available the Intel(R) Xeon(R)
Platinum 8160 CPU @ 2.10GHz that was used in this work.

III. HSMD ARCHITECTURE
The HSMD is a combined BS/SNN Network to create a
hybrid model for detecting motion, emulating the elementary
functionalities of the object-motion-sensitive ganglion cells
(OMS-GC) as described in [3].

The architecture of the HSMD is shown in Figure 1. There
are five layers to the overall architecture. Layer 1 performs
the DBS using the GSOC algorithm (described in section IV).
The resulting DBS frames are fed into Layer 2 of the Spiking
Neural Network (SNN), where the pixel intensity values are
converted into currents that are proportional to the light inten-
sity (see III-C). The DBS-converted currents are fed to the
Layer 2 neurons via a 1:1 synaptic connectivity. Layer 2 neu-
rons are synaptically connected to Layer 3 neurons, which
performs the first stage of motion analysis; Layer 3 neurons
connect to the Layer 4 neurons via 1:1 synaptic connectivity.
Layer 4 neurons perform precise motion detection. A median
filter filters their spikes to exclude random neuron activities.
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FIGURE 1. HSMD with (i) n × m image input followed by DBS, three spiking neuronal layers and filtering. Layer 1: DBS, Layer 2: pixel intensity to spike
events encoding, Layer 3: Motion stability, Layer 4: motion detection and Layer 5: filtering.

A. SPIKING NEURON MODELS
The Leaky-Integrate-and-Fire (LIF) was the spiking neuron
model used in this work because of its simplicity, compu-
tationally efficiency and suitability for processing images
in near real-time. The LIF spiking neuron model exhibits
similar, but less complex, dynamics compared to real bio-
logical neurons [37]. More complex spiking neuron models
are available, e.g. Hodgkin-Huxley, but require significant
computational resources and have a higher impact on the
computational performance (e.g. Izhikevich [38]). The LIF
neuron’s dynamics are described by equation 1.

τm
δVm
δt
= −Vm + RI (t) (1)

where τm = RC is the time constant, R the membrane
resistance,C themembrane capacitance,Vm(t) themembrane
voltage and I (t) is the current at time t . The membrane
potential Vm is reset to the reset membrane potential (EL)
and a spike event is generated when Vm(t) crosses the Vth
(threshold voltage).

B. INPUT LAYER: DBS AND REDUCTION
Each n × m image frame (i.e. camera, video sequence or
image sequences) is converted into grayscale.

The GSOC [28] delivers an adaptive DBS using colour
descriptors and various stabilisation heuristics [14], [15]
while processing the frames pixel-wise and leveraging the
parallelism inside OpenCV [14].

C. LAYER 2: PIXEL INTENSITIES TO CURRENTS ENCODING
Pixel intensity values are converted into proportional currents
and fed into the spiking neurons in Layer 2 via a 1:1 con-
nectivity. The Layer 1 neurons were trained to trigger spike
events proportional to the pixel intensity values, as described

by equation 2.

ic(x, y) = I (x, y).c (2)

where ic(x, y) is the corresponding current for the image
light intensity value I (x, y) at coordinates x and y, and c is
a conversion constant obtained experimentally (in our case,
c = 17.5).

D. LAYER 3: MOTION STABILITY
Layer 3 is used to perform motion stabilisation through the
creation of local buffers by delaying the propagation of spike
events. A delay is created when a given neuron of layer 2 con-
nects to a neuron in layer 3, before being passed to Layer 4,
instead of the direct Layer 2 to Layer 4 connection. Spike
events passing through Layer 3 are buffered by neurons in
Layer 3 for one simulation time-step (δt , in this work δt = 10
ms) and presented to the neurons in Layer 4. N[n] in the
following simulation time-step.

The neurons in Layer 2 are connected to the Layer 3
neurons via a 1:1 connectivity. Finally, the Layer 3 neurons
connect to the Layer 4 neurons via a 1:1 connectivity as
shown in Figure 2. All synaptic weights from Layer 2 to Lay-
ers 3 and 4 have a value of 1370 (obtained experimentally).

E. LAYER 4: MOTION DETECTION
The Layer 4 neurons receive synaptic connections from the
neurons in Layer 2 and Layer 3 via excitatory synapses
and exploit these spiking events to detect motion. Spike
events generated by Layer 4 neurons result from dynamic
changes between sequential image frames. Signals received
directly from Layer 2 neurons enable detection of changes
between the current image frame n and the previous image
frame n-1. In contrast, those routed via Layer 3 neurons
compare the image frame n-1 with the image frame n-2.
Layer 4 spike events are mapped into the corresponding
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FIGURE 2. HSMD connectivity. In this example, it can be seen that the
neuron 1 (N1) of each layer connects to the N1 of the subsequent layer.

area in the original image captured from the camera. The
synaptic weights obtained experimentally are 1370 for all
the synapses. The Layer 2 to Layer 4 weights were tuned
to forward all the spike events generated in Layer 2. The
Layer 3 to Layer 4 synaptic weights were tuned to produce
spike events from the Layer 4 neurons for each group of
two sequential spike events. The main goal is to give high
importance (larger weight) to new spike events (frame [n]
- frame [n-1]) and to give lower importance to older spike
events (frame [n-1] - frame [n-2]).

F. LAYER 5: FILTERING
The Layer 4 neurons’ spike events matrix is mapped into a
motion matrixMd of the same size as the captured image (i.e.
n × m). The events in the Md matrix are filtered using an
averaging filter described by equations 3 and 4:

H (u, v) =
1
u.v

w0, 0 . . . w0, u
. . . . . . . . .

wv, 0 . . . wv, u

 (3)

Yd (x, y) = Md (x, y) ∗ H (u, v) (4)

where Yd (x, y) is the filtered motion detection matrix,H (u, v)
is the averaging filter, u and v are the convolution window
length and height respectively, ∗ is the convolution operator,
w is the filter window.

IV. METHODOLOGY
The HSMD was implemented in C++ using the C++
Standard Template Library 17 (C++17) [39] (implementa-
tion of data structures), Boost 1.71 [40] (file management)
and OpenCV 4.5.0 [19] (which provides common computer
vision functionalities such as resize, capture and display
images) in Ubuntu 20.04 LTS.1

A. HSMD SETUP
The HSMD initial setup includes the following steps:

Step 1 - Select between live capture, video analysis or
image sequences: The user can opt to run the algorithm
directly on images being captured by the camera or provide
the path of a video or set of image sequences for motion
analysis.

1Available online http://releases.ubuntu.com/20.04/, last accessed
12/11/2020.

Step 2 - Create the Layer 2 to Layer 4 neural net-
work: Read the first image and compute the size of the
image. The number of neurons is computed automatically
from the dimensions of the first image in a sequence of
images.

Step 3 - Set the neuronal parameters: The LIF parame-
ters recommended in the references [41], [42] and frequently
used in LIF SNN circuits, were used to configure the SNN.
Therefore, the simulation was configured with a time step of
δt = 10 ms and the default neuron parameters as follows:
initial Vm = −55.0 mV, EL = −55.0 mV, Cm = 10.0 pF,
Rm = 1.0 MOhm, Vreset = −70.0 mV, Vmin = −70.0 ms,
Vth = −70.0 mV, τm = 10.0 ms, tref = 2 ms,
wsyn = 1555.0 (neurons L3 and L4) and wp2i = 8.0
(L2 neurons only).

Step 4 - Start the image acquisition: Images are collected
from devices, video streams or obtained from folders with
sequences of images while the HSMD algorithm is being
executed. The pseudo-code of themain algorithm is described
in Algorithm 1.

Algorithm 1 HSMD Main Algorithm Pseudo-Code
1: newImage = capture_image_camera
2: newImageGrey = colour2grey(newImage)
3: set_number_neurons_from_newImageGrey_shape
4: build_neuronal_network
5: load_pretrained_weights
6: while frames available do
7: reset_spike_events
8: newImage = capture_image_camera
9: newImageGrey = colour2grey(newImage)
10: newImageReduced = newImageGrey
11: dynSubImage = newImageReduced−previousImage
12: previousImage = newImageReduced
13: for I in dynSubImage do
14: if dynSubImage[I] < Threshold then
15: dynSubImage[I ] = 0.0
16: end if
17: currents = convPixel2Current(dynSubImage)
18: for i := 0 to timestep do
19: apply_currents_to_neurons_L2
20: compute_L2_neuron_spikes;
21: convert_L2_neuron_spikes_to_currents;
22: compute_L3_neuron_spikes;
23: convert_L3_neuron_spikes_to_currents;
24: compute_L4_neuron_spikes;
25: end for
26: spikes = get_sumSpikeEventsPerL4Neuron()
27: masked_spikes = applyAveragingFilter(spikes)
28: spikes = normalise(spikes)
29: display(newImage)
30: display(spikes)
31: end for
32: end while
33: Display_spike_rates
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B. DATASETS AND METRICS
1) DATASETS
The CDnet2012 [16] (cited more than 379 times2) and
CDnet2014 [17] (cited more than 300 times3) benchmark
datasets were designed for benchmarking BS algorithms.
While the HSMD algorithm has been designed as an object
detection algorithm and not a BS algorithm, nevertheless
these two datasets provide challenging scenarios for robust
comparable assessment of the proposed algorithm and net-
work. Within the two benchmark datasets tyhe HSMD was
compared with the following state-of-the-art BS algorithms
available on the OpenCV library: MOG [20], MOG2 [22],
MOG-KNN [23], GMG [26], LSBP [27], CNT [24] and
GSOC [15] methods. The OpenCV BS algorithms were used
because they are highly optimised, reliable, and publicly
available to anyone who wants to test or compare their algo-
rithms.

Each of the benchmark videos in the CDnet2012 [16] and
CDnet2014 [17] are considered under one or more challenge
categories as follows:

CDnet2012 and CDnet2014

• Baseline - reference videos which are relatively simple
to classify; some videos contain very simple movements
from the next four categories.

• Dynamic Background - videos that have both fore-
ground and background motion (e.g. water movement
and shaking trees).

• Camera Jitter - videos captured with cameras installed
on unstable structures.

• Shadow - videos containing narrow shadows from solid
structures or moving objects.

• Intermittent ObjectMotion videos that include objects
that are static for most of the time and suddenly start
moving.

• Thermal - videos that exhibit thermal artefacts (i.e.
bright spots and thermal reflections on windows and
floors).

CDnet2014 only

• Challenging Weather: Outdoor videos showing
very-low visibility winter storm conditions.

• Low Frame-Rate: videos capture at varying frame rates
between 0.17 and 1 fps;

• Night: includes traffic videos with low visibility and
strong headlights.

• Pan, Tilt and Zoom (PTZ): videos recorded with cam-
eras exposed to PTZ movements.

• Air Turbulence: videos filmed from distances of 5 to
15 km exhibiting air turbulence and frames distortion.

The BS algorithms were configured with the default OpenCV
settings [19] and compared against the HSMD algorithm.

2Retrieved from, https://ieeexplore.ieee.org/abstract/document/6238919,
last accessed: 12/10/2020.

3Retrieved from, https://ieeexplore.ieee.org/document/6910011, last
accessed: 12/10/2020.

FIGURE 3. Raw image frame (left) and its respective ground-truth (right).
The ground-truth images show the annotations using the datasets labels.
Adapted from [16].

The ground-truth provided by the datasets is composed of the
following labels [16], [17]:
• Static - grayscale value 0;
• Shadow - grayscale value 50;
• non-Region of Interest (RoI) - grayscale value 85;
• Unknown - grayscale value 170;
• Moving - grayscale value 255;

The static andmoving classes contain pixels that belong to the
background and foreground, respectively; The shadows, one
of the most challenging artefacts, should be classified as part
of the background; The unknown region should not be con-
sidered either background or foreground because it contains
pixels that cannot be accurately classified as background or
foreground. The non-ROI pixels serve to exclude frames from
being classified because some BS algorithms require several
pixels for the model to stabilise (i.e. create the background
model) and for preventing corruption by non-related activities
to the considered category [16], [17]. Figure 3 shows the
5 class regions.

2) METRICS
The average performance obtained for each category using
each BS method and the HSMD algorithms is characterised
via eight metrics, as shown below. TP is the number of
true positives, TN the number of true negatives, FN the
number of false negatives, and FP the number of false
positives [16], [17].

1) Recall (Re): Re = TP
TP+FN ;

Re: rank by descending order order;
2) Specificity (Sp): Sp = TN

TN+FP ;
Sp rank by descending order order;

3) False Positive Rate (FPR): FPR = FP
FP+TN ;

FPR rank by ascending order order;
4) False Negative Rate (FNR): FNR = FN

FN+TP ;
FNR rank by ascending order order;

5) Wrong Classifications Rate (WCR):
WCR = FN+FP

TP+FN+FP+TN ;
WCR rank by ascending order order;

6) Correct Classifications Rate (CCR):
CCR = TP+TN

TP+FN+FP+TN ;
CCR rank by descending order order;

7) Precision (Pr): Pr = TP
TP+FP ;

Pr rank by descending order order;
8) F-measure (F1): F1 = 2× PR.RE

PR+RE
F1 rank by descending order;
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FIGURE 4. Results obtained for each of the five categories common to both CDnet2012 and CDnet2014 datasets. Column A: baseline; B: camera
jitter, C: dynamic background; D: dynamic object motion; E: shadow and F: thermal. Row 1: RGB image; 2: ground-truth; and 3: HSMD binarised. The
raw images, shown in the first row, demonstrate the scenarios that can be found in both datasets. The corresponding ground truth images,
presented in the second row, show the 5 labels, namely, i) static [grayscale value 0], ii) shadow [grayscale value 50], iii) non-ROI [grayscale value
85], iv) unknown [grayscale value 170] and v) moving [grayscale value 255]. The corresponding binarised images generated by the HSMD are shown
in the third row.

TABLE 1. CDnet2012 overall results.

These eight metrics contribute to the overall average ranking
(R) and overall average ranking across all categories (RC).
AverageRanking (R):R = Re+Sp+FPR+FNR+WCR+CCR+F1

nMet ;
R rank by ascending order;
Average Ranking across all Categories (RC):
RC = RE+SP+FPR+FNR+WCR+CCR+F1

nMet ;
RC rank by ascending order;
where nMet is the number of metrics (8 in this case).

V. RESULTS
The HSMD was tested on both datasets under the same con-
ditions to ensure an accurate and rigorous comparison. The
results are presented both as overall results and per category
to understand better the specific performances obtained per
method. The overall results for each method are presented
in section V-A and the results per method and category in
section V-B.

Please note that in the tables (1 to 3), the ↑ means that the
highest score is the best result and the ↓ that the lowest result
is the best result. The best results are highlighted using light
grey for all the methods except the HSMD results highlighted
in dark grey. Re is the Recall, Sp is the Specificity, FPR
is the False Positive Rate, FNR is the False Negative Rate,
WCR is the Wrong Classifications Rate, CCR is the Correct
Classifications Rate, Pr is the Precision, F1 is the F score or
F-measure, R is the Average Ranking and RC is the Average
Ranking across all Categories.

Figure 4 shows the results obtained for each of the five
categories common to both CDnet2012 and CDnet2014.

A. OVERALL RESULTS
Tables 1 and 2 present the overall results obtained per method
and per metric, ranked by RC (average ranking across all
categories, first column) in ascendant order.
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TABLE 2. CDnet2014 overall results.

TABLE 3. Results per category.

From Table 1 (2nd column), it may be seen that the HSMD
algorithm ranks in first place across all eight methods with
which it is compared when tested on the CDnet2012 dataset.
Although the HSMD performed very well in 5 of the eight
metrics, it is essential to highlight theWCR, CCR and F1met-
rics results. The results show that the HSMD is sensitive to
object motion due to the highest correct counts and lowest
wrong counts rate, which contribute to getting the highest F-
score and the second-best Precision. Furthermore, it is possi-
ble to conclude that the HSMDhas improved the performance
of the GSOC algorithm compared to when it is used alone
when tested on the six categories of the CDnet2012.

The HSMD has also performed very well when tested on
the CDnet2014 (see Table 2).

Table 2 shows that the HSMD algorithm was ranked in
first place in the Average Ranking across all Categories
column when tested on the CDnet2014 dataset. The HSMD
performed very well in 7 of the eight metrics and exception-
ally well on the Precision metrics. It can also be seen that
there was a slight decrease in the HSMD performance when
tested on the eleven categories available on the CDnet2014 as
compared to the original six of the CDNet2012 dataset. The
result is to be expected; none of the methods has excellent
performance across all metrics.

B. RESULTS OBTAINED PER CATEGORY
The Average Ranking (R) for each of the methods per cate-
gory is shown in Table 3.

Figures 5 and 6 show the variation of the ranks obtained
per category and per method.

From the analysis of the results shown in Table 3 and
Figures 5 and 6 it is possible to infer that the HSMD is
sensitive to intermittent object motion, night vision, baseline
and turbulence; These categories share the fact that they relate
to moving objects that have high contrast, which is ideal for
sensing by the spiking neurons. The HSMD has improved
the results of the GSOC in 8 of the 11 categories, except for
the low frame rate, dynamic background and camera jitter
categories. It is also easy to visualise that the HSMD exhibits
the lowest R variation, which justifies why the HSMD was
ranked in the first place.

C. RESULTS ANALYSIS
The HSMD performed very severely in the dynamic back-
ground and low frame rate categories, suggesting that the
spiking neuron model is not ideal for distinguishing the type
of motion. i.e. the spiking neurons detect motion but are
unable to distinguish between a shadow or the object itself.
This result is probably because, in vertebrate retinas, only
the ganglion cells are spiking cells suggesting that distinction
between the main object and shadows is probably performed
by other non-spiking cells. Nevertheless, the creation of the
new approach incorporating both the GSOC algorithm and
the SNN, which emulates the basic OMS-GC functionality,
clearly improves the accuracy of the GSOC algorithm.
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FIGURE 5. CDnet2012 overall results per category and method. The highest bars show the higher ranks, and it is clear that none of the
methods had the best ranks in all the categories. Furthermore, it is possible to see that the HSMD achieved high ranks across all the
categories with the exception of dynamic background.

FIGURE 6. CDnet2014 overall results per category and method. The highest bars show the higher ranks, and it is clear that none of the
methods had the best ranks in all categories. Furthermore, it is possible to see that the HSMD achieved high ranks across most of the
categories except dynamic background and low frame rate.
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The CDnet2012 and CDnet2014 datasets are composed of
image files of different resolution, and accordingly, the pro-
cessing times vary. The HSMD takes approximately 72.4ms
(CDnet2014) and 71.9ms (CDnet2012) to process images
of 720 × 480 on a 96-cores Intel(R) Xeon(R) Platinum
8160 CPU @ 2.10GHz equipped with 792 GB of DDR4 and
12.7 TB of disk space. The slight variations are related
to other applications running in the background. Therefore,
the HSMD is capable of processing images of 720 × 480
at an average speed of 13.82fps (CDnet2014) and 13.92fps
(CDnet2012). Finally, the HSMD is the first hybrid SNN
algorithm capable of processing images at such a frame rate,
as far as the authors are aware.

VI. CONCLUSION AND FUTURE WORK
A bio-inspired hybrid spiking neural network (HSMD) has
been proposed to detect object motion and assess against
the CDnet2012 and CDnet2014 datasets. These incorporate
video sequences of many moving objects under various chal-
lenging environmental conditions and are widely used for
benchmarking BS algorithms. The CDnet2012 is composed
of 6 categories of movements, and the CDnet2014 augments
the initial 6 to 11 categories of movements. Eight metrics,
utilised as standard in the CDnet datasets, were used to
assess and compare the quality of the HSMD algorithm.
The HSMD algorithm performed overall best in both the
CDnet2012 and CDnet2014 while performing better than all
the tested DBS algorithms in the intermittent object motion,
night videos, thermal and turbulence categories, second best
in the bad weather category and the third-best on the baseline
and shadow categories. The comparatively good results are a
consequence of using the SNN for emulating the basic func-
tionality of OMS-GC, which improves the sensitivity of the
HSMD to object motion. The HSMD is also the first hybrid
SNN algorithm capable of processing video/image sequences
with near real-time performance (i.e. 720 × 480@13.82fps
[CDnet2014] and 720 × 480@13.92fps [CDnet2012]).
Future work includes optimising the HSMD algorithm to

detect and track motion in challenging scenarios (e.g. low
frame rate, dynamic background and camera jitter) and an
investigation to verify if the SNN improves the output for
all the remaining methods. Furthermore, the authors will also
test if the SNN can enhance other BS algorithms available
on the OpenCV library. The authors also aim to design
and implement the HSMD approach on Multi-Processor
System-on-Chip (MPSoC) technology and high-end Field-
Programmable Arrays (FPGA) hardware to accelerate the
HSMD algorithm and b) reduce the power consumption for
embedded applications.
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