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ABSTRACT The transient stability analysis of large-interconnected power systems using time-domain
simulations (TDS) is a significant challenge since it represents a huge computational cost. Besides, for
dynamic security assessment is required have a quick response. Consequently, recent approaches are relying
on using the wide-area measurement system combined with other techniques to perform transient stability
assessment and counteract the drawbacks of the TDS method. However, these approaches still requiring
to perform TDS to set initial parameters. This paper proposes a new algorithm to estimate the critical
clearing time (CCT) based on the eigenvalue calculation and the singular value decomposition using data
from wide-area measurement systems. The proposed algorithm uses the phase angles of the voltage phasors
measurements at the generation buses to represent the dynamics of the internal angles of the generators. First,
from a set of signals, a measurement matrix is formed using a sliding window. Then, a threshold based on
the maximum singular value and the dominant eigenvalue of the measurement matrix are computed. Finally,
the CCT is estimated using the dominant eigenvalue (the most energetic eigenvalue) and the threshold. The
proposed algorithm is evaluated using the Kundur four-machine system and New England 39-Bus system. Its
performance contrasts to the CCT calculated using the classical TDS. The simulation results demonstrated
acceptable precision of the CCT against TDS. Also, it presents robustness against the effect of the noise in
the measurements. Therefore, it is suitable for online applications.

INDEX TERMS Critical clearing time, eigenvalues, energy function, lyapunov function, power system
stability, single value decomposition, WAMS.

I. INTRODUCTION
Transient power angle stability is concerned with the ability
of the power system to maintain synchronism when subjected
to a severe disturbance, such as a short circuit on a trans-
mission line [1], [2]. The post-disturbance transient stability
assessment allows the network operators to take emergency
control actions and avoid instability [3], [4]. In the tran-
sient stability assessment (TSA), the critical clearing angle is
defined as the switching angle for which the system is at the
edge of instability. In other words, the synchronous generator

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiuye Sun .

is destined to become unstable if the fault is not cleared by the
time the synchronous generator reaches the critical clearing
angle, so-called critical clearing time (CCT) [5].

The importance of calculating the CCT of a given fault
is directly related to the capability of the power system to
transfer power, i.e., every millisecond saved in fault clear-
ing time (FCT) means more power can be transferred. For
instance, Eastvedt in [6] shows that a one-cycle reduction in
FCT on a particular transmission line for a specific power
system increased the power transfer by 250 MW, amounting
to about 15 MW per millisecond (see Figure 1).

Recent methods still using traditional techniques, such as
time-domain simulation (TDS) or sensitivity of parameters,
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FIGURE 1. An illustrative example of the relation between the fault
clearing time (FCT) and the power transferred, at 60 Hz., by Eastvedt [6].

to compute the CCT. For instance, [7] proposes a method
to derive an exact equation for the first-order sensitivity of
the critical clearing time concerning any system parameter.
However, new methods have assumed using the wide-area
measurement system (WAMS) as an advantage in TSA and
calculating the CCT of a fault. These methods use the mea-
surement of electrical variables instead of modelling the
power system by the DAEs [8]–[13]. In this sense, [14] intro-
duces a method to calculate CCT by computing the fault-on
trajectory at the stability boundary. The critical synchronous
generator is determined, and the least square minimisation is
computed to obtain the CCT.

Furthermore, [15] introduces a study where the whole
power system is represented with a single machine equiv-
alent model, and its parameters are estimated using online
measured data. Then, a graphical index, based on the tran-
sient energy approach, is introduced to estimate the transient
stability limit. While [16] proposes a non-parametric statistic
scheme to evaluate the stability margin online. This method
needs off-line learning that requires a database of operating
conditions and TDS to obtain 14 kinds of indicators and a
stability margin.

In addition to the use of WAMS, several methods have
adopted the singular value decomposition (SVD) technique
and other closely related methods, such as principal com-
ponent analysis (PCA) and proper orthogonal decomposi-
tion (POD). These techniques were implemented to analyse
the information of a high dimensional dataset and project
it onto a lower-dimensional space, with a minimum loss of
information [17], [18]. One of the first applications of these
methodologies in electric power systems is in voltage stability
assessment. SVD method has been used as a voltage security
index by examining the smallest singular value of the Jaco-
bian [19]. Moreover, recently SVD has been used to analyse
the information of the inverse Jacobian matrix to identify the
most sensitive buses of the power system by obtaining the
most significant singular values [20].

Meanwhile, in TSA, empirical orthogonal functions based
on POD are applied to extract dynamic patterns and phase
relationships among critical modes from WAMS [21]. Also,
it is combined with Hilbert analysis to extract the dominant
modes of oscillations [22], [23]. First, the empirical mode
decomposition has been used to extract modal components of
voltage and frequency. Then, the two-machine system equiv-
alent model is used to estimate the CCT [24]. Finally, PCA
is applied to detect and extract unusual dynamic events from
measured data [25]. The POD and Hilbert analysis approach
is also used to determine the characteristics of the torsional
shaft signals [26]. Moreover, the SVD method has been used
to identify and form coherent groups [27], [28].

On the other hand, the random matrix theory has become
a subject of study and application for a wide range of disci-
plines. But it is specially used for multivariate data analysis.
This methodology mainly follows two approaches: assum-
ing asymptotic convergence with infinite matrix size and
non-asymptotic convergence considering finite matrix size.
The application of random theory in power systems has been
growing; for instance, [29] uses random matrix theory to
create a framework for data-driven of smart grids for power
flow analysis and fault detection. Moreover, in [30], this
technique was used to detect events in the power system.

Even though the mentioned methods avoid computing the
DAEs, which describe the power dynamics, and meet the
objective of performing a transient stability assessment and
obtaining the CCT of a fault. Somemethods, such as [7]–[16],
require TDS information to set limits to evaluate energy
equations, increasing the computational burden. Likewise,
some others require knowing network topology and power
system parameters such as the impedance of the transmission
lines, inertia, and synchronous generators damping, leading
to low accuracy of the CCT when the system parameters are
unknown. Finally, other methodologies, such as [15], [24],
require representing the entire power system into a single
machine equivalent model, overlooking relevant information
of the power system. These drawbacks grow the need to
develop new methodologies to estimate the critical clearing
time of a fault.

The main objective of this research paper is to take advan-
tage of the measurements coming from the WAMS to per-
form transient stability assessment without performing the
DAEs or requiring the system parameters. It proposes an
algorithm to estimate the CCT of the power system based on
the computation of the eigenvalues and the SVD of spatial-
temporal data coming fromWAMS. First, the proposed algo-
rithm takes the electromechanical variables measured from
WAMS to construct a measurement matrix using a sliding
window. Then SVD technique is computed to extract themain
features of the measurement matrix and determine the range
of variation of the eigenvalues concerning the changes in the
power system. Afterwards, the maximum singular value is
used to establish the variation limit of the eigenvalues of the
measurement matrix. This variation limit is used to determine
whether the power system remains under stable operating
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conditions or unstable after a disturbance occurs. Moreover,
the information provided by the eigenvalue angle can be used
to determine whether the power system has a disturbance.
Finally, the maximum eigenvalue of the measurement matrix
and the variation limit are used to compute the CCT.

The significant contributions unfolding from this paper are
listed below:

1) An algorithm to compute the CCT of a power sys-
tem based on measurements is proposed. It does not
require knowing the power system parameters, creating
a model or computing the DEAs. It instead captures
the main characteristics of the system dynamics using
WAMS.

2) The proposed methodology uses the measurements of
voltage angle phasor instead of frequency, demonstrat-
ing suitability for stability assessment.

3) Two conditions to identify whether the system is stable
or unstable after a disturbance are defined based on the
Lyapunov surface and the most energetic eigenvalue of
the measurement matrix.

4) The proposed methodology is suitable for online appli-
cations since the computational burden required to
compute the eigenvalues and singular values are low.

5) The algorithm to compute the CCT is not affected by
the inherent noise of the measurements.

This paper is organised as follows: A review of the SVD,
covariance matrix and Lyapunov-type function are presented
in Section II. A discussion of the characteristics of the max-
imum singular values and the eigenvalues of a measurement
matrix and its interpretation is given in Section III. Also,
it describes the procedure used to create the measurement
matrix from a sliding window using measurements of elec-
tromechanical variables measured from WAMS. The pro-
posed algorithm is fully explained in Section IV, followed by
its application for three test systems with simulation results
presented in Section V. Also, a discussion of the main contri-
butions is introduced in Section VI. Finally, the conclusion is
given in Section VII.

II. MATHEMATICAL FOUNDATION
A. SINGULAR VALUES DECOMPOSITION
For a real measurement matrix,X∈ Rm×n, with rank r (m ≥ n
and r ≤ n), there exist orthogonal matrices U∈ Rm×m and
V∈ Rn×n such that

X = USVT (1)

where VT is the conjugate transpose of V and S is a
pseudo-diagonal and semidefinite matrix. The columns of U
are called the left singular vectors, the rows containing the
elements of the right singular vectors, and S contains the
singular values denoted as σ1, σ1,...,σr . Furthermore, σk >
0 for 1 ≥ k ≥ r and σk =0 for (r + 1) ≥ k ≥ n [31].

Generally, singular values reveal howmuch stretch or com-
press can present an eigenvector under a transformation by an
arbitrary matrix. Therefore, the matrix X maps a unit sphere

in m dimension space to an ellipsoid in r dimension space
with the directions indicated by left singular vectors andmag-
nitudes of singular values. The angle projection β is the angle
between the x1-axis and the new u1-axis; since the projection
is orthogonal, the angle between the maximum singular value
and the rest of the singular values (α) is π /2 rad. Moreover,
the maximum singular value of matrix X is the Euclidean
norm of the matrix [32]. To illustrate this, the mapping for
a matrix of m = 3, n = r = 2 and the maximum singular
value are shown in Figure 2.

FIGURE 2. Geometric interpretation of SVD mapping.

B. COVARIANCE MATRIX
Let X∈ Rm×n be a matrix containing a set of data discretised
in space and time, where m is the number of samples and n
is the number of observations. The covariance matrix of X is
defined as [18]:

C =
1
m

n∑
i=1
j=1

(xi − x̄i)T(xj − x̄j) (2)

where C is an n× n symmetric positive definite matrix and x̄
represents the mean of the vector x. Assuming the data have
a zero mean, the sample covariance is given by the following
expression:

C =
1
m
XTX (3)

and can be diagonalised as

C = VDVT (4)

where D is a diagonal matrix containing the eigenvalues
denoted as σ1,σ1,...,σr . The columns of V and VT contain the
right and left eigenvectors, respectively.

C. LYAPUNOV-TYPE FUNCTIONS
Consider the linearised system described by

ẋ = Ax (5)

A quadratic function

V (x) = xTPx =
n∑
i=1

n∑
j=1

pijxixj (6)
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is a Lyapunov-type function if the matrix P is positive def-
inite. Moreover, the derivative of (6) along the trajectories
of (5) is defined as

V̇ (x) = xTPẋ + ẋTPx = xT(PA+ ATP)x = −xTQx (7)

where Q is a real symmetric matrix definite by PA + ATP =
−Q and the origin is asymptotically stable if Q is positive
definite [33].

III. MATHEMATICAL FORMULATION
A critical aspect of an appropriate TSA is an accurate and
suitable model of the power system that contains the infor-
mation of the network topology and the electromechanical
parameters of the power systems elements. At present, having
a realistic full-detailed model of the power system represents
a significant challenge due to the constant change of the
network topology, the dynamics and uncertainties related to
the loads and the high complexity and non-linearity of the
models used in some power system devices, e.g., FACTS.

The emergence of WAMS offers advantages for analysing
the transient stability of the power system, e.g., the analy-
sis becomes more precise and decreases the computational
burden [9], [34]. However, due to the difficulty of measuring
the angle and frequency of the rotor in a real power system,
it is considered that the voltage phasor angle dynamics in
the generation buses, obtained fromWAMS, is representative
of the dynamics of the internal angle of the synchronous
generator, this in terms of the response to a disturbance (see
Figure 3) [22].

Therefore, in this paper, the set of variables obtained from
WAMS are the voltage phasors measured at the generation
buses, and there are required two kinds of measurements:

1) A set of reference signals: Set of signals for a stable
condition operation; this measurement is taken only
once to establish a reference of operation.

2) A set of working signals: This set of signals for any
operating condition of the power system.

A. MEASUREMENT MATRIX
The measurement matrix, X∈ Rm×n(m > n), containing
the angles of the voltage phasors obtained from WAMS,
is constructed using an m-sample sliding window, where m
is the number of samples of the sliding window and n is
the number of observed variables. This matrix is formed by
vectors, xi = [x(θi, t1)x(θi, t2) . . .x(θi, tm)]T, i = 1,2,. . . ,n,
which represent a set of snapshots obtained from the i-th
observed variable and t1, t2, . . . , tm, is the time at which the
observations are made. The set of data can be written as [21]:

X =
[
x1 x2 · · · xn

]
=

 x(θ1, t1) · · · x(θn, t1)
...

...
...

x(θ1, tm) · · · x(θn, tm)

 (8)

The set of spatial-temporal data that capture the main
characteristics of the system dynamics can be analysed by

FIGURE 3. Dynamic behaviour of the estimated internal angle of the
synchronous generator (δ) and voltage phasor angle (θ) measured at the
generation bus for a three-phase fault: a) Stable case, b) Unstable case.

different techniques, e.g., empirical orthogonal function anal-
ysis [21], [25]. The primary objective of these techniques is
extracting the information from the data set by projecting the
data in the low space.

To map out the data of the measurement matrix, X, into
a low dimension space and extract the main information,
the SVD can be computed; another way is computing the
covariance matrix. Both procedures are of interest since com-
puting (1) allows obtaining the maximum stretch that the
eigenvector of the matrix X can be experienced by com-
puting the maximum singular value σmax. Meanwhile, com-
puting the covariance matrix for a set of discretised data
brings information about the eigenvalues of X. Therefore,
the definition of the singular value decomposition given in
(1) is used to establish a relationship between the eigen-
values of a covariance matrix and the singular values of a
matrix. This relationship is mathematically represented as
follow

XTX =
(
USVT

)T (
USVT

)
= VS2VT (9)

According to (9), the right singular eigenvectors of X are
right eigenvectors of XTX. Moreover, the singular values of
X are found to be the square roots of the eigenvalues of
XTX. Now, using this deduction and substituting (9) in the
equation (3), the covariance matrix, C, can be expressed in
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terms of the singular values of the X, such as

C =
1
m
XTX =

1
m
(VS2VT) (10)

and it is easy to see that the i-th eigenvalue (λi) ofC is related
to the i-th singular value (σi) as follows

σi =
√
mλi (11)

On this basis, in this paper, the information of the measure-
ment matrix, X, will be extracted by computing the covari-
ance matrix using (3) and then C is diagonalised as in (4).
The maximum singular value (σmax), i.e., the singular value
related to the dominant eigenvalue, is obtained by using (11).
The energy of the i-th eigenvalue can be estimated Ei =
λi

/∑n
j=1 λj [22]. The eigenvalue of the matrix that contains

about 99% of the average energy is called the dominant
eigenvalue (λd ).

B. POWER SYSTEM ENERGY FUNCTION
Analogous to Lyapunov’s theory, power system stability can
be evaluated regarding energy since the kinetic energy of
the turbines and the potential energy stored in the inductive
branches can be represented as a power system energy func-
tion. Moreover, this energy function is always decreasing in
time due to the damping in the turbines; this characteristic
provides the most natural certificate of local stability [2].

In [35], it is proved that a Lyapunov-type function can be
constructed from the eigenvectors of a matrix, and it is inter-
preted as the energy stored in the eigenvalues of this matrix.
Since this paper proposes only using measurements obtained
from WAMS and the system is conservative, the measure-
ments can directly express the energy. Hence, if a Lyapunov-
type function is written using only the measurements, it can
be expressed as

V (x) = xT(ṽṽT)x ≥ 0 (12)

where ṽ is the left eigenvector corresponding to λd of the
matrix C from (3). Let V (x) = Tλ be a Lyapunov sur-
face for some Tλ > 0. Since matrix C is positive definite,
the condition in (6) holds, and V (x) → Tλ as t → ∞.
Furthermore, knowing thatC is positive definite and hence all
its eigenvalues are positive, the equation (7) can be evaluated
by

V̇ (x) = λdV (x) ≤ Tλ (13)

Now, to prove that (13) holds, it is needed to show that the
energy stored in the dominant eigenvalue is decreasing after
a disturbance, i.e., λd (t) → λd (t0) as t → ∞, where λd (t0)
is the energy stored in dominant eigenvalue in the pre-fault
period. Since the Lyapunov surface, V (x) → Tλ, represents
the boundary of stability in terms of energy, i.e., the boundary
of energy that the power system can dissipate after a distur-
bance, and λd (t) represents the energy of the power system
in each moment. Based on the Lyapunov surface and the
dominant eigenvalue, two conditions to identify whether the
system is stable or unstable after a disturbance are defined:

Condition 1: If λd (t) ≤ Tλ when t →∞, the power system
will be stable.
Condition 2: If λd (t) > Tλ when t →∞, the power system

will be unstable.
The above conditions can be illustrated in Figure 4. Once

the fault-on period begins, the system is gaining energy.
As more energy is gained, λd (t) approaches to the bound-
ary Tλ. The post-fault period starts when the fault is cleared,
and the energy stored in the dominant eigenvalue at this
time is represented by λd (tcl). Analogous to equal area crite-
rion [36], when λd (tcl) does not reach Tλ, the energy will be
dissipated and λd (tcl) → λd (t0). Otherwise, if λd (tcl) over-
comes Tλ, all the energy gained in the fault-on period cannot
be dissipated, and λd (tcl) cannot go back inside V (x) = Tλ.
Additionally, the critical clearing time, τ , is such time that
makes λd be at the boundary of Tλ and it tends to leave
V (x) = Tλ.

FIGURE 4. Visualisation of the energy of the power system as a function
of the dominant eigenvalue, λd .

IV. PROPOSED METHODOLOGY: CCT CALCULATION
BASED ON SVD
The proposed algorithm to estimate the CCT using SVD is
based on calculating a threshold that represents the energy
that can dissipate the power system and the observation of
the dominant eigenvalue. For eachm-sample sliding window,
a measurement matrix (X) is formed as described above, and
then the covariance matrix, C, is calculated. The covariance
matrix is used to extract the dominant eigenvalue and the
maximum singular value of the measurement matrix. First,
σmax is used to compute a threshold and set a boundary of
energy. Then, λd is observed in each sliding window. If a
disturbance occurs, λd is compared to the threshold. If the
dominant eigenvalue crosses the threshold, the algorithm
computes the CCT.

The proposed algorithm to estimate the CCT is performed
in two stages, and it is summarised in Figure 5.

A. STAGE 1: PROCEDURE TO TUNE THE THRESHOLD
From the definition of the SVD, it is deducted that the max-
imum singular value of a matrix expresses the maximum
energy that can take its associated eigenvalue. In this paper,
the energy of the power system is represented by the energy
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FIGURE 5. Flowchart of the proposed algorithm of the estimation of CCT
by using SVD.

of the dominant eigenvalue. Hence, to compute the boundary
of energy that the system can be dissipated, the maximum
singular value, σmax, is used for the un-faulted steady-state
operation (reference signals) to estimate a threshold Tλ.
Furthermore, the threshold is used to estimate the CCT and
as a limit of stability.

The maximum energy that the eigenvalue of a measure-
ment matrix can take (σmax) is defined by (11); this value is
used to compute a threshold. The threshold can determine if
the power system is stable after a disturbance by evaluating
Condition 1 and Condition 2 establish in Section III.B.

The set of reference signals of N -sample are used to com-
pute the threshold (Tλ), and the procedure is summarised as
follows:

1) From a set of reference signals containing the angles of
the voltage phasors measured at the generation buses
(θ01, θ02, . . . , θ0n), form a measurement matrix, X,
as in (8).

2) Compute the covariance matrix, C, using (3).
3) Obtain the maximum singular value (σmax) of C

using (11).
4) Repeat steps 1) and 2) along the entire reference signal.
5) Identify if all the maximum singular values (σmax,i) are

obtained, i.e., when k = N − (m−1), where N is the

number of samples of the reference signal and m is the
number of samples of the sliding window.

6) Compute the threshold as follows:

Tλ =
1
k

k∑
i=1

σmaxi (14)

This stage is only run once unless the parameters or the
topology of the power system are changed. In this case,
the threshold should be recalculated. The value of Tλ will be
used in Stage 2.

B. STAGE 2: CALCULATION OF THE CCT
Since Tλ represents the maximum energy that the power
system can dissipate and is based on the behaviour of the
angles in steady-state operation, the energy of λd is less
than Tλ when the power system is in steady-state operation.
Moreover, when the power system is disturbed, the energy of
λd takes larger magnitudes, which may or may not be below
the limit established by Tλ as this will depend on the type of
disturbance and its duration. Therefore, after a disturbance,
if the magnitude of λd is less than Tλ, Condition 1 is fulfilled,
ensuring that the power system remains stable. In contrast,
if λd takes magnitudes larger than Tλ, then Condition 2 is
fulfilled, and the power system will be unstable.

As mentioned above, the projection of a matrix into a low
dimensional space is orthogonal. Then, the angle between the
maximum singular value and the rest of the singular values is
π /2 rad; this is shown in Figure 2. Hence, it is analogous to
observe the angle between λd and the rest of the eigenvalues
of matrix C. This angle is computed, making the sum of all
eigenvalues different of λd as real part and λd as complex
part, the angle of this complex number is ϕ, and it is given in
radians. For the un-faulted power system, the angle between
λd and the rest of the eigenvalues ϕ holds π /2 rad. However,
whenever the power system has a disturbance ϕ 6= π /2.

Another essential characteristic to observe is the trajectory
of λd . After a fault starting, it is crucial to detect the point
in which the trajectory of λd change from concave to convex
or vice versa. The λd trajectory change can be identified by
computing the rate of change of λd as follows

1λd

1t
=
λdk − λd(k−1)

1t
(15)

where k represents the current sliding window and k-1 is the
previous slidingwindow.When1λd,k /1t crosses zeromeans
that the trajectory of λd has changed.

The CCT is determined as the time required for λd to cross
the threshold measured from the onset of the fault, calculated
as follows:

tCCT = tf − ti (16)

where ti is the fault starting time determined when ϕ 6= π /2.
After a change of trajectory, i.e., 1λd,k /1t = 0, the time tf
is determined as the time when the magnitude of λd reaches
the threshold calculated at Stage 1, i.e., when λd = Tλ.
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The procedure to compute the CCT of a fault is summarised
as follows:

1) From a set of working signals containing the angles
of the voltage phasors measured at the generation
buses (θ1, θ2, . . . , θn), form a measurement matrix, X,
as in (8).

2) Compute the covariance matrix, C, using (3).
3) Obtain the dominant eigenvalue (λd ) ofC and obtain ϕ.
4) If ϕ 6= π /2 go to the next step. Otherwise, return to

step 1).
5) Compute 1λd,k /1t using (15).
6) If1λd,k /1t = 0, go to the next step. Otherwise, return

to step 1).
7) If λd = Tλ, go to the next step. Otherwise, return to

step 1).
8) Obtain the fault starting time (ti), i.e., the first time

when ϕ 6= π /2.
9) Obtain the time tf .

10) Compute the CCT of a fault using (16).

V. SIMULATION RESULTS
This section is dedicated to demonstrating the suitability of
the proposed algorithm for calculating the CCT by using
the SVD. A sampling frequency of 2.048 kHz was used
along with a 256-sample sliding window. In addition, tree
illustrative test systems are used for demonstrative purposes
considering bolted three-phase fault as a disturbance.

The evaluation of the proposed algorithm performance is
carried out by calculating the CCT using the algorithm and
then is compared to that obtained from another method. The
percentage of variation (ξ ) on the CCT calculation is obtained
by the following equation:

ξ =
tCCT − tCCT0

tCCT0
× 100% (17)

where tCCT is the time calculated by the proposed algorithm
and tCCT0 is the time obtained by another method. A negative
sign indicates an underestimation of the CCT, i.e., there is
less time to take control actions based on the CCT. Otherwise,
if the sign is positive, there is an overestimation of the CCT.

The time-domain simulation methodology is carried out to
compute the baseline CCT (tCCT0) of the test system I and test
system III. Besides, the baseline CCT (tCCT0) of test system II
is computed using the methodology proposed in [24]. After-
wards, the performance of the proposed algorithm to compute
the CCT is assessed by computing equation (17).

A. TEST SYSTEM I
The test system I consists of 6 generators, 27 buses, 11 trans-
formers, 31 transmission lines and 15 loads. The nominal fre-
quency of the system is 50 Hz, and the voltage level is 54 kV.
Generator G1 represents the interconnection with the rest of
the transmission system; it is used as a reference busbar mod-
elled as a constant 400 kV voltage source. Besides, the trans-
mission lines are represented by theπ -model. The parameters
and the system diagram are described in Appendix A.

The threshold of Test System I, calculated using (14) N =
10241 and k = 9986, is Tλ =0.9739. The behaviour of
λd for the pre-fault system is practically constant at a value
of 0.9483, without exceeding the threshold.

Eight simulation cases are defined to evaluate the proposed
methodology. Each case considers the CCT calculated for
the critical transmission lines (see Table 1). For each case,
a bolted three-phase fault is applied to a transmission line, and
the transmission line is disconnected to eliminate the fault;
Case 8 is representative of Test System I.

TABLE 1. Results of calculation of the CCT of a fault for Test System I.

FIGURE 6. Time response of λd after a fault for a stable event (Test
System I (Case8)): a) Magnitude of λd , b) Angle, ϕ, between λd and the
rest of eigenvalues, c) Identification of λd trajectory change.

Case 8 is shown in Figure 6 for the faulted transmission line
L15. The CCT calculate is tCCT =0.315 s. The fault starting
time is ti =0.9771 s, and the λd trajectory change is detected
at t = 1.09 s, which is the time at the trajectory of λd has
the maximum amplitude. In this case, the magnitude of λd
oscillates and stabilises below the threshold, so Condition 1 is
fulfilled, and the power system is stable.

Table 1 presents a summary of the results obtained from
the calculation of the CCT compared with those obtained by
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TDS. The percentage of variation (ξ ) obtained is also pre-
sented. For this test system, the results obtained for the CCT,
using the proposed algorithm, are close to those obtained by
TDS. The percentage of variation for all cases is negative, and
the absolute mean of ξ is 7.96 %, and the CCTs obtained by
the proposed method does not overcome those calculated by
TDS. Therefore, it can be considered that the algorithmworks
correctly, and it is reliable.

B. TEST SYSTEM II: KUNDUR FOUR-MACHINE
TEST SYSTEM
The two areas, Kundur four-machine test system, is used to
evaluate the proposed algorithm. The nominal frequency of
this test system is 50 Hz, and the voltage level is 230 kV. Area
1 contains generators 1 and 2 and transfers power through a tie
line to area 2, which contains generators 3 and 4. The detailed
model and the system parameter was obtained from [2], [24].

For this test system, a bolted three-phase fault was simu-
lated at Bus 8 for various power transfer levels, and after a
specific time, the fault is self-clearing.

The threshold of Test System II, calculated using (14) with
N =10241 and k = 9986, is Tλ =0.4359. The behaviour of
λd for the pre-fault system is practically constant at a value
of 0.19, without exceeding the threshold.

Four cases are introduced to evaluate the proposedmethod-
ology for four levels of power transfer. Case 2 is representa-
tive of Test System II for a stable and unstable event.

Figure 7 shows Case 2 for a stable event. The level of
power transfer for this case is 332 MW. The CCT calculate
is tCCT =0.325 s. The fault starting time is ti =0.8755 s, and
the λd trajectory change is detected at t = 1.082 s, which is
the time at the trajectory of λd has the maximum amplitude.

FIGURE 7. Time response of λd after a fault for a stable event (Test
System II (Case 2)): a) Magnitude of λd , b) Angle, ϕ, between λd and the
rest of eigenvalues, c) Identification of λd trajectory change.

In this case, the magnitude of λd has a damped oscillates and
stabilises below the threshold, so Condition 1 is fulfilled, and
the power system is found to be stable.

Otherwise, Case 2 for an unstable event is shown in
Figure 8. For this case, the fault starting time is ti =0.8755 s
and the λd trajectory change is detected at t = 2.409 s. If it
is compared the time when λd trajectory change with the
CCT obtained for a stable event for Case 2, it is concluded
that the power system will be unstable because t = 2.409 s
exceeds the time of CCT estimated for a stable event. More-
over, the magnitude of λd does not cross the threshold, Tλ,
therefore Condition 2 is fulfilled, and the power system is
found to be unstable.

FIGURE 8. Time response of λd after a fault for an unstable event (Test
System II (Case 2)): a) Magnitude of λd , b) Angle, ϕ, between λd and the
rest of eigenvalues, c) Identification of λd trajectory change.

TABLE 2. Results of calculation of the CCT of a fault for Test System II.

Table 2 presents a summary of the results obtained from
the calculation of the CCT compared with those obtained
by the method proposed in [24]. The percentage of variation
obtained is also presented. For Case 4, the proposed algorithm
does not estimate the CCT because the power transfer has
increased considerably with respect to Case 1 and the thresh-
old, Tλ, cannot be detected when λd crosses it. For this case,
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Tλ must be recalculated, using (14), for the new steady-state
operation.

C. TEST SYSTEM III: NEW ENGLAND 39-BUS SYSTEM
The New England 39-Bus system is used to evaluate the pro-
posed algorithm. The detailed model and the system param-
eter was obtained from [37]. For this test system, a bolted
three-phase fault is applied to a transmission line and the
transmission line is disconnected to eliminate the fault.

For this test system, the threshold calculated using (14)
N = 10241 and k = 9986 is Tλ 0.7734. The behaviour
of λd for the pre-fault system is practically constant at a
value of 0.0957, without exceeding the threshold. To appraise
the proposed algorithm, five cases are defined. Each case
considers the CCT calculated for the critical transmission
lines.

FIGURE 9. Time response of λd after a fault for a stable event (Test
System III (Case 3)): a) Magnitude of λd , b) Angle, ϕ, between λd and the
rest of eigenvalues, c) Identification of λd trajectory change.

Figure 9 shows Case 3 for a stable event. The estimated
CCT is tCCT =0.202 s. The fault starting time is ti =0.8755 s,
and the λd trajectory change is detected at t = 1.023 s, which
is the time at the trajectory of λd has the maximum amplitude.
In this case, the magnitude of λd has a damped oscillates and
stabilises below the threshold, so Condition 1 is fulfilled, and
the power system is stable.

Table 3 contains the CCTs estimated by the proposed
algorithm, and these are compared with the CCTs obtained
by the TDS using DIgSILENT Power Factory. In this test
system, the sign of the percentage of variation is negative for
all cases, which means that there was no overestimation of
the CCT. The absolute mean of ξ is 9%.

VI. DISCUSSION
Closely methods to estimate the CCT has been found in
the literature. Although [7] derive an exact equation for the

TABLE 3. Results of calculation of the CCT of a fault for Test System III.

first-order sensitivity of the critical clearing time without
computing the DAEs of the power system, it still requires the
TDS to obtain the initial critical clearing time and the post-
fault trajectory. On the other hand, [14] compute the fault-on
trajectory at the stability boundary to detect the critical
generator and then obtain the CCT by computing the least
square minimisation. Further, [15] approximates the whole
power system with a single machine equivalent model, then
estimates the transient stability limit by a graphical index
based on the transient energy approach. While [16] proposes
a non-parametric statistic scheme to evaluate the stability
margin online.

The main advantage of the proposed algorithm, in contrast
to the algorithm proposed in [24], is that it does not need to
use Hilbert-Huang techniques since these techniques require
global information for the analysis [22], [23], [26]. Mean-
while, the proposed methodology only uses local temporary
information, and it is suitable for online applications. Besides,
this method does not use an equivalent of the power system
as in [15] and [24]. Moreover, the proposed algorithm does
not calculate the DAEs of the power system or use the TDS
to set initial parameters, unlike [7], [14]–[16].

From the results obtained from the numerical studies, it can
be noticed that the smallest CCT of a fault can be used as an
index of stability since this gives a view of the global transient
stability of the power system, i.e., this time represents the
distance to instability.

Another aspect that is important to highlight is the com-
putational complexity of this algorithm. The threshold and
the critical clearing time estimation was performed on a
3.80 GHz AMD Ryzen 9 3900X 12-Core Processor in the
MATLAB R2021a environment. For the New England test
system, in [7], the overall computation time was 28 s. Mean-
while, the total computation time for the proposed algorithm
is 0.98 s (including the calculation of the threshold), and for a
single sliding window, the time is 0.033 s. The complexity of
the proposed algorithm depends on the dimension of the mea-
surement matrix, i.e., the number of synchronous generators
in the power system.

Moreover, for verifying that the proposed algorithm is
not affected by the presence of noise, the measured sig-
nals from Test System II, Case 2, are injected with noise,
with a magnitude about 0.58 degrees (signal-to-noise ratio

VOLUME 9, 2021 126007



M. N. Acosta et al.: Single Value Decomposition to Estimate CCT of Power System Using Measurements

FIGURE 10. Time response of λd after a fault for a stable event with the
presence of noise (Test System II (Case 2)): a) Magnitude of λd ,
b) Angle, ϕ, between λd and the rest of eigenvalues, c) Identification of
λd trajectory change.

of 40 dB) [38], [39]. When the system is operating in a
steady-state condition, λd has a small variation due to the
noise (see Figure 10a) compared to the behaviour without
noise (see Figure 8a). Despite this, it reflects the presence
of a disturbance by having a significant change of ξ and
correctly identify the moment where the disturbance starts
(see Figure 10b). Otherwise, when the system has a transient
response, the presence of noise in the data is considerably
attenuated (see Figure 10a) such that the behaviour of λd
is practically the same as that obtained in the case where
data does not contain noise, and the λd trajectory change is
correctly identified.

The critical cleaning time estimated by the algorithm pro-
posed for the noise signal is 0.325 s. In comparison with
the time calculated by [24], it results in a percentage of
variation, ξ , equal to that obtained for the signal without
noise (see Table 2). This indicates that the presence of noise
does not significantly affect the performance of the proposed
algorithm.

VII. CONCLUSION
The proposed algorithm for estimating the CCT of a fault
showed results with acceptable precision and correctly calcu-
lates the CCT for different test systems in various scenarios.
Furthermore, the percentage of variation obtained concerning
the TDS method and the method proposed by [24] does not
exceed 10 %, so the proposed algorithm is comparable to
these methods.

However, unlike the TDS method, the proposed algorithm
presents considerable advantages in contrast to other methods
in which some parameters such as losses in the transmission
lines, realistic models of the elements of the power system

FIGURE 11. Test System I: Single-line diagram of the 6 generators and
27 buses system.

TABLE 4. Parameters of the transmission lines of Test System I.

and the controls of the synchronous generators are neglected.
Thismethod does not require knowing the system parameters.
The measured variables of interest contain all the information
on the dynamics of the angle of the rotor of the synchronous
generators. It allows the proposed algorithm to provide more
realistic and accurate results. Also, the smallest CCT of a
fault can be used as an index of stability since this gives a
view of the global transient stability of the power system.
The threshold was formulated to depend only on the stable
operating condition of the power system. Further, having
an analytical expression for the calculation of the threshold
allows it to be adaptable.

Moreover, the effect of noise in the measured data does
not affect the correct estimation of the transient stability
and the calculation of the CCT. However, this effect and

126008 VOLUME 9, 2021



M. N. Acosta et al.: Single Value Decomposition to Estimate CCT of Power System Using Measurements

other drawbacks of the measurement of data will be studied
thoroughly in future research.

APPENDIX A
PARAMETERS OF THE TEST SYSTEM I
The turbine-governor system of the synchronous generators
is modelled as IEEEG1, and the automatic voltage regulators
are modelled as a static excitation type ST1A [40]. The
single-line diagram is presented in Figure 11.

Table 6, Table 5 and Table 4 contain the parameters of the
transmission lines, synchronous generators and transformers,
respectively.

TABLE 5. Parameters of synchronous generators of Test System I.

TABLE 6. Parameters of transformers of Test System I.
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