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ABSTRACT Wind turbine fault diagnosis and early warning are important to reduce wind farm operation and
maintenance costs and improve power generation efficiency. In this paper, we take the Supervisory Control
andData Acquisition (SCADA) data as the research object and research wind turbine health data purification,
fault diagnosis model building, and unit operation status monitoring from a completely data-driven perspec-
tive. Firstly, for the problem that Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm cannot identify high-density anomalous data. An anomaly data processing scheme combining a
density clustering algorithm and normal power interval estimation is proposed. The accuracy of extracting
health data from wind turbines is improved. Secondly, to address the problem that the eXtreme Gradient
Boosting (XGBoost) algorithm has more hyperparameters, we propose an optimization scheme based on the
Bayesian Optimization Algorithm (BOA) and tree model for feature weight measurement, which improves
the efficiency and accuracy of intuitive mapping from SCADA system monitoring data to fault features.
Finally, a wind turbine condition monitoring scheme based on the information fusion of multi-characteristic
monitoring parameters is designed. The wind turbine condition monitoring scheme proposed in this paper
can warn generator system failure 3.67 hours, gearbox system failure 5.17 hours in advance, and hydraulic
system failure 2.33 hours in advance.

INDEX TERMS Wind turbine, fault diagnosis, fault warning, XGBoost, SCADA.

I. INTRODUCTION
In recent years, with the continuous deterioration of the
global ecological environment and the gradual depletion of
fossil fuels, wind power generation has gradually become a
new power generation mode replacing the traditional power
generation mode in the world [1], [2]. Because most wind
turbines are installed in remote areas rich in wind energy,
such as mountains, wilderness, islands, or even the sea, they
are subject to extreme temperature differences and strong
wind gusts throughout the year, resulting in a much higher
failure rate than other electromechanical equipment [3], [4].
The traditional wind farm unit maintenance strategy is highly
dependent on regular maintenance and post-maintenance and
can only deal with the monitoring and early warning of part of
the wind farm unit [5], [6]. At the same time, due to the long
deployment cycle of spare parts, the fault maintenance cost of
large-scale wind farms remains high, which has a significant
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impact on the economic benefits of wind farms [7], [8].
Due to the complex structure, variable operation conditions,
and strong coupling between components of wind turbines,
failures occur frequently and even chain phenomena, leading
to significant accidents such as combustion and collapse of
wind turbines [9], [10]. Suppose the fault of the wind turbine
can be accurately diagnosed and estimated and its develop-
ment trend and the potential fault symptoms can be found
early [11], [12]. In that case, the optimal maintenance strategy
can be developed to reduce the failure rate to ensure the
safe and efficient operation of the wind turbine. At the same
time, through the fault trend warning, to avoid major property
damage, to protect personal and equipment safety. However,
the precise and general predictive wind power operation and
maintenance technology are not yet mature, and the contra-
diction between the growing wind power installed scale and
the relatively lagging wind field operation and maintenance
technology is becoming more and more acute [13], [14].

At present, many results have been achieved in the study
of fault diagnosis and prediction of wind turbines [15],[16].
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Adouni uses multi-layer ANN technology to build a fault
detection and identification method for wind turbines with
low voltage traverse, which speeds up fault detection and
enhances the robustness and anti-interference ability of fault
identification [17]. However, the large amount of training
data and long modeling time of the ANN algorithm, and
the drawback that the convergence and reliability of the
ANN algorithm are difficult to guarantee to restrict its fur-
ther development. Qin uses the principal component analy-
sis algorithm to reduce the dimension of multi-dimensional
target characteristic parameters to one-dimensional as the
classification label of SVM to build a concise fault diag-
nosis model and realizes the diagnosis of gearbox bearing
faults and generator bearing faults [18]. Although SVM has
outstanding advantages in solving decision problems with
small, high-dimensional nonlinear data samples, it is not good
at handling multi-classification problems with large data
samples, and the SVM algorithm does not have uncertainty
management capability. Based on SCADA data, Wang built a
prediction model of gearbox oil pressure with the deep neural
network, which could give an early warning of gearbox faults
according to the change of gearbox oil pressure [19]. Roshan
Kumar provides a review of the signal processing method
for detecting wind turbine damage, verifying the advantages
and disadvantages of the signal processing method for spe-
cific types of wind turbine damage [20]. The fault diagnosis
method based on signal processing has achieved good results,
but in the process of implementation, the signal process-
ing method will become very complicated when considering
complex operating conditions. At present, for the fault warn-
ing methods of critical parts of wind turbines, most of the
research is carried out based on historical experience by arti-
ficially selecting a certain characteristic monitoring quantity.
However, the wind turbine is a strong coupling system with
multiple sub-systems working together. The single parameter
information content is limited, so it is difficult to reflect its
abnormal state fully. In addition, when setting the fault warn-
ing threshold of operating characteristic parameters, most
methods artificially set a fixed threshold according to expert
experience, which leads to an intense subjectivity of model
establishment and reduces the credibility and generalization
ability of the model.

In order to realize the fault diagnosis and fault warning
of the wind turbine, this paper takes SCADA system data of
the actual wind field as the research object. The research on
health data purification, fault diagnosis model construction,
and operating state monitoring of wind turbines is carried out
from a complete data drive. Firstly, taking the ‘‘wind speed
power’’ curve of wind turbines as the breakthrough point,
the distribution characteristics of abnormal data in the actual
operation data of wind turbines are studied. Then, an anomaly
data processing scheme combining density clustering algo-
rithm and normal power interval estimation is proposed,
which makes up for the failure of the DBSCAN algorithm
to identify high-density anomaly data. At the same time,
to determine the correlation between fault information and

unit monitoring parameters without relying on prior knowl-
edge, the feature weight measurement method based on the
tree model was studied, and the manifestation forms of differ-
ent faults in SCADA monitoring parameters were measured
from the perspective of data analysis. Finally, to solve the
problem that a single monitoring parameter has a low infor-
mation content and is difficult to fully reflect the abnormal
state of the system, the method of integrating characteristic
parameters from different sources and different scales into
operation state indicators is studied according to the typical
weight. The consistent description of the operation state of the
wind turbine is obtained from many monitoring parameters.
To solve the problems of strong subjectivity, weak general-
ization ability, and easy false alarm caused by artificial fixed
threshold setting, a dynamic threshold setting scheme based
on adaptive principlewas designed, which thoroughly consid-
ered the operation situation of the unit in the previous time,
and could effectively realize the early warning of various
faults.

The rest of the article is shown below. Section 2 introduces
the algorithm analysis of abnormal data processing, fault
diagnosis, and feature analysis, fault warning method, etc.
The experimental results of each algorithm are described in
Section 3. Finally, section 4 is the conclusion and the next
step.

II. ALGORITHM ANALYSIS
A. EXCEPTION DATA HANDLING SCHEME
As the wind turbine generator is in normal operation for a
long time, there is a massive gap between the storage capacity
of fault data and health data in the actual SCADA system
of the wind field. In order to reduce the repetitive fault data
mining work and avoid too much reliance on relevant prior
knowledge, this paper uses the health data of wind turbines
to establish a normal model. In this way, the high-quality
health data samples screened from the original SCADA data
set are the basis for subsequent studies. In the actual operation
of a wind turbine, due to the uncertainty of wind speed and
direction as well as the constraints of variable speed constant
frequency electric control, the operating state of the wind
turbine usually switches randomly and frequently between
different operating conditions, which will produce abnormal
data such as shutdown data, power limit data, fault data, and
outlier data. As shown in Figure 1(a), the common anomalous
data are as follows:

1) Downtime data: The wind turbine’s measured wind
turbine is greater than the cut wind speed, and the
output power is 0 for a continuous period of time, which
is mainly caused by artificial wind abandonment or
communication failure.

2) Limited power data: The output power of the wind
turbine is distributed below the ideal power curve and
does not change with the change of wind speed (or
changes little). Such abnormal points aremainly caused
by the artificial control of the wind turbine to limit the
output.
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3) Noisy data: Data points are randomly distributed out-
side the overall data points, and such abnormal matters
are generally caused by wind turbine faults or noise.

By comparing Figure 1(b), it can be seen that the distri-
bution densities of the three kinds of abnormal data are all
low. Among them, the noise data has no fixed aggregation
range and presents a random and discrete distribution. The
downtime data and the power limit data fluctuate around a
certain power value, and the longitudinal height of the power
distribution is about 20kW ; That is, the power fluctuation
range is about ±10kW . Therefore, the DBSCAN clustering
algorithm based on density can be considered to identify
low-density discrete abnormal data.

FIGURE 1. ‘‘Wind speed–power’’ distribution diagram of the unit with
abnormal data.

The process of abnormal data processing scheme based on
normal power interval estimation proposed in this chapter is
as follows:

1) DBSCAN algorithm was used to eliminate low-density
discrete noise data.

2) Calculate the densitymidpoint of each partition accord-
ing to the power partition of the data.

3) The least-square algorithm was used to fit the density
midpoint [21], which was used as the ideal power curve
of wind turbine operation.

4) According to the 3-Sigma criterion, the normal power
range is set with the ideal power curve as the
center [22].

5) Remove abnormal data outside the normal power
range.

When partitioning data according to power, set the partition
with 20kW as the step size, as shown in Figure 2:

FIGURE 2. Schematic diagram of power partition.

After the partition is completed, the mean wind speed in
each section is calculated and denoted as x̄i; the standard
deviation of wind speed is indicated by σi, the power means
within this partition is marked as ȳi, the density midpoint
within each section is marked as (x̄i, ȳi). Calculate the mean,
standard deviation of each section and mark it as σ :

σ =
1
n

n∑
i=1

σi (1)

In Equation 1, n is the total number of partitions, i repre-
sents each partition, σi is the standard deviation of wind speed
in each partition, and σ is the mean value of the standard
deviation of the partitions.

Since the output power of the wind turbine generator is
proportional to the cubic power of the wind speed, the least
square method is used to carry out cubic polynomial fitting
for each center point, and the ideal output power formula of
the wind turbine generator is obtained.

y = a0 + a1x + a2x2 + a3x3 (2)

In Equation 2, y is the wind speed, x is the output power,
and a0, a1, a2,and a3 are the fitting coefficients.
According to the above analysis, wind turbines’ ‘‘wind

speed and power’’ data are approximately normally dis-
tributed around the ideal power curve, and the farther away
from the perfect power curve, the less the data distribution.
According to the 3-Sigma criterion, in a normal distribu-
tion, the probability of data distribution within three standard
deviations of the mean value is about 99.73%. Therefore,
the normal data distribution interval is set as follows:

[y(x − 3σ ), y(x + 3σ )] (3)
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In equation 3, y is the wind speed, x is the output power,
and σ is the mean of the standard deviation of the partition.
The interval shown in the equation estimates the normal

power interval, and the probability of data exceeding the gap
is less than 0.27%. Therefore, data that is not in this range can
be identified as abnormal values. Finally, the normal power
interval boundary is taken as the threshold, and the outliers
outside the gap are deleted to obtain relatively pure healthy
data samples.

B. FAULT DIAGNOSIS AND FEATURE ANALYSIS
At present, most of the wind turbine fault diagnosis meth-
ods based on machine learning generally have the problems
of time-consuming training and flawed interpretation of
results [23]. In order to solve this problem, this paper builds
a fault diagnosis model based on the BOA-XGBOOST algo-
rithm. It analyzes the correlation between fault information
and the monitoring parameters of the SCADA system based
on the tree model. This will pave the way for the follow-up
fault warning research.

1) FAULT DIAGNOSIS DATA SET CONSTRUCTION
The actual output power of wind turbines is not uniformly
distributed within the rated power range, and most robust data
are distributed in the low power range. If only a segment of
operation data is randomly intercepted from the SCADA data
of wind turbine as a normal data set. In this way, the data may
only be concentrated within a specific power range, resulting
in the normal data set being patchy and unable to reflect
wind turbines’ actual operation fully. Figure 3 shows the
power data distribution density histogram of a wind turbine
generator in a wind farm in 2019, divided into ten intervals
according to active power. The horizontal axis represents the
output power, and the vertical axis represents the distribution
probability of data within the power range.

In order to make the health data set genuinely reflect the
actual operating conditions of all wind turbines in the wind
farm, the historical SCADA data of 10 stable operating units
were randomly selected from the wind farm in this chapter.
First of all, abnormal data were removed to obtain health
data samples. Then, according to the interval division and
data distribution density, as shown in Figure 3, a moderate
proportion of health data samples is selected to build a health
data set with a total of 1000 data pieces.

In this chapter, according to the working principle and
structural characteristics of wind turbines, based on the statis-
tics of the fault categories with high frequency, the frequently
occurring faults in wind turbines are divided into generator
system faults, gearbox system faults, and hydraulic system
faults for fault diagnosis and feature analysis. The fault cate-
gories of the three types of faults are shown in Table 1:

The faults of wind turbines are primarily the result of
the deterioration of parts. State deterioration is a process
from quantitative change to qualitative change. The data in
a period of time before the occurrence of the fault contain
the characteristic information of the fault. Finally, the fault

FIGURE 3. Histogram of active power distribution density.

diagnosis model modeling data set constructed after corre-
sponding labels were marked for different data sets is shown
in Table 2:

2) MULTI-CLASSIFICATION MODEL BASED ON
BOA-XGBOOST ALGORITHM
The nature of the fault diagnosis model is a multi-
classification model, which classifies unknown data samples
by learning different data characteristics of known categories.
XGBoost algorithm can efficiently deal with multiple clas-
sification problems, but it is difficult to tune due to a large
number of super parameters. In order to solve this problem,
this chapter adopts BOA to find the combination of super
parameters with the highest classification accuracy. The pro-
cess is shown in Figure 4:

The main steps of the BOA-based approach to adjusting
XGBoost’s hyperparameters are shown in Figure 4:

1) Set the super parameter space. The XGBoost algo-
rithm contains three types of hyperparameters: generic
parameters, model parameters, and learning task
parameters. Table 3 shows the range of super

TABLE 1. Alarm contents of each fault category.
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parameters and the meaning of parameters set in this
chapter that greatly impact model performance.

TABLE 2. Fault diagnosis model modeling dataset.

1) Determine the prior probability distribution. BOA is
a process of constantly updating the initial distri-
bution. The primary distribution of hyperparameters
and classification accuracy need to be determined
before optimization. The classification model was
trained by randomly selectingmultiple combinations of
super parameters, and the prior distribution relationship
between the varieties of various parameters and the
accuracy was obtained.

2) BOA optimization process. In the process of super
parameter optimization, the Gaussian process is used
as the probability function to represent the unknown
optimal parameters, starting from the original priori
obtained in the previous step. Then, the acquisition
function is used to select the unevaluated hyperparam-
eter combinations from the parameter space around the
currently found optimal hyperparameter combinations,
and the information is increased through iteration, and
the prior is constantly revised. Finally, at the end of
the iteration, the hyperparameter of the model with the
highest accuracy was selected as the optimal hyperpa-
rameter combination. Finally, the classification model
is trained by various super optimal parameters to obtain
the final model.

When training the classification model, the modeling data
set of fault diagnosis model is divided into the training set
and test set according to the ratio of (8:2), which are used for
training and evaluation model respectively. During the train-
ing of the model, the XGBoost algorithm converts multiple
classification problems into multiple dichotomy problems,

TABLE 3. XGBoost parameter setting range and meaning.

FIGURE 4. BOA-XGBoost model construction process.

calculates the predicted score values of all leaf nodes, and
converts them into probability values by Softmax layer after
weighted sum, and then classifies them according to the
probability values. When using the test set to evaluate the
model, the accuracy rate is adopted as the evaluation index:

Accuracy =

n∑
i=1

TPi

n∑
i=1
(TPi + FPi)

∗ 100% (4)

In Equation 4, n is the total number of categories, and
in this chapter n = 4, TPi denotes the number of correct
classifications of a category, and FPi denotes the number of
incorrect classifications of a category. Accuracy denotes the
ratio of the number of correctly classified instances to the
number of instances in the total test set.

3) FEATURE WEIGHT MEASUREMENT METHOD
BASED ON TREE MODEL
The operation condition of the wind turbine is complex,
and its fault manifestation is closely related to the operation
state. There is a potential correlation between the monitoring
parameters of the SCADA system and the fault of the wind
turbine. It is of great significance for potential fault analysis
and overall health state evaluation of wind turbines to master
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the fault characteristics of each component of wind turbines,
which is helpful to realize the intuitive mapping from moni-
toring quantity to the operating state of the turbine.

XGBoost algorithm concentrates all the samples on a leaf
node when creating a binary tree and gradually generates a
tree through the constant splitting of leaf nodes. In the process
of leaf node splitting, feature parallelism is used to select the
feature to be split. Using multiple threads, first try to treat
each feature as a split feature, find the optimal segmentation
point of each feature. Then select the feature with the most
significant gain after splitting according to different features
as the splitting feature. So the number of times a feature is
used as a split is a measure of the importance of a feature, and
the more times a feature is used as a split, the more important
that feature is. The weight weight f of defining feature f is
shown in Eq.5

Weightf =
Tree∑
i=1

ni (5)

In Equation 5, Weightf is the weight of feature f in build-
ing the XGBoost model. Tree is the number of binary trees
composing the model, tk is the number of times that feature
f is used as a splitting feature in the i tree. The weight of a
feature is the sum of The Times that the feature is used as a
splitting feature in all decision trees.

Figure 5 shows part of the branches of the 50th decision
tree during fault diagnosis model training. F13 in the fig-
ure indicates the ambient wind direction. F17 denotes the
oil temperature of the gearbox. F18 represents gearbox high
speed bearing temperature. F29 means the converter con-
troller temperature. F17 split twice in the figure and once with
the other features, so on this branch, feature F17 (gearbox oil
temperature) has a weight of 2, and the other features have a
weight of 1.

C. WIND TURBINE CONDITION MONITORING SCHEME
BASED ON INFORMATION FUSION OF MULTIPLE
CHARACTERISTIC PARAMETERS
1) WIND TURBINE OPERATING STATE MONITORING MODEL
The process of failure of wind turbine equipment is a process
in which the deterioration degree of equipment develops
gradually from qualitative change to quantitative change.
In the process of equipment deterioration, early signs will be
generated.When the wind unit is operating in good condition,
although it may be disturbed by environmental factors, there
is a stable relationship between the parameters in the system,
and specific monitoring data can be accurately reconstructed
by using other monitoring data through an appropriate regres-
sion model. When the wind unit or the subsystem of each
component of the wind unit fails, the relationship between the
parameters of the system is broken. At this time, the results
of a specific monitoring data reconstructed by the regression
model will have a high error. With the development of wind
turbine faults, the uncertainty of the relationship between
the parameters in the system is further increased, leading to

the gradual increase of the error between the reconstructed
value and the actual value, showing a trend of climbing up
or jitter rising. Therefore, the severity of deviation from the
normal state of the relationship between the parameters of
a wind turbine can be regarded as the critical point of the
state monitoring of the wind turbine. By tracking the variation
trend of the reconstruction errors of several characteristic
parameters, the operating state of the wind turbine can be
monitored in real-time.

The wind turbine operating state monitoring model pro-
posed in this chapter is shown in Figure 6, which mainly
consists of SCADA historical data and real-time data. The
SCADA historical health data is used to determine the thresh-
old value of wind turbine health status indicators.

2) RUNNING STATE INDEX BASED ON MULTIPLE
MONITORING PARAMETERS
Among the many monitoring parameters of the SCADA sys-
tem, the temperature data, electrical data, or environmental
data of each part of the wind turbinemay be used as fault char-
acteristic parameters. The data dimension of each monitoring
project is different, and the data scale is also very different.
If the reconstruction errors of each characteristic parameter
are directly fused, the dimensional chaos and the problem of
large-scale parameter features drowning small-scale parame-
ter featureswill occur. To solve the above issues, before calcu-
lating the operating state index, this chapter sets a window to
calculate the relative residual of a monitoring parameter in a
certain period of time to eliminate the influence of dimension
and data range. Assuming that the actual value, predicted
value, and window size of a specific characteristic parameter
are yt , ŷt and l, then the relative residuals r(k) of the expected
parameter within l time spans at the time of k are as follows:

r(k) =
1
l

√√√√√√
tk∑

t=tk−l

(
yt − ŷt

)2
ȳ2k

(6)

In Equation 6, r(k) denotes the relative residual, l denotes
the size of the window, the actual value is yt , ŷt denotes the
predicted value, tk denotes the k moment, and yk denotes the

FIGURE 5. Part of the branches of the decision tree.
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mean value of the actual values of the monitored parameters
in the window.

yk =
1
l

tk∑
t=tk−l

yt (7)

In Equation 7, yk denotes the mean of the actual values of
the monitored parameters within the window, l denotes the
size of the window with the actual value of yt , and tk denotes
at moment k.

The automatic shutdown protection time of the wind tur-
bine is 5 minutes. In order to avoid the extreme abnormal
point of relative residuals caused by data mutation during
mechanical downtime, the window size is set as 10 minutes
in this paper. At the same time, the original residual samples
every 1 minute will be aggregated into a relative residual
sample set every 10 minutes.

At present, the fault warning for a certain part or subsystem
of the wind turbine is mostly realized by monitoring a single
monitoring quantity. However, because the wind turbine is
a complex nonlinear system of ‘‘electromagnetic coupling,
mechanical transmission, and energy conversion,’’ the varia-
tion trend of a single monitoring quantity cannot reflect the
whole operating condition of the system, which will cause
false alarm or missing alarm. In the light of the problems
above, this chapter takes the relative residuals of multiple
fault feature monitoring parameters as evaluation indexes on
the basis of the above fault feature analysis to realize the state
monitoring of the wind turbine subsystem. Assume that the
characteristic fault parameters of a subsystem of the wind
turbine are monitoring quantity A, monitoring quantity B, and
monitoring quantity C , respectively. The feature weights of
the three feature monitoring quantities are wA,wB, and wC ,
respectively. Relative residuals are rA, 2, and 3, respectively.
The state index of this subsystem is defined as follows:

R =
wArA + wBrB + wCrC

wA + wB + wC
(8)

In Equation 8, R represents the state indicator of the sys-
tem, wA, wB, and wC represent the characteristic weights of
the three characteristic monitoring quantities, and rA, rB, and
rC are the relative residuals.

The mathematical meaning of the above equation is to
assign weights to the relative residuals of multiple charac-
teristic parameters according to the feature weights and fuse
the relative residuals of multiple monitoring quantities into
a state indicator. This indicator is dimensionless. The larger
the indicator value is, the more serious the unit deviates from
the ideal working condition. If the hand exceeds a specific
threshold value, it indicates that the monitoring part of the
wind turbine has shown signs of failure, which needs to be
maintained.

In order to further observe the development trend of state
indicators, based on the calculation of state indicators, this
chapter uses EWMA to calculate the trend control chart of
state indicators and predict the changing trend of state indi-
cators. EWMA control point value expression is shown in

FIGURE 6. Frame of unit operation condition monitoring model.

FIGURE 7. Schematic diagram of dynamic threshold setting.

Equation 9.

vt = βRt + (1− β)vt−1 (9)

In Equation 9, vt represents the trend value of the state
index at time t , and Rt represents the state index at time t .
Coefficient β represents the weighting factor of the EWMA
control chart to historical data, β ∈ (0, 1], (1− β) represents
the rate of historical weighted decline, β = 0.9. Due to the
inevitable errors in model prediction, processing the residuals
through EWMA can reduce the fluctuation range of the resid-
uals and effectively eliminate the false alarm points, making
the warning algorithm more stable and accurate.

3) DYNAMIC FAULT THRESHOLD SETTING BASED ON
ADAPTIVE PRINCIPLE
Wind turbine operating conditions are complex. Under the
influence of some uncontrollable objective factors, SCADA
parameters of the wind turbine may deviate from normal
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values within the alarm range, which is manifested as extreme
points on residual values. If a fixed threshold is used to set
the alarm threshold of the fault alarm system, the situation
of false alarm may occur when the extreme point of resid-
ual error is higher than the fixed threshold. Aiming at the
problem of false alarm caused by fixed alarm threshold, this
paper designed a dynamic threshold setting scheme based on
the adaptive principle, as shown in Figure 7. The dynamic
threshold is set in segments through the sliding window.

FIGURE 8. Diagram of subset selection.

Specific steps for setting fault threshold are as follows:
1) Set the window size and select the smallest data subset

that can reflect the characteristics of the original data
set as the sliding window. According to the K-S test
principle, if the result value of the K-S test of two
data sets is greater than 0.05, the two data sets can be
considered to have the same distribution law. As shown
in Figure 8, when the size of the sliding window is
determined, a specific range of data is first selected
from the beginning of the data sample as the sub-data
set, and the K-S test is conducted with the original data
set to check the similarity between the two. Then extend
the range of the data subset to the right in turn until
the value of K between the subset and the parent set is
greater than 0.05, and the length of the recorded subset
is the window size N.

2) Set the fault threshold. When setting the dynamic fault
threshold, the changing trend of the state index in the
previous period of time should be fully considered, and
the data in the sliding window determined in Step (1)
should be selected. The threshold value in the window
data should be calculated according to Equation 10:

R =
wArA + wBrB + wCrC

wA + wB + wC
(10)

In Equation 10, Rk is the state indicator at a specific
moment, N is the sliding window size, and Rth is the
upper limit of the confidence interval. Rth analyzes the
distribution characteristics of wind turbine operating
state indicators through the kernel density estimation
method and sets them based on the principle of small
probability events. According to the theory of interval
estimation in statistics, let’s say that the probability
is α. If the cumulative probability distribution of state
indicators within a specific range is P {0 ≤ R ≤ Rth} =
1−α, then interval [0,Rth] is said to be the confidence
interval of 1 − α confidence of state indicators R. The

smaller the value of α is, the smaller the probability
is when the state index value of the wind turbine is
R > Rth. If 1 − α is taken as the confidence, state
index R is almost all distributed in the normal interval
of [0,Rth], so Rth can be used as the threshold value of
the abnormal state of the wind turbine.

3) Step 3: Move the data window frame by frame and set
the new threshold according to Step (2).

4) Step 4: Repeat Step 3 to get the thresholds at all times,
which are connected to form an adaptive threshold
curve fitting the changing trend of Rt .

FIGURE 9. Distribution diagram of experimental data ‘‘wind
speed–power.’’

III. EXAMPLE ANALYSIS
A. ABNORMAL DATA PROCESSING EXPERIMENT
In order to test the effect of the proposed data process-
ing scheme, two groups of data are set in this section for
abnormal data processing experiments, as shown in Figure 9.
As shown in Figure 9 (a), there are apparent data subjects in
the sample data set, in which there are fewer noise data and
more shutdown and limited electric power data. As shown
in Figure 9 (b), the data of the data sample has a compre-
hensive and disorderly distribution range. A large number of
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low-density abnormal data are distributed at the lower right
corner of the data body, and there are also a small amount of
power limit data and more shutdown data.

Firstly, the DBSCAN clustering algorithm parameters
were adjusted to identify the low-density abnormal data of
experimental data samples, as shown in Figure 10(a) and (b),
respectively. Then, the results after removing the anomalous
data were shown in Figures 10 (c) and (d).As can be seen from
Figures 10 (c) and (d), the DBSCAN clustering algorithm can
well remove a large number of low-density discrete abnormal
data from the original data sample. However, a small amount
of downtime and power-limited data are still not removed.

Figure 11(a) and (b) are the results of setting a normal
power range for data samples. The yellow star data points
in the figure are the midpoint of the data density of each
partition. The green curve is the ideal power curve obtained
after the midpoint of the fitting density, and the red curve on
the left and right sides of the data strip represents the upper
and lower limits of the normal power range, respectively.

Figures 11 (c) and (d) show the results after remov-
ing abnormal data according to the normal power range.
As shown in the figure, almost all types of anomalous data
have been eliminated, and a full high-density normal data
main band has been retained.

B. FAULT DIAGNOSIS AND FAULT FEATURE ANALYSIS
In order to verify the validity and reliability of the fault
diagnosis model, a comparative experiment is designed in
this summary to compare the performance of different hyper-
parameter optimization algorithms and multi-classification
algorithms with the fault diagnosis model built in this chapter.
The commonly used parameter optimization methods include
grid search and random search. The parameter tuning task of
the XGBoost classification model is carried out according to
the super-parameter range set in Table 3. The classification
accuracy and optimization time of the model test set are taken
as evaluation indexes, performance comparison results of the
three-parameter optimization methods are shown in Table 4:

TABLE 4. Comparison of three optimization algorithms.

As can be seen from the above table, the accuracy of
the XGBoost classification model can be adjusted to more
than 99.2% by the three-parameter optimization algorithms.
However, the optimization time varies greatly, and the BOA
algorithm uses the least time, which is about 1/3 of the
random search algorithm and 1/7 of the grid search algo-
rithm. Therefore, the BOA algorithm has higher efficiency of
super-parameter optimization. Using BOA to determine the
XGBoost classifier’s hyperparameters are shown in Table 5:

FIGURE 10. Recognition and elimination of low density abnormal data.

The commonly used classification algorithms include deci-
sion tree, SVM, GBDT, Adaptive Boosting (Adaboost) algo-
rithm, and deep learning network represented by DBN.BOA
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FIGURE 11. Recognition and elimination of abnormal power data.

TABLE 5. Final parameter list.

was used to build the optimal multi-classification model of
each classification algorithm, inwhich theDBN structurewas
determined to be a 3-layer neural network with 1024-100-100
structure through experiments. In the test stage, in order to
eliminate the influence of algorithm randomness, ten groups
of different test data were randomly selected during the exper-
iment, and the mean value of accuracy and training duration
of each model was calculated as the evaluation indexes of the
model reliability and effectiveness. The experimental results
are shown in Table 6:

From the analysis of the above table, it can be seen that the
classification model based on a decision tree takes the short-
est time to train but has the lowest classification accuracy.
The classification accuracy of both GBDT and XGBoost is
above 99%, but the training time of XGBoost is short. Com-
pared with XGBOOST, the effectiveness and reliability of
AdaBoost and SVM algorithms to build multi-classification
models are flawed. DBN-based multi-classification model’s
average accuracy can reach 95%, but its training time is
the longest, and its effectiveness is the worst. Therefore,
the multi-classification model based on the XGBoost algo-
rithm has better efficacy and reliability compared with other
classification algorithms.

In order to test the performance of the fault diagnosismodel
in practical application, this section uses the SCADA data of
the wind farm in 2020 to simulate the real-time data stream.
It tests the accuracy of the fault diagnosismodel in judging the
running state of wind turbines. The simulated real-time data
stream data constructed, including normal data and various
faults, are shown in Table 7:

After the data set is dispersed, randomly selected data are
input into the fault diagnosis model to judge the state of the
unit. The test results are shown in Table 8:

TABLE 6. Comparison of multiple classification algorithms.

VOLUME 9, 2021 124609



Y. Shi et al.: Study of Wind Turbine Fault Diagnosis and Early Warning Based on SCADA Data

TABLE 7. Data composition of simulated real-time data stream.

TABLE 8. Test results of simulated real-time data flow diagnostic model.

It can be seen from the above table that the fault diagnosis
model built in this chapter can basically accurately identify all
fault types. The excess-high front bearing temperature of the
generator is rarely misjudged as gearbox system failure. This
is because in the transmission system structure of wind tur-
bines, the front bearing of the generator is directly connected
to the high-speed shaft of the gearbox, and the local high
temperature of generator and gearbox often occur together,
leading to some data characteristics that are not obvious.

C. FAULT WARNING EXPERIMENT
1) NORMAL REGRESSION MODEL CONSTRUCTION
According to the fault feature analysis and Eq.8, the fault
feature parameters and feature weights of each subsystem are
determined, as shown in Table 9:

The MIC algorithm was used to calculate the maximum
mutual information coefficient between each fault character-
istic parameter in Table 9 and other monitoring parameters of

TABLE 9. Fault characteristic parameters and feature weight ratio.

the SCADA system. The modeling vector of each fault char-
acteristic parameter was selected according to the correlation.

First, the SCADA historical data used to establish the
normal model was removed from abnormal data. The health
data set was obtained to build the normal model of each fault
characteristic parameter. Then, the Bayesian optimization
algorithm was used to find the optimal parameter combina-
tion of each regression model. Finally, theMAE and r2 scores
of the validation set were used as the evaluation criteria. The
results are shown in Table 10. It can be seen that all kinds
of regression models of characteristic fault parameters con-
structed in the end have similar scores, can reconstruct typical
fault parameters accurately, and can well fit the variation
trend of various parameters.

2) CALCULATION OF HEALTH STATUS INDICATOR AND
SETTING OF FAILURE THRESHOLD
SCADA data of a wind turbine in normal operation that
did not participate in regression model training and testing
were selected from this wind farm. The data of uninterrupted
operation for 14 days (20160 sampling points) without any
failure or human intervention were intercepted as the health
history data set.

Firstly, the normal regression model was used to recon-
struct the characteristic parameters of each fault. Then the
relative error of the reconstruction results is calculated.
Finally, the status index trend control chart of the generator
system, gearbox system, and hydraulic system under normal
operation of the wind turbine is calculated, as shown in
Figure 12:

It can be seen from the figure that most state indicators
of the generator subsystem are distributed below 0.01 during
operation, and there are several fluctuations in the middle,
but the fluctuation range is maintained within 0.025. While
the transmission system and the hydraulic system operated
stably during this period, and most of the state indexes were
distributed within 0.008. In addition, the state indexes of
the three subsystems did not show an obvious change trend
during the 14-day operation.

3) FAULT THRESHOLD SETTING
The health status index data distribution of each subsystem
was counted, and the frequency distribution histogram, kernel
density function curve, and cumulative probability curve are
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TABLE 10. Final validation results of each model.

calculated, as shown in Figure 13. The abscissa in the figure is
the state index of the system. The left ordinate is the index
distribution density, which corresponds to the figure’s kernel
density curve and index distribution histogram. The cumu-
lative probability curve is obtained by integrating the kernel
density curve in segments and connecting probability points,
which corresponds to the dotted blue line in the figure, and
its coordinate is the vertical coordinate on the right.

Set the confidence of 99.5%, and find the corresponding
state index when the cumulative probability density of each
subsystem is 99.5% from the above figure as the upper limit
of the normal state index. Finally, the upper limit of the
confidence interval of the generator system is set as 0.0183,
the upper limit of the confidence interval of the gearbox
system is set as 0.121, and the upper limit of the confidence
interval of the hydraulic system is set as 0.0125.

4) GENERATOR SYSTEM FAILURE
According to the SCADA system fault record sheet, Unit
84 in the wind farm was shut down at 17:9 on May 15, 2019,
after the SCADA system sent out the fault alarm of ‘‘high
temperature of generator spindle.’’ The operation data of the
wind turbine seven days before the failure time was selected
to do the generator system fault warning experiment. The
normal regression model was used to reconstruct the charac-
teristic fault parameters and calculate the relative error. The
state detection diagram of each subsystem was calculated,
as shown in Figure 14:

As shown in Figure 14 (a), the status index of the gener-
ator system presents a protrusive amplitude near the 580th
sampling point but does not exceed the fault threshold. This
indicates that during this period of time, the operating state
of the generator system fluctuated wildly, but it did not reach
the extent of failure. However, after the 950th sampling point,
the status index rose rapidly and gradually exceeded the alarm
threshold. Figure 14 (b) is a partially enlarged view of the
generator system state detection diagram, in which the red
dotted line is the fault occurrence point (the 1008th sampling
point), and the yellow dotted line is the fault warning point
(the 986th sampling point). This indicates that the monitoring
system can send out the generator system fault alarm about
3.67 hours in advance (22 sampling points). In comparison,
the state indicators of the gearbox system and the hydraulic
system, as shown in Figure 14 (c) and (d), are relatively

FIGURE 12. Trend chart of health status indicators of each subsystem.

smooth on thewhole. After the 950th sampling point, the state
indicators show a slight increase but do not exceed the fault
threshold.

5) GEAR BOX SYSTEM FAILURE
The SCADA system fault record shows that Unit 87 in the
wind farm was shut down at 9:39 on April 22, 2019, after
the SCADA system issued a fault alarm of ‘‘gearbox cooler
overload.’’ The operation data of the wind turbine seven days
before the failure time was selected to do the gearbox system
fault warning experiment. The normal regression model was
used to reconstruct each characteristic fault parameter and
calculate the relative error. Finally, the state detection dia-
gram of each subsystem was obtained, as shown in Figure 15:
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FIGURE 13. Density distribution diagram of state indicators of each
subsystem.

As can be seen from Figure 15(a), the operation index of
the gearbox system is relatively stable on the whole, and
the state index rises rapidly from the 940th sampling point
and gradually exceeds the fault threshold. Figure 15(b) is a
partially enlarged view of the state detection 10 hours before
the failure of the generator system. The red dotted line in
the figure shows the fault occurrence point (the 1008th sam-
pling point). The yellow dotted line shows the fault warning
point (the 977th sampling point). It can be seen from the
figure that the condition monitoring system can send out the
generator system fault alarm about 5.17 hours in advance
(31 sampling points). Figure 15 (c) is the generator system
condition monitoring diagram. During the whole operation
period, no-fault threshold was exceeded. Figure 15 (d) is the
conditionmonitoring diagram of the hydraulic system.As can FIGURE 14. Monitoring diagram of subsystems.
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FIGURE 15. Status monitoring diagram of subsystems. FIGURE 16. Status monitoring diagram of subsystems.
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be seen from the figure, the hydraulic system was affected by
the temperature rise of the converter and high-speed bearing
of the gearbox before the near failure, leading to a slight pull
up of the state index, but it did not exceed the fault threshold.

6) HYDRAULIC SYSTEM FAILURE
The SCADA system fault record shows that Unit 106 in the
wind farm was shut down at 15:36 on April 26, 2019, after
the SCADA system sent out the ‘‘hydraulic motor temper-
ature is too high’’ fault alarm. The operation data of the
unit 7 days before the time of failure were selected to do
the hydraulic system fault warning experiment. The normal
regression model was used to reconstruct each characteristic
fault parameter and calculate the relative error. The state
monitoring diagram of each subsystem is shown in Figure 16:

As shown in Figure 16(a) and (b), the state detection
diagram of the hydraulic system and the locally enlarged
diagram can be obtained: The state index of the hydraulic
system shows a jitter rising trend from the 850th sampling
point, and it starts to increase substantially from the 990th
sampling point until the moment of failure, and its state index
increases to around 0.11. In Figure 16(b), the red dotted line
is the fault occurrence point (the 1008th sampling point), and
the yellow dotted line is the fault warning point (the 994th
sampling point), indicating that the condition monitoring
system can send out the generator system fault alarm about
2.33 hours in advance (14 sampling points). By comparing
Figure 16 (c) and (d), it can be seen that both the generator
system and the gearbox system run smoothly, and no alarm
occurs during the experimental period.

IV. SUMMARIZES
Reliable condition monitoring and fault diagnosis technology
are of great significance to the operation and maintenance of
wind turbines. It can not only monitor the state parameters
of wind turbines in real-time, grasp the health information of
wind turbines, but also find out the potential failure symp-
toms as early as possible, reduce the failure rate, ensure the
safe and efficient operation of large wind turbines, and then
promote the development of new energy industry. According
to the characteristics of wind turbine operation data distribu-
tion, this paper designs an abnormal data processing scheme
combining the DBSCAN clustering algorithm and normal
power interval estimation. In this scheme, the DBSCAN
clustering algorithm is first used to remove the outlier noise
anomaly data with low density in the original data. Then
the normal data interval is set based on the least square
method and 3-Sigma criterion. Finally, the abnormal data
outside the interval are eliminated to get the health data. The
experimental results show that the anomalous data processing
scheme proposed in this paper can effectively deal with all
known abnormal data types and provide high-quality health
data samples for subsequent studies. In this paper, a fault
diagnosis model is built, and the characteristic parameters
of different faults are analyzed. Aiming at the difficulty of
super parameter tuning in the eXtreme Gradient Boosting

(XGBoost) algorithm modeling, a fault diagnosis model of
BOA-XGBoost based on the Bayesian optimization algo-
rithm (BOA) is designed. The BOA algorithm is used to find
the optimal super parameter combination of the XGBoost
algorithm model, and the fault diagnosis of wind turbine
generator system, gearbox system, and hydraulic system is
realized efficiently. In order to further analyze the correla-
tion between fault information and unit monitoring parame-
ters, a feature weight measurement method based on a tree
model was studied. The number of times that the monitoring
parameters were used as splitting features in the construc-
tion of the classification tree model was used as the fea-
ture weight to complete the intuitive mapping from SCADA
system monitoring data to fault features. Finally, according
to the importance of fault feature monitoring parameters,
a wind turbine condition monitoring scheme based on the
information fusion of multi-feature monitoring parameters
is designed. The early fault characteristics of wind turbines
are identified by real-time monitoring whether the operating
state index of the turbine exceeds the fault threshold. Firstly,
the BOA-XGBOOST algorithm was used to build a normal
regression model for multiple fault characteristic parameters,
and the reconstruction error of each characteristic parameter
was calculated in real-time. Then, the typical parameters from
different sources and different scales were fused into the
operating state index according to the characteristic weight,
and the consistent expression of the functional state of the
wind turbine was obtained from many monitoring parame-
ters. Finally, a dynamic fault threshold design scheme based
on the adaptive principle is designed. The fault threshold
is set in sections by sliding window, which fully considers
the operation situation of the unit in the previous period of
time, and solves the problems of solid subjectivity, weak
generalization ability, and easy false alarm in setting the fixed
threshold artificially. The experimental results show that the
designed condition monitoring scheme can warn generator
system faults 3.67 hours in advance, gearbox system faults
5.17 hours in advance, and hydraulic system faults 2.33 hours
in advance.
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