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ABSTRACT Recognition of dichotomous emotional states such as happy and sad play important roles in
many aspects of human life. Existing literature has recorded diverse attempts in extracting physiological
and non-physiological traits to record these emotional states. Selection of the right instrumental approach
for measuring these traits plays a critical role in emotion recognition. Moreover, various stimuli have
been used to induce emotions. Therefore, there is a current need to perform a comprehensive overview
of instrumental approaches and their outcomes for the new generation of researchers. In this direction, this
study surveys the instrumental approaches in discriminating happy and sad emotional states that are elicited
using audio-visual stimuli. A comprehensive literature review is performed using PubMed, Scopus, andACM
digital library repositories. The reviewed articles are classified with respect to the i) stimulation modality,
ii) acquisition protocol, iii) instrumentation approaches, iv) feature extraction, and v) classification methods.
In total, 39 research articles were published on the selected topic of instrumental approaches in differentiating
dichotomous emotional states using audio-visual stimuli between January 2011 and April 2021. The
majority of the papers used physiological traits, namely electrocardiogram, electrodermal activity, heart rate
variability, photoplethysmogram, and electroencephalogram based instrumental approaches for recognizing
the emotional states. The results show that only a few articles have focused on audio-visual stimuli for
the elicitation of happy and sad emotional states. This review is expected to seed research in the areas of
standardization of protocols, enhancing the diagnostic relevance of these instruments, and extraction of more
reliable biomarkers.

INDEX TERMS Audio-visual stimuli, classification, emotion recognition, happy, instrumentation, sad.

I. INTRODUCTION
Emotions are the fundamental intellectual capacity of humans
characterized by perception, attention, and behavioral out-
comes [1]. The six distinct universal emotions, namely dis-
gust, sadness, happiness, fear, anger, surprise, have been
classified by psychological research [2]. The emotions can
be perceived as either positive or negative [3]. Positive emo-
tions such as happiness, surprise, and anger are pleasant
feelings, and negative emotions such as disgust, fear, and
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sadness are unpleasant to experience [3], [4]. Hence, the pos-
itive and negative emotions are considered diametric oppo-
sites [5]. Among these emotions, happiness and sadness are
frequently experienced by humans, which is also called a core
affect [2], [6]. In general, happiness appears to be the opposite
of sadness and differs in nearly every aspect, such as behavior,
bodymovements, facial expression, and brain activity [7], [8].

Happiness is associated with prosocial behavior, physi-
cal well-being, problem-solving, attention, confidence, life
satisfaction, better health outcomes, and longevity [4],
[9]–[12]. On the other hand, sadness is related to disap-
pointment, mental pain, melancholy, and weakness [13].
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Sadness is also related to many adverse effects, includ-
ing depression, sleep disorders, anxiety, suicidal attempts,
and scant attention. Long-term sadness has negative impli-
cations for cardiovascular activity [14]–[16]. Identification
of these disorders at the earlier stage can help to improve
treatment. Recently, a report on world happiness has also
demanded significant attention to happiness [17]. There-
fore, it is necessary to understand the neurological, psy-
chiatric, and biobehavioural mechanisms of happy and sad
emotions.

This work is motivated by the growing interest in recogni-
tion of clinical conditions linked to happy and sad emotional
states, such as prediction ofmajor depressive disorder (MDD)
in long-term sadness. Prolonged sadness is the precursor of
MDD. The effect of MDDmay lead to reduced quality of life.
MDD is predicted to become the leading cause of disability
by 2030 for around 20 percent of the population over the
course of life [18]. In the current study, we consider com-
paring instrumental and physiological trait-based approaches
available to recognize happy and sad emotional states, which
may help predict the clinical conditions.

The emotions are described using two common and popu-
lar ways, namely a discrete emotion approach and a dimen-
sional approach. In a discrete emotion approach, emotions
are categorized into six basic emotions, as described above.
In a dimensional approach, the emotions are described using
valence and arousal dimensions [19], [20]. The dimension
of valence is the positive or negative emotion perceived by
the users. In contrast, the dimension of arousal is the inten-
sity of the particular emotion experienced by the users [21].
Happiness and sadness are described by opposite valence and
arousal levels [7], [22].

An emotional state can be characterized by both non-
physiological and physiological trait-based approaches.
Methods such as body movements, speech patterns, and
facial expressions are used as a non-physiological trait-based
approach [21], [23]. Conversely, the physiological signals
such as Heart Rate Variability (HRV), Electrocardiogram
(ECG), Photoplethysmogram (PPG), Electroencephalogram
(EEG), facial Electromyography (fEMG), Electrodermal
Activity (EDA), and, Respiration (RSP) are consid-
ered [24]–[29].

In a non-physiological trait, namely the GAIT cycle, the
movement of the body tends to incline forward and direct
their hands towards their source of irritation in sadness.
Also, there is a reduction in walking speed, vertical head
motions, and arm swing in people that are perceived to be
in a sad emotional state. The shoulder and elbow movement
magnitudes are comparatively reduced in the sad emotional
state [30]–[33].

In physiological traits, variations are observed in the ampli-
tude and frequency of the signals. For example, ECG shows
significant variations in the ST segment corresponding to
happy and sad emotional states. The convex ST segment is
highly predictive of a happy emotional state, while a concave
ST elevation strongly suggests a sad emotional state [34].

For sad emotional states, sympathetic activation is reported
to be high compared to happiness [35], [36]. Moreover, in a
sad state, HR increases to provide an increase in blood sup-
ply [37]. The variation in the HRV is inversely correlated
with HR. Thus, HRV decreases in sadness, and it increases in
happiness [38]. In a happy emotional state, the mouth muscle,
zygomaticus, eye muscle, and orbicularis are activated and
lead to a rise in the mouth corners. These muscle activities
are reflected by fEMG [39], [40]. Also, the pulse beat cycle
of the PPG signal is reported to be more significant for the
happiness emotion state [41], [42].

In a happy emotional state, the brain regions such as the
right frontal cortex, the precuneus, and the left insula are
activated; whereas, in a sad state, there is an increase in
activity of the brain regions, namely the left insula, the right
occipital lobe, the left thalamus, the hippocampus, and the
amygdala. The hippocampus is strongly linked with mem-
ory, and it makes sense that awareness of specific memo-
ries is associated with sad feelings [13], [43], [44]. These
changes in the central nervous system activity are reflected
in EEG.

EDA is a measure of the continuous variation in the elec-
trical property of human skin, which reflects the sympathetic
division activity of the autonomic nervous system [45]–[47].
It is reported that the sweat expelled through the sweat glands
is more in happiness than sadness. Thus, the conductance of
EDA is higher in happiness as compared to sadness [48], [49].

Researchers have proposed various emotional triggers for
the understanding of mental or cognitive processes. Espe-
cially, standardized collections of words, pictures, faces,
and film clips/audio-visual stimuli have enabled research in
affective computing by allowing the researchers to select
suitable stimuli and compare the results through lab environ-
ments [50], [51]. The audio-visual stimuli are the important
triggers to evoke intense emotional reactions in the laboratory
because of their high resemblance to real emotional experi-
ences [51]–[54].

Several physiological signals and non-physiological traits
have been employed for differentiating dichotomous emo-
tional states [39], [42], [55]–[91]. Although various lit-
erature has been reported, a systematic review that deals
specifically with the happy and sad emotional states using
audio-visual stimuli and a description of the instrumental
approaches to classify them remain limited. The review
also highlights the advantages, limitations, and gaps in
the instrumentation-based dichotomous emotion recognition
field. In addition, it could contribute to the development
of a standardized data collection protocol and assessment
procedures for this field to evaluate different data acquisition
methods.

II. REVIEW METHODOLOGY
This review methodology is divided into seven sub-
sections, namely search strategy, subject information, stim-
ulation modality, data acquisition protocol, instrumentation
approach, feature extraction, and classification.
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FIGURE 1. PRISMA flowchart of the article selection process.

A. SEARCH STRATEGY
The articles are obtained from the scientific repositories,
namely Scopus, PubMed, and Association for Comput-
ing Machinery (ACM) digital library, from 01/01/2011 to
30/04/2021. To identify relevant articles, the selection process
followed the PRISMA guidelines [92]. The search terms and
phrases used are: (‘‘emotion’’ OR ‘‘mood’’ OR ‘‘affect’’)
AND (‘‘happy’’ OR ‘‘happiness’’ OR ‘‘joy’’ OR ‘‘positive
emotion’’ OR ‘‘valence’’) AND (‘‘sad’’ OR ‘‘sadness’’ OR
‘‘negative emotion’’) AND (‘‘audio-visual’’ OR ‘‘video’’ OR
‘‘film’’) AND (‘‘electroencephalogram’’ OR ‘‘EEG signal’’
OR ‘‘electrocardiogram’’ OR ‘‘ECG signal’’ OR ‘‘elec-
tromyogram’’ OR ‘‘EMG signal’’ OR ‘‘electrodermal activ-
ity’’ OR ‘‘EDA signal’’ OR ‘‘galvanic skin response’’ OR
‘‘GSR signal’’ OR ‘‘photoplethysmogram’’ OR ‘‘PPG sig-
nal’’ OR ‘‘skin temperature’’ OR ‘‘GAIT’’ ) AND NOT
(‘‘anger’’ OR ‘‘disgust’’ OR ‘‘surprise’’).

A total of 655 articles (Scopus, n= 554; PubMed, n= 12;
ACM, n = 89) are identified after the initial search process,

and 19 articles have been omitted as duplicates. The screening
phase involved the examination of records identified in the
initial search. The query syntax is reviewed independently by
two reviewers. Out of 636 articles, 373 articles are excluded
based on the emotions related to animals, robots, pediatric,
geriatric, and the participants with neurological disorders.
Further, 224 studies have also been excluded after reviewing
full-text articles based on the type of stimuli and research
articles. Finally, 39 articles are included for the review. The
inclusion criteria of articles are as follows: (i) studies using
audio-visual stimuli for emotion elicitation, (ii) studies dif-
ferentiating only happy and sad emotional states, (iii) stud-
ies differentiating positive and negative emotional states,
and (iv) studies with the combination of other emotional
states, where happy and sad emotional states are classified
discretely. The articles that do not include happy and sad emo-
tional states in their methodology are excluded. The PRISMA
flowchart used for the selection of articles in this review is
shown in Fig. 1.
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FIGURE 2. Distribution of selected 39 articles (a) year-wise from
2011-2021 and (b) based on the signal modality used by the researchers.

Fig. 2(a) shows the year-wise distribution of selected 39
studies. It is found that most of the studies are published
between 2016 and 2019, with 25 studies accounting for 64%
of the total. Between 2011 and 2015, a total of 8 articles
(21%) are published. Only 15% of the total articles are pub-
lished between 2020 and 2021. Fig. 2(b) shows the type of
physiological signal used in the selected studies. It is seen that
49% of the 39 selected articles have been used EEG signals,
followed by ECG signals (10%). The percentage of studies
using EDA, PPG, and multimodal signals is 8%, while the
GAIT and HRV signals are 5% each. HR and fEMG signals
usage account for 2% each, while PPG signals is 3% only.

B. SUBJECT INFORMATION
Among the reviewed articles, the number of participants
varies depending on the type and field of the experiment.

Several studies have shown that age, sex, and per-
sonality influence emotional states [93]. The age of
participants in the majority of the selected studies is
between 20 - 25 years old. It is found that the par-
ticipants are excluded based on the history of current
or prior medicines [55], [91], information about psy-
chiatric illnesses [39], [42], [55], [60], [61], [63], [67],
[69], [91], [91], use of drugs or alcohol [42], [60], [61], [63],
[67], [87], [91], perform any vigorous exercise before
the experiment [67], difficulties in vision or hearing
[55], [58], [67], [69], [87], [89], diabetes [70], and history of
cardiovascular disease [41], [60], [70] which may delay the
emotional responses. Eysenck personality questionnaire test
have been used to select the healthy subjects [66].

In few studies, the authors have reported the par-
ticipants information, such as whether they are volun-
tary and/or provided a reward for participation ([57],
[58], [67], [68], [80], [91].

C. STIMULATION MODALITIES
The choice of emotional stimuli depends on the research
question and can be easily determined using the stimuli emo-
tion matrix [51]. Emotion matrix is a graphical representa-
tion of five critical emotional stimulus characteristics (see
Fig. 3), namely, Ecological Validity (EV), Temporal Reso-
lution (TR), Controllability (CNT), Complexity (CMP) and
Emotional Intensity (EI) allow researchers to select suitable
stimuli in affective computing (see Table 1). The emotional
stimulus must-have characteristics such as low CMP, low
CNT, high EI, high TR, and high EV to elicit strong emotional
reactions [51].

FIGURE 3. Emotional matrix for various stimuli using (a) words
(b) images (c) faces, and (d) film clips [49].

Compared to the text, audio, and images, the audio-
visual stimuli have desirable properties, namely high EV and
dynamic for emotional elicitation. Based on the effective-
ness of audio-visual stimulus to induce emotions, the articles
using only audio-visual stimuli for eliciting the dichotomous
emotional states are considered and represented in Table 2.
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TABLE 1. Description of the characteristics Of emotional stimulus.

The references of the selected 39 studies are assigned with a
Systematic Review identification number (SRYY), whereYY
represents a numerical digit from 1-39, as shown in Table 2
for convenience of accessibility in the rest of the manuscript.

In the selected studies, emotions are elicited using video
clips. The audio-visual clips are usually taken from pub-
licly available databases, such as a standardized database of

Chinese emotional film clips (SR39), China’s standard emo-
tional video stimuli materials library (SR09), and the affective
body movement library of ballet movements (SR16). In some
studies, video clips are collected from various commercial
movies (SR10, SR15, SR18, SR25, SR26), and internet
sources (SR19). In 11 of the studies, the physiological signals
are directly considered from online public databases such
as DEAP (SR21, SR24, SR29, SR31, SR33, SR35, SR37),
LUMED-2 (SR29), DECAF (SR30), SEED (SR34, SR35,
SR36, SR37), and MAHNOB-HCI (SR23).

Few of the works have not mentioned about source of
stimuli used for emotion elicitation. Interestingly, the number
and length of the stimuli are not the same and vary for
different published articles. Table 2 shows that the minimum
number of video clips used is two, and the maximum number
of video clips used is a hundred. Also, the least duration
of stimulus used is 0.5 min (SR04, SR17, SR39), and the
maximum duration is 40 min (SR15). In 20 of the studies,
film clips have been selected with the help of annotators.

D. DATA ACQUISITION PROTOCOL USING
AUDIO-VISUAL STIMULI
The protocol followed in the selected articles is summarized
in the flowchart shown in Fig. 4. Table 2 shows that the least

TABLE 2. The experiment protocols used in the selected articles in recording various modalities using audio-visual stimuli.
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FIGURE 4. Flowchart of data acquisition protocol using audio-visual
stimuli.

duration of the experiment is approximately three min (SR15)
and the maximum duration is 96 min (SR26). Before starting
the experiment, the procedure has been explained clearly to
the subjects, and the consent form is filled. The experiment is
carried out in a 30 dB soundproof room (SR09, SR10, SR35)
with well-lit (SR03) and constant temperature (24 ± 2◦C)
(SR08) or in a laboratory environment (SR14), where exact
measurements are obtained.

To avoid mind wandering, the subject has to be brought
into the neutral states using different methods such as taking

rest (SR02, SR09, SR11, SR12, SR18), closing eyes for
60 seconds (SR22), performing GO/NO-GO task (SR39), and
watching a neutral video (SR09 – SR11).

Before watching stimuli, the mood of the participant is
identified by various methods such as rating the subject mood
on the Positive and Negative Affect Schedule (PANAS) scale
(SR06, SR07), from the self-report questionnaire (SR18) and
by conducting a stress-resistance questionnaire test (SR15).

During the experiment, the videos are displayed ran-
domly. However, random videos do not influence emotional
responses (SR02, SR06 – SR09, SR11 – SR13). Participants
are also instructed to wear a headset while watching stimuli
to avoid unwanted ambient sound and prevent physiological
signals affected by the conversation between subjects (SR15).

The single (unimodal) or multiple (multimodal) physiolog-
ical signals are acquired at various sampling rates ranging
from 25 to 2000Hz. Four of the selected studies have used
a multimodal approach. Park et al. classified happy and sad
emotions by fusing two peripheral signals: PPG and skin tem-
perature (SR05). A hybrid fusion strategy has been employed
using facial expressions, EDA, and EEG signals to classify
happy, sad, and neutral emotions (SR29). Two multimodal
fusion methods between ECG and EDA signals are used
for happy or sad emotional state recognition with reference
to a neutral state (SR32). Steenhaut et al. assessed fEMG,
EDA, and ECG signals to measure the emotional reactivity
of subjects during happy and sad emotions (SR28).

1) VALIDATION OF PHYSIOLOGICAL SIGNALS
The emotions felt by the subjects are validated with self-
reports using various methods such as Self-Assessment
Manikin (SAM),Visual Analogical Scale (VAS), Likert scale,
questionnaire, and press file (SR01, SR04, SR06, SR07,
SR10, SR13, SR14, SR16, SR17, SR18, SR20, SR26 – SR28,
SR32, SR35, SR39). In one of the selected studies, happy and
sad emotions are labeled from the valence ratings obtained
using SAM. The video is labeled as sad when the valence
rating is≤ three and happywhen the valence rating is≥ seven
(SR17). Krishna et al. have also considered SAM as ground
truth for assessing the subject’s happy, sad, relax, and fear
emotional states (SR20).

Christensen et al. used VAS scale ranging from 0 to 100
(‘0’ – ‘sad’, ‘50’ – ‘neutral’, and ‘100’ – ‘happy’) for mea-
suring behavioral or subjective experience. The range of the
scale is selected using a mouse cursor present on the screen
(SR16). Steenhaut et al. also used the VAS scale to indicate
subjective emotional reactivity (SR28). The lower end of the
VAS scale indicates neutral and the higher end as happy
or sad (SR28). In another study of fEMG based emotion
recognition, the subject’s happy and sad emotions are rated
using the VAS scale (SR01).

After watching audio-visual stimuli, the subjective ten-
dency of emotions is collected from the questionnaire to
validate happy and sad labels. The questionnaire includes the
level of emotion felt by the subject, tendency of emotion for
a given audio-visual stimulus (SR18). Das et al. have used
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FIGURE 5. Various factors affecting on instrumentational approaches.

a questionnaire to indicate the intensity of happy and sad
emotion felt by the subject on a range from 0 to 10. The
videos with an intensity level> seven are only considered for
further analysis (SR32). Rakshit et al. have used an online
questionnaire to determine the familiarity of the happy and
sad video on a scale of 0 to 4 (‘0’ – ‘no emotion’, ‘4’ – ‘max-
imum emotion’) (SR26). The data that belongs to no emotion
felt by the subject is discarded for further analysis (SR26).
Questionnaires, namely type and intensity of emotion elicited
by happy, sad, and calm, are considered to validate affect
(SR13).

Gao et al. have used a feedback form for validating the
emotions triggered by joy and sadness videos (SR27). A self-
assessment form has been used to label the positive emotion
induced by happy video and negative emotion induced by sad
(SR04). Singhal et al. have used a web-based online form
to validate happy, sad, and neutral emotions by collecting
participant ratings on a scale of 1-5 (‘1’ – ‘very poor’ and
‘5’ – ‘very good’) (SR10). A Likert scale ranging from
0-10 has been used for obtaining the intensity of happy and
sad emotions felt by the subject (SR06, SR07). Liu et al. uses
press file to represent two strings, namely ‘0’ (target emo-
tion is perceived) and ‘1’ (target emotion is not perceived),
to obtain participants subjective experiences for happy, sad,
fear, and anger emotional states (SR14).

SAM (SR39) and self-assessment form (SR35) have also
been used to obtain the ground truth labels for differentiating
positive and negative emotional states. Six of the selected

studies used high definition cameras to record participant’s
facial expressions during the experiment (SR11, SR14, SR26,

SR27, SR29, SR35). Only six studies have reported the
details of an ethical committee approval and the validation
of the protocol before experimenting (SR01, SR02, SR08,
SR09, SR39). Also, one of the selected studies mentioned
that the experimental protocol has been implemented in strict
accordance with the declaration of Helsinki (SR15).

E. INSTRUMENTATION APPROACHES TO DIFFERENTIATE
DICHOTOMOUS EMOTIONAL STATES
During stimuli visualization, various instruments are used to
acquire physiological signals. In order to understand the per-
formance based on instrument characteristics, it is important
to consider some of the common factors associated with the
hardware specifications. The design of instruments is affected
by factors such as user, technology, medical, environmental,
and economic-related factors (see Fig. 5) [94], [95].

1) USER RELATED FACTORS
When dealing with user-related factors, the instrument should
take less time duration to set up device and subject prepa-
ration [95]. The instrument must be easy to wear by the
subject without limiting normal activity and causing addi-
tional distress [96]. An instrument with good usability can
bring a positive experience to the subject [97]. The portable
instruments open a new path to the non-intrusive field of
assessment of emotions [98]. For example, Emotive devices
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are portable and are comfortable to use in comparison to
Neuroscan devices. Also, the setup time of Neuroscan devices
is high compared to the Emotive devices [99].

2) MEDICAL RELATED FACTORS
The electrical safety of the medical equipment is the most
important, and only devices tested for safety should be used
in hospitals [95]. The parameters, namely comfort level and
system usability, are crucial in the instrument for biofeedback
acquisition. The non-invasive instruments are comfortable
and easier to use for both the therapist and the patient [96].
In longterm tracking applications, systemswithout direct skin
contact provide many advantages, such as reliability and elec-
trical isolation with the sensor surface [100]. The instruments
should dissipate nominal heat. The excess heat and radiation
generated by the instrument may cause irreversible changes
in the tissue [95].

3) TECHNOLOGY RELATED FACTORS
The multi-electrodes devices are expensive and maybe
uncomfortable in real-life situations. In most devices,
the input impedance, linearity, sensitivity, and Common
Mode Rejection Ratio (CMRR) are made high, and the
latency of the device is driven low for an accurate mea-
surement. The accuracy of emotion recognition also varies
between instrument and derivatives, the placement of elec-
trodes. High CMRR refuses all unwanted signals in the
preamplifier stage, so only the desired signals find a way into
the amplifier [94]. Reliable instruments can have standards
that allow physicians or clinicians to decide if their patients
are normal or abnormal. The instruments with differential
input can operate at lower voltages while maintaining high
SNR [94], [95].

4) ENVIRONMENTAL RELATED FACTORS
Increasing the Signal to Noise Ratio (SNR) can reduce the
effect of environmental noise in biomedical instrumentation
systems. The stable instrument ensures that results are repeat-
able and reproducible [95]. Themedical devices have to func-
tion appropriately in the suggested values for temperature and
air humidity. Also, they must be less prone to movement arti-
facts and designed for minimum energy consumption [95].

5) ECONOMIC RELATED FACTORS
The cost of the instrument and its maintenance, such as labor
and spare parts, must be inexpensive. The availability of
trained manpower, availability of consumables, and compat-
ibility with existing equipment is always challenging.

F. COMPARISON OF INSTRUMENTS USED FOR
MEASURING DICHOTOMOUS EMOTIONAL STATES
The comparison of key parameters and characteristics related
to the instruments used in the selected studies is summa-
rized in Table 3. The instruments such as Super Spec EEG
(SR03), Neuroscan (SR13, SR34, SR36, SR37, SR39), Neu-
rowin (SR04), EEG traveler (SR20), Biosemi ActiveTwo

(SR21, SR23, SR24, SR 31, SR33), Enobio (SR22, SR29),
Neurosky mindwave (SR35), and, Emotive EPOC (SR10,
SR17, SR18) have been used for monitoring brain activities.
Among the available instruments, the NeuroSky (SR35) and
Emotiv system (SR10, SR17, SR18) is found to be a good
option in terms of the number of channels, setup time, intru-
siveness, size, cost, and compatibility. However, it is limited
by low input impedance.

The instruments, namely Bioneuromulti-channel feedback
(SR15), Biopac (SR28), EMPATICA E4 (SR29), and Power
lab (SR 16), have been used for acquiring EDA signals.
Among these instruments, the wearable device EMPATICA
E4 Wristband (SR29) can be preferred because of its setup
time, cost, real-time usage, portability, and the number of
channels used. Further, it is found that Biopac (SR28) and
Power Lab (SR16) have similar specifications in all aspects
(from Table 3).

However, in the laboratory environment, Biopac (SR28)
or Power Lab (SR16), or BioNeuro multi-channel feedback
(SR15) is also a good choice because of its high input
impedance, sensitivity, and SNR. BioNeuro multi-channel
feedback (SR15) has a very high input impedance com-
pared to the power lab (SR16) and Biopac (SR28). However,
the input range of Biopac (SR28) and Power lab (SR16) is
higher when compared to BioNeuro instruments (SR15).

ECG signals are acquired using Biopac (SR28) and Multi-
channel electrophysiological recording system (RM6240)
(SR08, SR12, SR18). The RM6240 has advantages such as
high input impedance, sensitivity, and SNR compared to
Biopac (SR14, SR28).

Samsung Gear 2 smartwatch (SR06, SR07) is used for
collecting GAIT data. This wearable device may have several
advantages: minimal electrodes, less setup time, unobtrusive,
portable, and less cost. For PPG signal acquisition, the instru-
ments, namely Algoband F8 (SR09), Pulse oximeter (SR26),
TDA sensor (SR05), and RM6240 (SR02, SR11), have been
used. Algoband F8 (SR09) or Pulse oximeter (SR26) can be
used among these instruments in terms of portability, setup
time, device usage, and cost.

Power Lab (SR01) and Biopac (SR28) have been used for
fEMG signal recording. Since both of these devices have sim-
ilar specifications, any of these instruments can be preferred.
Digital-IF Doppler radar (SR27) has been used for measuring
respiratory signals. This device has advantages such as less
setup time, non-contact type, and being more comfortable to
the participant.

Four of the selected articles have not mentioned the instru-
ment type or model used for recording physiological signals
(SR19, SR25, SR30, SR32, SR38).

G. COMPARISON OF MEASUREMENT METHODS USED
FOR HAPPY AND SAD EMOTIONAL STATES
During stimuli visualization, various physiological and non-
physiological traits are acquired from the corresponding
instrumentation approaches. The comparison of measure-
ment methods in differentiating dichotomous emotional
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TABLE 3. Key parameters and characteristics related to instruments specifically used for measuring dichotomous emotional states.

states using audio-visual stimuli is summarized in Table 4.
The physiological measurement methods such as EEG,
fEMG, EDA, ECG, PPG, RSP, and a non-physiological mea-
surement method, GAIT, have been used to classify happy
and sad emotional states selected review articles. The physio-
logical signal, EEG, directly reflects the neural activity of the
emotions, but the installation and maintenance cost of these
devices is very high [101].

The EDA measurements are simple and are easy to
install [102] but are influenced by external factors such as
temperature and humidity [102], [103]. ECG generates a
higher magnitude output signal compared to other methods.
However, these measurements have limitations such as high
inter-subject variability and low accuracy due to movement
artifacts in mobile systems. Although PPG provides physi-
ological variations, inaccuracy in tracking the PPG signals
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TABLE 4. Comparison of various measurement methods in differentiating dichotomous emotional states using audio-visual stimuli.

during daily routine activities due to motion artifacts caused
by hand movements is one of the main limitations [104].
EMG has limitations such as being susceptible to noise, mea-
sures the only valence, and difficult to set up. Although this
method has a good spatial resolution, it is limited by cost and
time resolution. The non-physiological method, the GAIT
pattern has strong ecological validity; they are still in their
infancy.

H. FEATURE EXTRACTION
For the classification of happy and sad emotional states, the
time, frequency, and Time-Frequency (TF) domain features
were used.

1) TIME-DOMAIN FEATURES EXTRACTION
In the EEG context, features such as mean (M), median
(Med), standard deviation (Std), correlation, average energy
(Eng), root mean square (RMS), number of peaks, average
power (Pow), the first-order difference (1st diff), the second-
order difference (2nd diff), kurtosis (Ku), variance (Vr), skew-
ness (Sk), entropy (En), complexity (CO), mobility (MO),
and auto regressive parameter are extracted (SR03, SR10,
SR18, SR19, SR22, SR25). For EDA, features, such as max-
imum (Max), minimum (Min), dynamic range, Ku, Sk, M,
Vr, mode, and M of 1st diff are computed (SR15, SR32).
Detrended fluctuation analysis, permutation patterns entropy
(PPE), and ordinal pattern entropy (OPE) have been esti-
mated from the preprocessed ECG signal (SR12, SR14).
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In HRV, the features such as the square root (SQRT) of the
mean squared differences, M, STD, non-linear indices, PPE,
and OPE have been extracted (SR08, SR12). From the PPG
signal, the features such asM,Med, Std, reflection index (RI),
and stiffness index are evaluated (SR02, SR05, SR11, SR26).
The features, namely M, Std, and 2nd diff, are extracted from
the RSP signal (SR27).

Along with time-domain features, Li et al. also com-
puted morphological features (SR02). Minio-Paluello et al.
used analyses of variance (ANOVA) for the classification of
dichotomous emotional states (SR01). In one of the studies,
non-linear analysis such as the correlation dimension (CD)
of hemispheres are compared as a complexity measure of the
EEG signals (SR23).

2) FREQUENCY DOMAIN FEATURES EXTRACTION
Features, namely squared coherence estimate, Vr, MO, CO,
frequency cepstral coefficient, spectral Shannon, and k-NN
entropy, are calculated from EEG signal (SR19, SR21, SR31,
SR 35). Lee andHsieh extracted brain functional connectivity
pattern-based features, namely coherence, phase synchro-
nization index (SR39). Welch’s power spectral density has
been computed from EDA signals (SR32). From the HRV
signal, the power spectral density (PSD) is calculated at Low
Frequency (LF) and High Frequency (HF), and LF to HF
power ratio (SR08). The indices of LF power, HF power,
and LF to HF power ratio in the power spectral density are
calculated from the PPG signal (SR11, SR26). The E of PSD
at different frequencies is extracted from RSP (SR27).

3) TF DOMAIN FEATURES EXTRACTION
The feature extraction of EEG signals in the TF domain is car-
ried out by decomposing the useful sub-bands by one of the
following methods: Short-time Fourier Transform (STFT),
Dual-Tree Complex Wavelet Transform (DTCWT), Discrete
Wavelet Transform (DWT), and Tunable Q Wavelet Trans-
form (TQWT) (SR13, SR17, SR19, S20, SR21, SR22, SR24,
SR33, SR34).

The features, namely Eng, instantaneous phase, and abso-
lute power, are computed from certain bands of EEG signal
by applying DTCWT to the selected channels (SR13). The
absolute Max, absolute M, Std, Pow, Eng, En, differential
En, Vr, MO, and CO features have been computed from the
wavelet coefficients of each sub-band generated by using the
DWT method (SR19, SR21, SR22, SR24, SR33).

By using the TQWT decomposition method, the features
such as mean absolute value, Pow, Std, Sk, and Ku have
been computed from each sub-band of EEG signal (SR34).
Similarly, Krishna et al. have calculated the time-domain fea-
tures (RMS, absolute sum and SQRT sum, change in average
amplitude, log detector, clearance factor, shape factor, and
crest factor) from the amplitude at sampling points of each
sub-band, and Hjorth features (Vr, MO, and CO) from the Std
of each sub-band (SR20). Gao et al. fused power spectrum
generated from STFT and wavelet energy entropy computed

from DWT that are derived from the different frequency
bands of EEG signal (SR17).

Considering the ECG signal, basic statistical features (M,
Std, Min, and Max) are extracted from the DWT coefficients
at level 4 decomposition. Similarly, total power, LF, HF, and
LF to HF power ratio features have also been computed
from the intrinsic mode functions generated by the DWTs
empirical mode decomposition and wavelet coefficients at
level 14 decomposition (SR30).

According to the survey, it is found that the time domain
features are mostly used in all instrumentation approaches,
followed by frequency domain and TF features. The summary
of all the features in the respective instrumentation approach
is given in Table 5.

TABLE 5. The summary of the features used in the instrumentation
approach.

I. CLASSIFICATION AND STATISTICAL ANALYSIS
Classification and differentiation of dichotomous emotional
states are carried out using several classifiers and statistical
analysis methods. For this, features extracted from various
signals using different instrumentation approaches are con-
sidered. Out of 39 articles, 30 articles have used classification
algorithms, and nine articles have used statistical analysis
methods.

1) CLASSIFICATION
Out of 30 classification articles, 23 articles classify happy and
sad emotional states, and the remaining seven articles classify
positive and negative emotional states. The summary of the
classifiers and the respective performance metrics, namely
accuracy, F-score, and True Positive Rate (TPR)/False Pos-
itive Rate (FPR), are listed in Table 6.

Out of 23 happy and sad classification articles, 11 articles
have used EEG signals with machine learning algorithms,
namely Linear Discriminant Analysis (LDA), Support Vec-
tor Machines (SVM), Random Forest (RF), Relevance Vec-
tor Machines (RVM), Naïve Bayes (NB), Extreme Learning
Machine (ELM), and Artificial Neural Networks (ANN). The
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TABLE 6. The summary of classifiers and respective performance metrics obtained to classify dichotomous emotions.
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TABLE 6. (Continued.) The summary of the classifiers and the respective performance metrics obtained to classify dichotomous emotions stimuli.

highest classification accuracy of 96.81% has been achieved
using the SVM classifier and wavelet coefficient features.
The EEG signals in the study are recorded in SS, and
SI analysis has been carried out for classification (SR19).
Another SI study on EEG signals acquired in MS have
obtained the least accuracy of 63.63% in classifying happy
emotional states using ANN (SR22). In the case of EDA
signals, Srinivasan et al. have used SI analysis and achieved a
classification accuracy of 65.38% and 87.50% for happy and
sad emotional states, respectively, using the kNN algorithm
(SR15).

The classifiers, namely k-Nearest Neighbors (kNN) and
Fisher, have been used to categorize happy and sad emo-
tions from ECG signals. The maximum accuracy of 75%
for SI analysis has been achieved using the kNN algo-
rithm (SR31). Cheng et al. reported the TPR/FPR metric
of 0.8956/0.005 and 0.9010/0.0162 for happy and sad emo-
tions, respectively, using the Fisher classifier and SI analysis
(SR14). Another SI study conducted on ECG signals recorded
in MS has achieved the least classification accuracy of 65%
in classifying happy and sad emotional states using kNN
(SR30). Quiroz et al. have performed both SD and SI analysis
on GAIT pattern data using three classifiers: Baseline, RF,
and Logistic Regression (LR). In both studies, the experi-
ment is conducted in SS. The maximum accuracy of 68.20%

(F-score: 0.7630) has been obtained for SI analysis using
the LR algorithm (SR06, SR07). Recently, Shu et al. used
four classification algorithms, namely kNN, RF, Decision
Tree (DT), Gradient Boosting Decision Tree (GBDT), and
AdaBoost, for classifying happy and sad emotional states
using HR signals. SI analysis has been carried out for the
classification and achieved the highest accuracy of 84% using
the GBDT algorithm (SR09). The features extracted from
the RSP signals have been used to classify joy and sadness
emotional states using kNN classifier with SI analysis and
achieved an accuracy of 85% (SR27).

Rakshit et al. have used the combination of SKT and PPG
signals to classify happy and sad emotional states. The SD
analysis carried out on combined signals yielded a maxi-
mum accuracy of 92.83% using the SVM classifier (SR05).
Similarly, EDA and ECG signals are combined to classify
dichotomous emotions using SVM, NB, and kNN classifiers
with SI analysis. The highest classification accuracy of 100%
and 98.92% are achieved using EDA and ECG signals, corre-
spondingly (SR32). Another multimodal study (combination
of facial expressions and physiological signals (EEG and
EDA)) conducted by Cimtay et al. has used SD analysis
on the LUMED-2 database and SI analysis on the DEAP
database. In both databases, the signals are recorded in SS.
The SD analysis conducted on the signals collected from the
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LUMED-2 database achieves an accuracy of 53.80%. The SI
analysis performed on the signals collected from the DEAP
database achieves an accuracy of 75%.

Out of seven positive and negative emotion classification
articles (SR33 – SR39), six articles have used EEG signals
withmachine learning algorithms, namelyMultilayer Percep-
tron Neural Network (MLPNN), enhanced D-score Genetic
Programming (eDGP), ELM, RF, sparse Autoencoder based
Random Forest (ARF), Quadratic Discriminant Analysis
(QDA), and combined Rotation Forest (RoF) with SVM.
Among the EEG signal-based positive and negative emotion
classification articles, the highest classification accuracy of
94.40% has been achieved using the ARF classifier and
entropy-based feature. In this study, SI analysis has been
carried out on the signals recorded in MS (SR36).

Two of the selected studies have used multiple databases
for the analysis (SR35, SR37). An SI study has been con-
ducted on EEG signals acquired in SS (from experiment
and SEED database) and MS (DEAP database) using an
eDGP classifier. The signals acquired from the experiment
have achieved an accuracy of 86.55% (F-score - 0.9042).
The signals collected from the databases, namely DEAP
and SEED, have achieved an accuracy of 84.81% 86.22%,
respectively (SR35). Similarly, Zheng et al. have used multi-
ple databases, namely DEAP and SEED, to classify positive
and negative emotional states using the ELM classification
algorithm. The DEAP database has been created in SS, and
the SEED database has been created in MS. The accuracy
achieved by using EEG signals collected from the DEAP
database is 69.67%, and the accuracy achieved by using
EEG signals collected from the SEED database is 91.07%.
SI analysis is carried out on the data collected from both
databases (SR37).

In ECG, a SI analysis was carried out using an RF classifier
and achieved an accuracy of 92.10%, 93.90%, and 92.20%
for positive, negative, and neutral emotional states, respec-
tively (SR38). The classifiers used in the selected studies and
respective performance metrics obtained to classify dichoto-
mous emotions are summarized in Table 6.

J. STATISTICAL ANALYSIS
Statistical analysis has been carried out in nine selected
studies (SR01, SR02, SR08, SR11, SR12, SR16, SR23,
SR25, SR28) to differentiate happy and sad emotional states.
p-values are calculated to determine the significant features
(SR12).

Type III ANOVA showed a significant difference in the
mean of fEMG activated by the corrugator, orbicularis, and
zygomaticusmuscles (SR01). The time interval between foot,
peak, and two successive feats of PPG signal are varied
significantly high between happy and sad emotions (SR02).
The frequency-domain indices of HRV, namely LF, HF, and
LF to HF ratio, are highly significant to differentiate dichoto-
mous emotions (SR08). The difference in the RI of the PPG
signal for both happy and sad is very significant (SR11).

Kolmogorov-Smirnov test showed a very significant variation
in the PPE of HRV between happy and sad emotions (SR12).

Steenhaut et al. performed a pairwise t-test to know the
emotional reactivity differences between younger and older
adults using happy and sad film clips. In happy emotion,
the tonic component of EDA varied significantly, and in sad
emotion, VAS ratings of participants are varied significantly.
For both happy and sad emotions, older adults reported higher
reactivity (SR28).

Paired t-tests on EDA responses of the subjects in happy
and sad emotions varied significantly (SR16). The CD of
EEG signals in parietal and frontal regions showed a sig-
nificant variation in differentiating joy and sadness (SR23).
Similarly, the alpha patterns of EEG signals differed very sig-
nificantly in happy and sad emotions (SR25). The summary
of the significance levels obtained to differentiate happy and
sad emotions are listed in Table 7.

TABLE 7. The summary of the significance levels obtained to differentiate
happy and sad emotions.

III. DISCUSSION
Despite the fact that these emotional states can be easily
measured using physiological traits, the needs for measure-
ment can differ widely on the basis of user, technology,
medical, and environment related factors. In this review, six
physiological traits and the instruments used for measuring
dichotomous emotional states are identified. Moreover, each
instrument has been outlined on the basis of its user related
properties (i.e., setup time, measurement intrusiveness, and
size), medical related properties (i.e., invasive/non-invasive
and safety), technological related properties (i.e., compati-
bility, input impedance, input voltage range, sensitivity, and
SNR) and cost. Most of the instruments used in the reviewed
articles may be ideal for measuring in a laboratory setting.
Still, they may not be the preferential alternative for motion
artifacts characterization in real-time applications.

When the number of electrodes is considered, the instru-
ment must be designed with fewer electrodes. Nevertheless,
it requires a relatively large number of electrodes for most
current EEG devices [105]. In this review, the highest number
of electrodes used for recording EEG signals is 64 (SR03),
whereas the minimum number is two when recording HR in
(SR09). One study used continuous-wave Doppler radar for
emotion recognition, where the user does not require to wear
any sensor/electrode on the body (SR27).

In recent days, with the advancements in technology, wear-
able devices are popular for emotional state assessment in
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real-time because of their unobtrusiveness and relatively long
recording time [106]. Quiroz et al. have used a wearable Sam-
sung Gear 2 device to record accelerometer and gyroscope
sensor data from the participants and achieved an accuracy
of 70% (SR06) and 76.30% (SR07) to classify happy and sad
emotions. Emotive EPOC + headset has been used to record
EEG signals and obtained an accuracy of 83.93% (SR10),
91.18% (SR17), and 87.50% (SR18) to classify dichotomous
emotional states. Similarly, Jaswini et al. have used the Eno-
bio wearable device to classify happy and sad emotions from
EEG signals with 63.63% and 100% accuracy, respectively
(SR22). In one of the studies, Empatica E4 wristband has
been used to acquire EDA signals participants and obtained
an accuracy of 81.20% to classify two opposite emotions,
namely happy and sad (SR29). Recently, Shu et al. used a
wearable device, namely Algoband F8, to collect HR signals
and classified happy and sad emotions with an accuracy
of 84.00% (SR09). NeuroSky MindWave Mobile 2 headset
wearable device have been used to acquire EEG signals and
classified positive and negative emotional states with an accu-
racy of 87.61% (SR35).

Based on the reviewed articles, a single modality is com-
monly considered to recognize dichotomous emotional states.
In comparison to a single modality, multiple modalities may
provide better information and enhance recognition accuracy.
The instruments such as the Multi-channel electrophysiolog-
ical recording system - RM6240, HelathLab, and Biopac sup-
ports multiple physiological signal recordings. Thus, multiple
modalities can be explored to classify emotional states.

The accuracy of dichotomous emotional state recognition
can also be enhanced using multiple combinations of fea-
tures and classifiers. The choice of feature extraction domain
depends on the type of signal and its characteristics. The
use of TF domain features is insufficiently explored in the
selected articles. The various machine learning approaches
such as SVM, RF, LDA, and Fisher have been used for the
classification of happy and sad emotional states. The choice
of classification algorithm mostly depends upon both the
type modality and the type of application. In this review,
SVM with time-domain features is most commonly used.
The use of deep learning methods can also be incorporated
with the growing use of newly available machine learning and
artificial intelligence tools.

IV. CONCLUSION
In this study, the sensing approaches involved in recogni-
tion of dichotomous emotional states elicited using audio-
visual stimuli with various protocols, recording devices, and
classification methods are explored. Performance evaluation
is carried out among the instruments used in the selected
review articles, but there is a lack in the user related factors
of the approaches considered. Despite the undisputed value
of ambulatory diagnosis, the monitoring of happy-sad emo-
tional states is not established. Most of the methods mainly
focused on the enhancement of emotion recognition accu-
racy using multiple combinations of features and classifiers.

In order to increase the quality of life, critical developments
in instrumentation are still actively sought to improve the
efficiency of ambulatory care monitors. Thus, the research
on the type of stimuli, features, and classification algorithms
is still challenging with current enhancement in wearable
emotion recognition devices. For a more effective recognition
of happy and sad emotional states, the fusion of multiple
physiological parameters is pursued formonitoring capability
on wearable devices.
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