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ABSTRACT A joint multiple-input multiple-output (MIMO) processing framework is proposed to exploit
spatial diversity and moving cues for the enhancement of target detection in a shallow ocean environment.
Orthogonal signals are transmitted to illuminate different aspects of a target and beamforming operation
is carried out over the received data for estimating target bearing. The target range is achieved by a
replica correlation integrator where the beamformer outputs are matched with transmitted signals. After
meanshift clustering algorithm is carried out over the bearing-range spectrums to generate the clutter centers,
the potential trajectories of targets can be tracked by an improved Bernoulli filter with inputs of these centers.
The at-sea experimental results have shown the effectiveness of the joint processing framework in MIMO
detection of moving targets.

INDEX TERMS MIMO detection, Bernoulli filtering, spatial diversity, moving target, sea trial.

I. INTRODUCTION
Detection of underwater targets is a challenging task in shal-
low ocean environments due to multipath propagation result-
ing in time-delay spread of waveforms. The performance of
passive sonar is limited in detection of quiet targets when
their abient signals are buried in ocean background noise.
Meanwhile, active detection faces the challenge of strong
bottom reverberation resulting in a low echo-to-reverberation
ratio and lots of clutter interferences.Multiple-inputmultiple-
output (MIMO) processing framework attracts a great deal of
interest in radar and sonar due to taking advantage of spatial
diversity for the enhancement of target detection. Based on
our previous work on MIMO detection, this paper focuses on
the detection [1]–[3] of underwater moving targets using an
improved Bernoulli filtering algorithm. The proposed frame-
work can effectively reduce the probability of false alarms
and improve the detection ability of underwater moving tar-
gets, and it can also be used in other fields to detect moving
targets in the same way.

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang Yang .

MIMO technology was first applied in a wireless com-
munication system to suppress channel fading through
MIMO devices [4], [5]. In 2004, Fishler proposed the
MIMO detection concept based on the complete diversity
of transceivers [6]. Then, many achievements on MIMO
radar had been realized. In the next few years, for instance,
the Colocated MIMO system [7], [8] was utilized by Hack
to detect static targets [9], while the distributed MIMO [10]
was further proposed by Li to detect moving targets [11],
which performs much better than the traditional sonar system
in target localization.

Due to the maturity of MIMO radar technology, MIMO
sonar technology develops rapidly. MIMO sonar was investi-
gated by Bekkerman on detection and localization of targets
in [12], where the Cramér-Rao lower bound was derived for
target bearing estimation. A perceptual MIMO sonar pro-
cessing model was proposed by Lynch et al. [13] to improve
robustness of MIMO detection algorithms. Vossen et al.
focused on the dense sampling processing method of MIMO
sonar data and improved the target detection ability by intro-
ducing the virtual array source [14]. However, currently
distributed MIMO sonar [15] is mainly used for detection
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and positioning of stationary targets [1], [2]. The framework
proposed in this paper focuses on detection of motion targets.

The target moving clue can be utilized for enhancing detec-
tion of weak targets, which is called tracking before detection
(TBD). A traditional tracking system includes three parts:
target detection, data association, and tracking filtering.

The Kalman filter (KF) [16], a classic single target tracking
algorithm, was first proposed in 1960 by Rudolph E.Kalman
to model the targets’ state space and measurement space
under linear Gaussian assumption. The extended Kalman
filter (EKF), the unscented Kalman filter (UKF), and the
particle filter (PF) are widely utilized in a nonlinear Gaussian
situation. In our latest article, the cubature Kalman filter
(CKF) [17] and adaptive current statistical (ACS) model was
shown to be better for tracking maneuvering targets [18].
In this paper, CKF is also deployed to track underwater targets
for the benefit of its lower complexity and better stability.

The data association approach is commonly utilized in
multiple target tracking for reduction of false alarm prob-
ability in active sonar detection. Nearest neighbor (NN),
probabilistic data association (PDA), joint probabilistic data
association (JPDA), and multiple hypothesis tracking (MHT)
are mainstream methods in data association.

Filtering algorithm based on random finite set (RFS) the-
ory and Bayesian framework is a new technology to solve
multi-target tracking in clutter environments [19], which
focuses on the target state in measurement sets instead of pay-
ing attention to the data association step. Since RFS cannot
be calculated directly, probability hypothesis density (PHD)
is proposed as an approximation approach to propagate the
first-order moment of target probability density [20]. The
cardinalized PHD (CPHD) modifies the PHD by propagating
the entire distribution to get a more stable and accurate esti-
mation of target number [21]. Different from the PHD and
CPHD filters, the multi-target multi-Bernoulli (MeMBer) fil-
ter was proposed byMahler [22] to propagate the multi-target
posterior density, while it suffers from the overestimation
of cardinality (number of targets). The cardinality balanced
multi-target multi-Bernoulli (CBMEMBer) filter was pro-
posed by Ba-Tuong Vo to overcome the bias problem [23].
Also, to mark each trajectory, Ba-Ngu Vo et al proposed
labeled RFSs [24] and deduced generalized labeled multi-
Bernoulli (GLMB) and δ-GLMB filters [25], [26]. Recently,
the detection and tracking work based on improved Bernoulli
filtering is widely investigated and applicable across a broad
range of domains [27]–[31].

The main contributions of this paper are as follows:
(1) A processing framework based on combination of

MIMO sonar and Bernoulli filter is proposed to exploit target
diversity and moving cues for the enhancement of target
detection in shallow ocean environments. A replica correla-
tion integrator (RCI) [32] is utilized to replace the traditional
matched filter for alleviating distance ambiguity caused by
multipath in shallow ocean environments.

(2) Tomeet the requirement of Bernoulli filter’s hypothesis
that each measurement can only correspond to one target and

vice versa, a series of transformations, including generalized
likelihood ratio test (GLRT) estimator and meanshift clus-
tering [33], [34] are developed in bearing-range spectrums
to extract the valid measurement set. A new filter called
δ-cardinality balanced generalized labeled multi-Bernoulli
(δ-CBGLMB) filter is proposed to improve the detec-
tion ability with a lower computational cost. It first
extracts part of the measurement sets through the traditional
CBMEMBer filter and then uses the GLMB filter to track
targets.

(3) A sea trial is designed to verify the effectiveness of
combination of the distributed MIMO and δ-CBGLMB filter
for detection of small targets in shallow water environments.
The experimental results have shown that the target can be
detected in reverberant environments due to exploiting target
diversity and moving clues. The result of the sea trial val-
idates the effectiveness of the distributed MIMO detection
framework, and the relevant experimental research has not
been done before.

The structure of this paper is as follows. In Section II,
the technology in distributed MIMO is presented.
In Section III, meanshift clustering algorithm is presented
to extract measurement sets over bearing-range spectrums.
In Section IV, Bernoulli filter is introduced to find out poten-
tial trajectories of expected targets. The sea trial is briefly
described, and the experiment results are shown in Section V.
Conclusions are given in Section VI.

II. DISTRIBUTED MIMO
The concept of MIMO has been presented for many years,
the simplest MIMO system can be modeled by r̄ = H̄ s̄ + n̄,
where H̄ represents the channel response, s̄ represents the
transmit signals, n̄ is noise and r̄ is the received signals [15].
The expression above shows that a complete MIMO system
needs suitable transmit signal, numbers of transmitters and
receivers. Therefore H̄ contains multiple path components
when the MIMO system is implemented to a shallow ocean
environment.

A. GENERALIZED LIKELIHOOD RATIO TEST DETECTOR
A suitable model considering shallow ocean multipaths and
Doppler is established as follows:

yijn = γ
ij
t e

J θ ijn (t)Dijt s
i
+ nijn, (1)

where yijn ∈ CL×1 represents the signal from the ith sound
source received by nth array element on jth receiver, L rep-
resents the snapshot of the signal, si ∈ CL×1 is the signal
of ith sound source, the term nijn ∈ CL×1 contains reverber-
ation and noise. To simplify the derivation, it is assumed to
be independent identically distributed (IID) Gaussian noise
with N

(
0L , σ 2IL

)
, Dijt = D

(
τ
ij
t , ν

ij
t

)
∈ CL×L is Doppler

time delay factor of ith transmitter and jth receiver. θ ijn (t) is
the phase difference of the nth array element relative to the
reference array element under the plane wavemodel. Specific
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definition of θ ijn (t) and θ
ij
n (t) are

θ ijn (t) =
(
2π
λi

)
k̂j(t) · djn, (2)

D(τ, ν) = DL (ν/fs)WHDL (−τ fs/L)W, (3)

where DL(x) = diag
([
eJ 2π (0)x , · · · , eJ 2π (L−1)x

])
∈ CL×L ,

W is unitary discrete fourier transform matrix.
Supposing that each array has Ne array number, combining

them, then the model can be written as follows:

yij = γ ijt
(
aijt ⊗ D

ij
t

)
si + nij, (4)

where aij(t) =
[
eJ θ

ij
1 (t), · · · , eJ θ

ij
Ne

(t)
]T
∈ CNe×1 is the Kro-

necker product, yij =
[(

yij1
)T
, · · · ,

(
yijNe

)T]T
∈ CNeL×1,

Considering that the target appears in the detection unit
(p, ṗ), where p and ṗ represent target speed and position
respectively, the binary hypothesis test is

H1 : yij = γ ijp
(
aijp ⊗ D

ij
p

)
si + nij

H0 : yij = nij. (5)

Setting yi =
[(
yi1
)T
, · · · ,

(
yiNr

)T ]T , which represents
the measurement of the ith sound source of the receiver,

y =
[(
y1
)T
, · · · ,

(
yNr

)T ]T represents all measurements in

a distributed system, γ ip =
[
γ i1, · · · , γ iNr

]T
is the prop-

agation coefficient related to the ith sound source, γp =[(
γ 1
p

)T
, · · · ,

(
γ
Nt
p

)T]T
is the whole propagation coeffi-

cient, s =
[(
s1
)T
, · · · ,

(
sNt
)T ]T represents all transmit-

ting signals, Nt and Nr are the number of transmitters and
receivers respectively.

Based on the hypothsis that the noise received is IID and
s and γp are unknown, they can be replaced by using maxi-
mum likelihood estimates (MLE), which is called GLRT. The
GLRT detector is

Nt∑
i=1

λ1

(
8i8iH

) H1
≷
H1

κ. (6)

where 8i
=

[̃
yi1b , · · · , ỹ

iNr
b

]
∈ CNr×L , yijb =

1
√
Ne

∑Nr
n=1

[
aijp
]∗
n
yijn , κ is determined by false alarm rate

(FAR), λ1 (�) represents the largest eigenvalue of the matrix.
See Appendix for specific derivation.

The specific implementation process of GLRT detec-
tor: The monitoring area is divided into grids in a two-
dimensional space. According to the received data, (6) is used
to obtain the maximum likelihood value of each cell to form
a likelihood value plane. Then, set a threshold to extract the
likelihood plane position that is greater than the threshold.
The algorithm is shown in Fig. 1.

FIGURE 1. GLRT estimation flowchart.

B. REPLICA CORRELATION INTEGRATION
In radar and sonar, matched filter is commonly used to
find the signal of interest by maximizing the signal-to-noise
(SNR) of its output. Supposing the noise in the MIMOmodel
is Gaussian white noise, the impulse response of matched
filter can be produced as follows:

h(t) = ks∗ (t0 − t) , (7)

where ∗ is conjugate, t0 is the delay. It can be seen from (7)
that the replica is the conjugated and time-reverse version of
the transmitted signal with a time-delay.

Due to time spreading distortion in shallow ocean environ-
ment,the received echo should bemodeled as a convolution of
the transmit signal with a time spreading function p (t) [32].

x (t) =
a
√
fsTs

fsTs−1∑
i=0

p (i) s (t − t0 − i) (8)

where a denotes the echo attenuation, fs is the sample rate and
Ts is the length of p (t).

In [32], the Replica Correlation Integration (RCI) detector
is proposed to mitigate the effect of multipath.

y (t) =
M−1∑
k=0

∣∣∣∣∣∣
√√√√ 2
N

N−1∑
i=0

s∗ (i− k) x (t + i)

∣∣∣∣∣∣
2

(9)

whereM = Tsfs, y (t) is matched filtering output.
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III. MEANSHIFT CLUSTERING
Through the spatial-temporal matched filtering, the bearing-
range spectrum is generated which contains potential targets
and a great deal of clutters. Due to the low resolution of the
spectrum, Bernoulli filtering cannot directly be utilized for
tracking targets. Therefore, meanshift clustering algorithm is
implemented to extract a valid measurement set.

Considering about a set of N IID n-dimensional random
vectors X1,X2, · · · ,XN , the form of multivariate kernel den-
sity estimators is proposed by Cacoullos et al [33].

f̂N (X ) ≡
(
Nhn

)−1 N∑
i=1

s
(
h−1

(
X − Xj

))
, (10)

where s (X) is a scalar function and it needs to satisfy some
rules, which is given in [34]. h is a function of the sample size
N . Then, the differentiable kernel function is used to get the
density gradient estimate.

∇̂x fN (X ) =
(
Nhn+1

)−1 N∑
j=1

∇s
(
h−1

(
X − Xj

))
, (11)

where

∇s(Y ) ≡
(
∂s(Y )
∂y1

,
∂s(Y )
∂y2

, · · · ,
∂s(Y )
∂yn

)T
. (12)

The scaler fuction here uses Gaussian probablity density
kernel function.

s(X ) ≡
exp

(
−

1
2X

TX
)

(2π )n/2
(13)

substituting (13) into (11), the estimate of the gradient density
becomes

∇̂x fN (X ) = N−1
N∑
i=1

(Xi − X)(2π )−n/2h−(n+2)

· exp
[
−(X − Xi)T

(
X − Xi
2h2

)]
. (14)

Meanshift clustering algorithm uses gradient descent to get
the center of each bright spot. The form of meanshift gradient
descent can be written as

X k+1j = X kj + α∇̂x ln fN
(
X kj
)
, (15)

the specific process of meanshift clustering is shown in
Algorithm 1.

IV. BERNOULLI FILTER
In the case of a low SNR ratio, there are a huge amount of
peaks in the ambiguity plane generated by spatial-temporal
matched filtering which results in large false alarms and a
large probability of miss-detection. Therefore, a TBD algo-
rithm is proposed in this section for target detection based on
Bernoulli filtering. The Bernoulli filter is built on the RFS
theory which is suitable for solving the uncertainty detection
issue.

Algorithm 1Meanshift Clustering Algorithm
Input: Position set of bright spots in each frame, Zinitial ;

Bandwidth, B; Stop thresh, T ; Learning rate, α;
Output: Center of each bright spot, Zfinal ;
1: Randomly select a point in Zinitial as center point X kj ;
2: Find all points within the bandwidth B from the center

point and record it as setM ;
3: Compute the gradient density ∇̂x fN (X ) using (14) and

compare with stop thresh T , if ∇̂x fN (X ) > T , continue;
else, jump to state 5;

4: Update the center point using (15) and jump back to step
2;

5: Compute Zfinal = Zfinal ∪ X kj , Zinitial = Zinitial ∩M ;
6: Determine whether Zinitial = ∅, if Zinitial = ∅,

return Zfinal ; else, jump back to step 1;

A. MULTI-TARGET MULTI-BERNOULLI FILTER
The MeMBer filter [22] is a commonly used Bernoulli filter.
It approximates the multi-objective state set at each moment
with a multi-Bernoulli RFS, and it must follow some model-
ing assumptions that each target or clutter state is independent
of each other, target births follow a multi-Bernoulli RFS, and
clutter follows a Poisson RFS. The MeMBer recursion also
can be divided into two steps like Bayes recursion.

In model prediction step, suppose that at time j − 1 the
target state RFS is Tj−1, there are two options for each target,
survive with a probability of pS,j

(
tj−1

)
and moves to a new

state with probablity density fj|j−1
(
tj|tj−1

)
, or die with a

probability of 1 − pS,j
(
tj−1

)
. The multi-target state Tj can

be represented as

Tj = Bj ∪

 ⋃
tj−1∈Tj−1

Sj|j−1
(
tj−1

) , (16)

where Sj|j−1
(
tj−1

)
is the RFS representation of the state at the

next time,Bj is the RFS of spontaneous birth. So, suppose that
at time j− 1, the form of the posterior multi-target density is

χj−1 =
{(
r (i)j−1, p

(i)
j−1

)}Mj−1

i=1
. (17)

Then the form of predicted multi-target density is

χj|j−1 =
{(
r (i)P,j|j-1, p

(i)
P,j|j−1

)}Mj−1

i=1

⋃{(
r (i)B,j, p

(i)
B,j−1

)}MB,j

i=1
,

(18)

where

r (i)P,j|j−1 = r (i)j−1
〈
p(i)j−1, pS,j

〉
, (19)

p(i)P,j|j−1 (t) =

〈
fk|k−1 (t|·) , p

(i)
P,j|j−1pS,j

〉
〈
p(i)j−1, pS,j

〉 , (20)

〈v, h〉 =
∫
v(t)h(t)dt .

In state update step, suppose that the target RFS is Tj at
time j, there are also two options for each target, detected
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with a probability of pD,j
(
tj
)
and combine with likelihood

gj
(
mj|tj

)
to generate a measurement mk or missed with a

probability of 1−pD,j
(
tj
)
. And a set of false alarms and clutter

can bemodeled as Poisson RFSsKj. Themeasurement set can
be represented as

Mj =

⋃
tj∈Tj

2j
(
tj
) ∪Kj, (21)

where 2j
(
tj
)
is the situation of detection. If 2j

(
tj
)
= mj,

it means that the MIMO system detects the target. Or else
2j
(
tj
)
= ∅, it means that the MIMO doesn’t find the target.

Suppose at time j, the form of the predicted multi-target
density is

χj|j−1 =
{(
r (i)j|j−1, p

(i)
j|j−1

)}Mj|j−1

i=1
. (22)

Then the form of posterior multi-target density can be
approximated as follows:

χj ≈
{(
r (i)L,j, p

(i)
L,j

)}Mj|j−1

i=1

⋃{(
rU ,j(m), pU ,j(·;m)

)}
m∈mj

,

(23)

where

r (i)L,j =
r (i)j|j−1

(
1−

〈
p(i)j|j−1, pD,j

〉)
1− r (i)j|j−1

〈
p(i)j|j−1, pD,j

〉 , (24)

p(i)L,j(t) =
p(i)j|j−1(t)

(
1− pD,j(t)

)
1−

〈
p(i)j|j−1, pD,j

〉 , (25)

rU ,j(m) =

∑Mj|j−1
i=1

r (i)j|j−1

〈
p(i)j|j−1,ψj,m

〉
1−r (i)j|j−1

〈
p(i)j|j−1,pD,j

〉
κj(m)+

∑Mj|j−1
i=1

r (i)j|j−1

〈
p(i)j|j−1,ψj,m

〉
1−r (i)j|j−1

〈
p(i)j|j−1,pD,j

〉
, (26)

pU ,j(t;m) =

∑Mj|j−1
i=1

r (i)j|j−1p
(i)
j|j−1(t)ψj,m(t)

1−r (i)j|j−1

〈
p(i)j|j−1,pD,j

〉
∑Mj|j−1

i=1

r (i)j|j−1

〈
p(i)j|j−1,ψj,m

〉
1−r (i)j|j−1

〈
p(i)j|j−1,pD,j

〉
, (27)

ψj,m(t) = gj (m|t) pD,j (t).
The traditional MeMBer filter always meets the problem

of overestimation of cardinality. So CBMEMBer filter was
proposed by Ba-Tuong Vo et al in [23]. It only changes the
approximated form of posterior multi-target density as

χj ≈
{(
r (i)L,j, p

(i)
L,j

)}Mj|j−1

i=1
∪

{(
r∗U ,j(m), p∗U ,j(·;m)

)}
m∈Mj

,

(28)

where

r∗U ,j(m) =

∑Mj|j−1
i=1

r (i)j|j−1

(
1−r (i)j|j−1

)〈
p(i)j|j−1,ψj,m

〉
(
1−r (i)j|j−1

〈
p(i)j|j−1,pD,j

〉)2
κj(m)+

∑Mj|j−1
i=1

r (i)j|j−1

〈
p(i)j|j−1,ψj,m

〉
1−r (i)j|j−1

〈
p(i)j|j−1,pD,j

〉
, (29)

p∗U ,j(t;m) =

∑Mj|j−1
i=1

r (i)j|j−1
1−r (i)j|j−1

p(i)j|j−1(t)ψj,m(t)∑Mj|j−1
i=1

r (i)j|j−1
1−r (i)j|j−1

〈
p(i)j|j−1, ψj,m

〉 . (30)

B. LABELED MULTI-BERNOULLI FILTER
The δ-generalized labeled multi-Bernoulli (δ-GLMB)
filter [25] is introduced in this subsection, which will be
combined with CBMEMBer filter to get a better result in
distributed MIMO detection system.
δ-GLMB is a solution to labeled RFS [24], the form of

labeled RFS is χ ({(t1, `1) , . . . , (tn, `n)}), where ` ∈ L is
the label space. Based on the form of labeled RFS, δ-GLMB
can be written as follows:

χ (T) = 1(T)
∑

(I ,ξ )∈F (L)×4
ω(I ,ξ )δI (L(T))

[
p(ξ )

]T
, (31)

where 1(T) , δ|T|(|L(T)|) denotes the distinct label indica-
tor, L(T) = {L(t) : t ∈ T}, L((t, `)) = ` is the label of set
T, ξ ∈ 20:j represents a history of association maps before
j+ 1, 20:j , 20 × · · · ×2j, ω(I ,ξ )

= w(ξ )(I ) represents the
probability of each label track set and p(ξ ) is the probability
density.

In model prediction step, suppose that the form of the
posterior multi-target density is (31), then the prediction
multi-target density is

χ+ (T+)

= 1(T+)
∑

(I+,ξ)∈F(L+)×4
ω
(I+,ξ)
+ δI+ (L (T+))

[
p(ξ )+

]T+
,

(32)

where

ω
(I+,ξ)
+ = ω

(ξ )
S (I+ ∩ L)wB (I+ ∩ B) , (33)

ω
(ξ )
S (L) =

[
η
(ξ )
S

]L∑
I⊇L

[
1− η(ξ )S

]I−L
ω(I ,ξ ), (34)

η
(ξ )
S (`) =

〈
pS (·, `), p(ξ )(·, `)

〉
, (35)

p(ξ )+ (t, `) = 1L(`)p
(ξ )
S (t, `)+ 1B(`)pB(t, `), (36)

p(ξ )S (t, `) =

〈
pS (·, `)f (t | ·, `), p(ξ )(·, `)

〉
η
(ξ )
S (`)

, (37)

L , L0:j represents the label space before time j+ 1, B ,
Bj+1 represents the label space in j + 1, wS and wB are the
weight of survival and new birth probability respectively.

In state update step, also suppose that the form of the
predicted multi-target density is (31). Then the prediction
multi-target density is

χ (T|M ) = 1(T)
∑

(I ,ξ )∈F (L)×4

∑
θ∈2(I )

ω(I ,ξ,θ )(M )δI (L(T))

×

[
p(ξ,θ)(· | M )

]T
, (38)
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where

ω(I ,ξ,θ )(M ) ∝ ω(I ,ξ )
[
η
(ξ,θ)
M

]I
, (39)

η
(ξ,θ)
M (`) =

〈
p(ξ )(·, `), ψM (·, `; θ )

〉
, (40)

p(ξ,θ)(t, ` | M ) =
p(ξ )(t, `)ψM (t, `; θ )

η
(ξ,θ)
M (`)

, (41)

ψM (t, `; θ ) = δ0(θ (`))qD(t, `)

+ (1− δ0(θ (`)))
pD(t, `)g

(
mθ(`) | t, `

)
κ
(
mθ(`)

) ,

(42)

I represents a set of track labels, 2(I ) is association maps
in I , qD(t, `) = 1− pD(t, `).
The traditional δ-GLMB algorithm is intractable because

of a large number of data associations and tracks assump-
tions. δ-GLMB deploys K-shortest path algorithm [35]
and Bellman-Ford [36] algorithm to solve the associations
between each time, Murty’s algorithm is used to link the
predict targets with measurement sets [37]. Although the
above algorithms can reduce the computational cost, the com-
putational cost of δ-GLMB filter is still huge.
In this paper, the advantage of traditional Bernoulli and

label Bernoulli are combined to extract targets more accu-
rately and efficiently. The cardinality is doubled compared
to the CBMEMBer filter, and then the measurement sets
of potential targets by the CBMEMBer filter are extracted.
Finally, the δ-GLMB filter imports the new measurement
sets to predict the target trajectory. This new filter is named
δ- cardinality balanced generalized labeled multi-Bernoulli
(δ-CBGLMB), which can reduce the computational cost
and extract more accurate trajectories for potential tar-
gets. It reduces the number of measurements through the
CBMEMBer filter, which can reduce the amount of calcu-
lation of the ranked assignment problem in the δ-GLMB
filter. The complexity of the GLMB assignment problems is
O
(
T |Z |3

)
, where T represents the number of assignments,

|Z | represent the number of measurements, so this new filter
can effectively reduce the complexity of the δ-GLMB filter.
The performance of δ-CBGLMB is shown in Section V.

V. SEA TRIAL
In order to verify the effectiveness and practicality of the dis-
tribution MIMO detection framework, MIMO experiments
are carried out in Zhoushan sea ares in August, 2020. It is
seen from Fig. 2 that the speed of sound does not change
with depth (yellow line). Here, the black curve denotes the
temperature change of water volume.

A. SYSTEM DESIGN OF SEA TRIAL
The system can divide into three parts: transmitter system;
targets; receiver system. The Transmitter system includes a
NI transmitter, an 8-channel power amplifier, a high power
amplifier, and two 2-element transmit arrays. The NI device
generates two signals at the same time, which are input to two

FIGURE 2. Sound velocity gradient.

transmit sub-arrays after passing the 8-channel power ampli-
fier and the high power amplifier respectively, the two trans-
mit sub-arrays are arranged at 8m underwater; the Receiver
system includes a NI receiver and a 16 elements horizontal
uniform linear array with an array spacing of 0.075m, which
is arranged at 7m underwater; The two targets are approxi-
mately 6.5m below the water surface. Some details about the
environment and the system design are shown in Fig. 3.

B. TARGET DETECTION AND TRACKING
The targets are two cylinders with a bottom diameter
of 50 cm and a length of about 4 m. They are hung on two
sub-ships, and two sub-ships move in the direction away
from the mastership. Each experiment lasted for 400s, and
6−10kHz and 10−14kHz LFM signals with fixed bandwidth
are transmitted every 1s. After multiple sets of experiments,
the targets can be detected most of the time when transmitting
the conventional LFM signal; the targets can only be detected
in a small amount of time when transmitting coded LFM
signal. Therefore, the subsequent processing and analysis
of the experimental results are based on the conventional
orthogonal LFM signal with a pulse width of 20ms.

Several sets of bearing-range spectrums are extracted for
analysis. Due to experimental conditions, two power ampli-
fiers with different power amplification multiples are used.
The left sub-array here corresponds to the relatively low
power amplifier, and the right sub-array here corresponds
to the relatively high power amplifier. In Fig. 4 and Fig. 5,
It can be clearly seen that the detection capabilities of the
left and right sub-arrays are completely different, depending
on the relative positions of the two transmitting arrays and
the two targets. In bearing-range spectrum 260 and 271, only
the left sub-array in bearing-range spectrum 260 and the right
sub-array in bearing-range spectrum 271 can identify the two
targets. However, two targets can be found clearly in the
MIMO bearing-range spectrum by combining the left and the
right bearing-range spectrum under incoherent conditions.
It can be well proved that the distributed MIMO framework
helps improve detection capabilities because clutter mea-
surements are uncorrelated, while target measurements are
related. Observing subfigure (a) and (c) in Fig. 4 and Fig. 5,
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FIGURE 3. Sea trial design: (a) Diagram of experimental scene; (b) Underwater target; (c) Sub-ship.

FIGURE 4. bearing-range spectrum 260: (a) Left sub-array; (b) Right sub-array; (c) Left sub-array using RCI;
(d) MIMO.

it is evident that the inconspicuous targets have become evi-
dent in bearing-range spectrum 271 after using RCI, but it
requires extra computational cost in performing RCI. The
target’s resolution in the distance dimension reduces, and the
computation cost has increased a lot. Meanwhile, in bearing-
range spectrum 260, the initially clear targets become blurred.
It means that when the RCI parameters do not match the
actual environment, RCI may obscure the original target and
increase the probability of missed detection.

After drawing each bearing-range spectrum, the near-field
reverberation should be removed, the threshold should be set
to extract observation set blocks and the meanshift algorithm

should be performed to obtain cluster centers, which are
required by Bernoulli filter. The results of meanshift clus-
tering are shown in Fig. 6. In the measurement set extrac-
tion process, selecting the correct threshold, eliminating
the near-field reverberation, and setting the bandwidth of the
meanshift clustering algorithm are the keys to extracting the
measurement set. In this paper, some parameter setting sug-
gestions are given. The threshold value needs to be changed
according to different ranges. It is better to choose a threshold
slightly larger than the amplitude under the same range.When
removing the near field reverberation area, the relatively low
power sub-array should be considered first. The bandwidth
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FIGURE 5. bearing-range spectrum 271: (a) Left sub-array; (b) Right sub-array; (c) Left sub-array using RCI;
(d) MIMO.

FIGURE 6. Meanshift cluster: (a) bearing-range spectrum 260; (b) bearing-range spectrum 271.

setting should be adjusted according to the two dimensions’
resolution, time delay, and Doppler.

Themeasurement sets are shown in Fig. 7. The threshold of
left and right sub-arrays can only be reduced to meet the same
detection probability, so the total number of measurements
in the left and right sub-arrays measurement set is more
than that of the MIMO measurement set. More clutter in the
measurement set also confirms that MIMO uses space diver-
sity to reduce missing detection probability under the same
false alarm probability. After obtaining the measurement set,
Bernoulli filter is used to track the target. The surveillance
area is a sector. The angle range is from −45◦ to 45◦ and the
distance range is from 150m to 350m. The total observation

frames are 51 from 250 to 300. The probability of target
survival and detection are 0.99 and 0.90 respectively.

In model prediction step, the state transition matrix is set
to be a uniform linear model as follows:

F =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 (43)

and the process noise v ∼ N
(
0, σ 2

v I
)
with σ 2

v = 1. In state
update step, the position information should be changed from
Cartesian coordinate system to polar coordinate system, and
the observation noisew ∼ N (0,R)withR = diag

([
π
180 , 2

])
.
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FIGURE 7. Measurement set: (a) Left sub-array; (b) Right sub-array; (c) MIMO.

FIGURE 8. Bernoulli filter: (a) MEMBer filter; (b) CBMEMBer filter; (c) δ-GLMB filter; (d) δ-CBGLMB filter.

The birth process is a multi-Bernoulli RFS with probability
r = 0.02 and variance B = diag ([3, 1, 3, 1]). Four potential
target positions are set in [−40, 155], [40, 205], [−50, 255],
[50, 305] respectively and the initial speed of all potential
targets are set to 0 m/s. In Fig. 8, the results of the MEMBer,
CBMEMBer, δ-GLMB and δ-CBGLMB filters are showed.
All the four filters use CKF in state update step.

In all the four filters, targets are tracked successfully.
It proves the effectiveness of our distributed MIMO detection
framework. Comparing the MEMBer with CBMEMBer fil-
ters in subfigure (a) and (b), it can be found that the MEMBer
filter has a significant bias in the number of targets. In almost

the entire tracking process, the MEMBer filter has four or
five targets, and they are very close in the latter part of the
subfigure (a). The CBMEMBer filter solves this problem
very well, although there are still overestimation problems
at some time. The correct target number and trajectories
can still be clearly found. Comparing the CBMEMBer with
δ-GLMB filters in subfigure (b) and (c), though the
δ-GLMB filter can correctly identify each trajectory, it also
has a specific terrain overestimation problem. Finally, the
proposed δ-CBGLMB filter combines the advantages of the
CBMEMBer and δ-GLMB filter, which not only reduces
the problem of cardinality overestimation but also effectively
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FIGURE 9. δ-CBGLMB filter: (a) Left sub-array; (b) Right sub-array.

FIGURE 10. Trajectory.

identifies each trajectory, allowing us to judge the target
motion more clearly. What is more, the δ-CBGLMB fil-
ter extracts a more accurate measurement set through the
CBMEMBer filter and then performs δ-GLMB tracking,
which effectively reduces the number of trajectory hypothe-
ses in the label Bernoulli. Therefore, although the new filter’s
complexity is the same as the old filter, the efficiency of the
algorithm has been improved.

To further evaluate the detection performance of dis-
tributed MIMO system, the tracking results of the left and
right sub-arrays are shown in Fig. 9. Because the left and
right sub-arrays are forced to lower the threshold during the
clutter set extraction step in order to guarantee the same
detection probability, multiple non-existent target trajectories
are tracked, which also proves that the target tracking per-
formance under the MIMO framework is far superior to that
under the phased-array processing framework

Fig. 10 contains GPS target motion trajectory and two-
dimensional δ-CBGLMB filter figure to verify further that
our algorithm successfully tracks the targets. The deviation of
the trajectory direction is produced by GPS positioning and
Miller map.

VI. CONCLUSION
In this paper, a practical distributed MIMO detection frame-
work was proposed for improving the ability to detect
and track motion targets in shallow ocean environments.

The distributedMIMO system outperformed the phased array
system due to target diversity, which was supported by the
sea experimental results. The RCI was combined with the
δ-CBGLMB filter, which can stable track targets in a shal-
low ocean environment after a meanshift algorithm was car-
ried out over the bearing-range spectrums. The improved
Bernoulli filter had a smaller cardinality estimation bias than
the δ-GLMB at low computation cost. Meanwhile, our filter
can obtain the target trajectory label in comparison with the
CBMEMBer filter.

APPENDIX
Based on the hypothsis that the noise received is IID, The
conditional propobality density inH1 andH0 are

p1
(
y | γp, s

)
= cn

Nt∏
i=1

pi1
(
yi | γ ip, s

i
)
, (44)

p0(y) = cn exp
{
−

1
σ 2 ‖y‖

2
}
, (45)

where cn =
(
πσ 2

)−NtNrL , pi1 (yi | γ ip, si) can be written as
follows:

pi1
(
yi | γ ip, s

i
)

= exp

− 1
σ 2

Nr∑
j=1

∥∥∥yij − γ ijp (aijp ⊗ Dijp) si∥∥∥2
 . (46)

Because s and γp are unknown, they can be replaced by
using maximum likelihood estimates (MLE), which is called
GLRT. The definition of GLRT can be written:

max
{γp,s}

l1
(
γp, s | y

)
− l0(y)

H1
≷
H1

κ, (47)

where l1
(
γp, s | y

)
= log p1

(
y | γp, s

)
, l0(y) = log p0(y),

κ is determined by false alarm rate (FAR). (46) is bring to
(44) and ignore the constant. l1

(
γp, s | y

)
can be written as

follows:

l1
(
γp, s | y

)
= −

1
σ 2

Nt∑
i=1

Nr∑
j=1

∥∥∥yij − γ ijp (aijp ⊗ Dijp) si∥∥∥2 .
(48)
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Then the MLE of γ ijp is given by

γ̂ ijp =

((
aijp ⊗ D

ij
p

)
si
)H

yij∥∥∥(aijp ⊗ Dijp) si∥∥∥2 =
si
H
ỹijb

√
Ne
∥∥si∥∥2 , (49)

where ỹijb =
(
Dijp
)H

yijb , y
ij
b =

1
√
Ne

∑Nr
n=1

[
aijp
]∗
n
yijn .

Bringing (49) back to (48)

l1
(
γ̂p, s | y

)
= −

1
σ 2

Nt∑
i=1

(∥∥∥yi∥∥∥2 − si
H
8i8isi∥∥si∥∥2

)
, (50)

where 8i
=

[
ỹi1b , · · · , ỹ

iNr
b

]
.

Based on the rayleigh quotient (RQ) when s =

v1
(
8i8iH

)
, (50) reaches the maximum value. Bring s =

v1
(
8i8iH

)
back to (50)

l1
(
γ̂p, ŝ | y

)
= −

1
σ 2 ‖s‖

2
+

1
σ 2

Nt∑
i=1

λ1

(
8i8iH

)
(51)

Similarly, under the assumptionH0

l0(y) = −
1
σ 2 ‖y‖

2 (52)

Combining (47), (51) and (52), the GLRT detector
becomes

Nt∑
i=1

λ1

(
8i8iH

) H1
≷
H1

κ. (53)
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