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ABSTRACT Hyperspectral images stand out from other remote sensing images in anomaly target detection
because they contain unique distinguishing spectral information and attract great interest in applications of
search and rescue. However, most of the popular techniques for hyperspectral anomaly detection tasks focus
on improving accuracy with complicated algorithms and face difficulty in efficiently balancing performance
and complexity. In this paper, we propose a novel anomaly detection approach using a selected band image
extracted from the band selection model combined with an image filter. Singular value decomposition (SVD)
is adopted for spectral dimensionality reduction. A dual-window guided filter is constructed to highlight the
potential anomaly targets. To quickly calculate the abnormity degree, we design an efficient diagonal matrix
operation to achieve the energy of each pixel, and a spatial regulation model is designed to enhance the
subpixel target detection performance. Extensive experiments conducted on two real-world hyperspectral
datasets demonstrate that, compared with the existing relevant state-of-the-art approaches, the proposed
method requires less detection time and achieves higher detection accuracy.

INDEX TERMS Hyperspectral image analysis, remote sensing, anomaly detection, SVD, guided filter.

I. INTRODUCTION
Hyperspectral imaging (HSI) records hundreds of narrow
contiguous bands that provide deterministic spectral infor-
mation about different objects over the visible light spectrum
to the near-infrared (NIR) spectrum [1], [2]. Therefore, HSIs
can be considered 3-D cube data, which provides an intrinsic
advantage for many real-world applications and has received
broad and increasing attention for many years [3]–[6]. Hyper-
spectral image anomaly detection plays an important role in
these applications and research. [7], [8].

In essence, anomaly detection can be regarded as unsuper-
vised target detection that aims to extract the unusual spectral
signature from the background. In contrast to supervised
target detection, there is no prior knowledge of the target’s
spectral signature [9]. It is well known that the apriority target
spectra selected from actual scenes are difficult and collected
from the laboratory environment may be unusable in actual
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scenes. Therefore, unsupervised anomaly detection is more
useful and conforms to the tasks in real-world applications.

However, hyperspectral image anomaly detection usually
suffers from two main issues: 1) the lower spatial resolution
results in the distortion of the spectrum, which makes the
detection performance unsatisfactory, and 2) the higher spec-
tral resolution results in a larger data volume, which makes
processing more difficult. Hence, anomaly target detection is
an extremely challenging task.

Anomaly detection has been widely researched in recent
decades. Based on the approach to estimate the abnormity
degree of the potential anomaly target and the background,
the current HSI anomaly detection method can be divided
into two categories. One category uses the statistical analysis
method to isolate the spectra that conform to the designed
spectral distribution model. The other category usually uses
the low-rank or sparse character of HSI to extract the anomaly
target.

For the statistical-based anomaly detectionmethod, the RX
detector [10] assumes that the spectral signature in the HSI
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follows amultivariate Gaussian distribution, and then, the dis-
tance between the spectrum under test and the spectrum
within the local or global background in the whitened space
is calculated to describe each spectrum’s abnormity degree.
Even the real-world spectrum signature rarely follows the
designed Gaussian assumption; however, benefiting from
the low computational complexity and fast process speed,
the RX method is still widely used and is considered the
benchmark method among most classical anomaly detection
algorithms [11], [12]. Based on this, local RX measures the
local areas surrounding the test pixel and can acquire better
performance at the expense of computational cost [13]. The
kernel-based RXmethod adopts kernel methods to project the
background spectral information into a higher dimensional
feature space, i.e., kernel RX [14] and cluster kernel RX [15].

For low-rank or sparse-based methods, the typical example
is the low-rank and sparse representation (LRASR) anomaly
detection method, which assumes that the HSI data are dis-
tributed in a multidimensional linear subspace and constructs
a locally sparse constraint to overcome the influence of a
complex background [16]. Other methods that fall into this
category use different HSI backgrounds or data constraint
models to extract the anomaly spectra. For example, anomaly
detection tasks are regarded as a matrix decomposition prob-
lem with the minimum volume constraint for the multimodu-
lar background and sparsity constraint for the anomaly image
pixels [17]. The RPCA method uses low-rank and sparse
constraints to separate the HSI data into background and
target matrices [18]. The LSMAD method utilizes RPCA
and RXD to obtain the background model with low-rank
characteristics [19]. Moreover, spectral unmixing and low-
rank decomposition are combined to realize anomaly target
detection [20].

Each of these algorithms improves a specific procedure
in either obtaining a background description or consider-
ing sparsity and achieves better performance than classi-
cal methods. However, they dispose of HSI data by using
spectral characteristics more than spatial characteristics, and
the unique 3-D characteristics of HSI data are not fully
used.

Benefiting from high flexibility, unmanned aerial
vehicles (UAVs) have been widely used in real-world appli-
cations, i.e., search and track [21], and UAV platform-
based hyperspectral remote sensing will be a trend.
However, the aforementioned methods with complex calcula-
tions are not suitable for this platformwith limited computing
resources to realize high timeliness constraint tasks. Then,
the detection performance and computational complexity
should be equally considered. Unlike previous works, which
usually focus on one of the two issues, our approach aims to
solve both issues.

The main novelties of our work are presented in four
aspects:

1) A new spatial-spectral combined framework is pro-
posed, which can take both detection performance and com-
putational complexity into account.

2) An effective dual-window guided filter method is devel-
oped to achieve a more accurate background description and
significantly highlight the potential targets.

3) An effective matrix operation strategy is designed to
quickly accumulate the abnormity degree of each pixel.

4) A spatial regulation model inspired by the point diffu-
sion effect is established to enhance the subpixel anomaly
target detection performance.

To address the two issues mentioned earlier, our method
modified guided filter-based background description model
to purify the background and highlight the potential anomaly
targets.Moreover, a spatial regulationmodel is built to further
improve the subpixel anomaly detection performance. For
the second issue, SVD is exploited to remove the redundancy
band images, and amore efficient difference calculation norm
is designed to evaluate the abnormity degree of each pixel.
In the proposed framework, we extend the traditional image
processing method for hypercube hyperspectral images, and
the abnormal target has been described from both spatial and
spectral domains.

Using these novel techniques, the proposed framework
is more suitable for hyperspectral image anomaly detection
tasks with the following advantages. 1) Faster detection. Only
selected band information is used for detection tasks and
the complex iteration process is abandoned. 2) More reliable
results. The dual-window guided filter structure achieves
a much more robust background description for complex
scenes.

The remainder of this paper is organized as follows.
Section II explains the motivation of our framework.
Section III overviews the proposed framework and expounds
the method in detail, including SVD-based band selection,
dual-window guided filtering, and contrast description cal-
culations. Section IV demonstrates the simulation results
comparing the proposed method and other relevant state-
of-the-art hyperspectral anomaly target detection methods.
Section V concludes the paper.

II. MOTIVATION
Anomalies are defined as observations that are different from
their neighbouring background [22]. However, anomaly tar-
gets in hyperspectral images have unique characteristics; they
not only show different spectral curve changes regularly with
the background in the spectral domain but also present differ-
ent values among the surrounding pixels in some single-band
images in the spatial domain. Combined with the main issues
mentioned before, we generally discuss the philosophy of our
framework in the following.

A. SPATIAL-SPECTRAL COMBINED CHARACTER
HSI is a 3-D cube data, as shown in Fig. 1, which contains
a more elaborate spectrum signature than traditional grey or
colour images and leads to the unique characteristics of HSI.
In this section, we employ the HSI characteristics to analyse
the feasibility and rationality of the proposed method from
both spatial and spectral dimensions.
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FIGURE 1. Hyperspectral image description in the spatial and spectral domains.

In Fig. 1, each HIS band can be seen as a single image of a
certain band that has the same characteristics as a grey image.
The main difference between them is the physical mean-
ings of every pixel’s value. For the single-band HSI image,
the value represents the radiance or reflectance characteristics
of this certain band for the observation region. For the grey
image, the value represents the energy of the total visible light
band and reflects the total variation in the wideband range.
Then, we can employ the image processing method designed
for the grey image to deal with this kind of single-band
image.

Anomaly targets show different radiance or reflectance
values compared with their neighbouring pixels in the single-
band image. Then, in this paper, the anomaly detection pro-
cedure for signal band images is seen as a filtering process
for finding unusual pixels. The more purely the background
description we established, the more easily it is to separate
anomaly targets.

Inspired by the digital image smoothing method that can
remove abnormal points by replacing the centric pixels from
its surrounding neighbours, we exploit one of these kinds of
methods to deal with the signal band HSI image to achieve a
pure background description. By comparing the background
and original signal band images, we can obtain a map to
describe the abnormal degree of each pixel in this certain band
image.

B. SPECTRAL DIMENSIONALITY REDUCTION
HSI records the radiance or reflectance characteristics of the
observation region and organizes this information by wave-
length. Then, HSI can be seen as a data cube consisting of
different pixels, and each pixel contains a one-dimensional
spectrum vector. By comparing the value change or distribu-
tion variation in the spectrum vector, the abnormal spectrum
vector can be extracted.

FIGURE 2. Visual comparison of difficult contrast band images in the
AVIRIS dataset and SVD selected band images. (a) Pseudocolour image
and (b)-(d) the 5th, 50th, and 180th band images.

However, too much spectral band not only provides abun-
dant spectral information but also increases the hyperspectral
image redundancy. As Fig. 2 shows, some band images are
unsuitable for detecting anomalies due to their low contrast
against the background.

Fig. 2 describes the hyperspectral image collected by the
airborne visible infrared imaging spectrometer (AVIRIS) sen-
sor. Fig. 2 (a) is the pseudocolour image of this region, and
Fig. 2 (b)-(d) is the single-band image at the 5th, 50th and
180th bands. We can see that there are three airplanes in this
scene, but different band images present different discrimi-
nation abilities to distinguish the targets. Fig. 2 (c) (the 50th

band) presents lower contrast than that in Fig. 2 (b) and (d)
(the 5th and 180th bands).
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FIGURE 3. Proposed anomaly detection framework.

These low-contrast bands are counterproductive to tar-
get detection, and removing those redundancy bands needs
to be applied. SVD is an effective tool for feature extrac-
tion and image decomposition and is also widely used for
feature decomposition in dimension reduction tasks. Then,
we exploit the SVD model into our framework to remove the
redundant spectral band and select some bands that contain
observation scene information for further analysis.

Moreover, hyperspectral images often contain noise, which
can change the target spectral curves and influence the detec-
tion result. The SVDmodel also provides excellent anti-noise
ability [23] since most of the random noise can be regarded
as a high-frequency component in the images.

C. ROBUST BACKGROUND DESCRIPTION
Hyperspectral images are often collected by airplanes or
satellite platforms, which contain a wide field of view and
lead to observation areas consisting of many different ground
surfaces. The complex features cause confusion between
anomaly targets and similar edge areas, such as buildings
or roads, which may also appear abnormal against the back-
ground.

Moreover, complex surfaces result in a complex spectral
distribution situation and make it more difficult to build
an effective background description model. Then, the com-
plex surface severely restricted the detection performance of
statistics-based methods.

To better detect the anomalies, we adopt the guided fil-
ter [24] to achieve the purified background description.
By removing the background, the potential anomaly targets
are highlighted in each single-band image. However, the orig-
inal guided filter has a risk of removing the single-pixel or
subpixel targets in the process of smoothness of the single-
band image. In this paper, we design a dual-window structure
to protect the single- and subpixel potential anomaly targets.

III. METHODS
In this paper, we propose a novel HSI anomaly detection
framework depicted in Fig. 3. There are four modules in the
framework: SVD-based band selection to reduce the spectral
dimensionality, a dual-window guided filter to highlight the
potential targets, matrix operations to achieve the abnormity

degree, and a spatial regularization model to obtain a better
detection performance. The details of our proposed frame-
work are explained in the rest of Section III.

A. SVD-BASED BAND SELECTION
As mentioned before, HSI contains a low-contrast abundant
spectral band, and only a few high contrast bands are actually
suitable for anomaly target detection tasks. We exploit the
SVD model to select the band that contains the most content
for further anomaly detection.

Assume that I ∈ R (L ×M × N ) refers to a 3-D HSI
image, where M , N and L are the width, height and bands,
respectively. Then, the HIS data I can be reshaped into a
2-D matrix X ∈ R(L×(M ·N )), and it can be decomposed into
matrices U , 6 and V T . It is expressed as:

X = U6V T (1)

where U is an L × L orthogonal matrix with eigenvectors of
XXT in its columns, 6 is an L × (M · N ) matrix with the
square root of eigenvalues of XXT or XTX as its diagonal
elements, and V is a (M · N ) × (M · N ) orthogonal matrix
with eigenvectors of XTX in its columns. Since the SVD
is efficient in capturing the directions (vectors) explaining
most of the variability, a relatively small number of basis
vectors tends to explain more than 99.99% of the overall
variability [23], and it is expressed as:

XL×(M ·N ) = UL×L6L×(M ·N )V T
(M ·N )×(M ·N )

≈ UL×k6k×kV T
k×(M ·N ) (2)

Then, we adopt the first k eigenvalues considered in
SVD-based band selection., i.e., the first k most informative
bands are selected, and the rest are discarded as redundancy
bands.

B. DUAL-WINDOW GUIDED FILTER
1) ORIGINAL GUIDED FILTER
Anomaly targets, especially subpixel targets showing sparsity
against the background, we exploit the guided filter to smooth
the image and achieve a robust background description.
The guided filter has shown satisfactory ability to preserve
the large scale of edges and smooth background informa-
tion [24], [25]. Assume that the guide image, filtering input
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FIGURE 4. Dual-window guided filter structure.

image, and filtering output image are IG, IIN and IGF , respec-
tively. The guided filter is driven by a local linear model as
follows:

IGF = ak IG(i)+ bk , ∀i ∈ ωk (3)

where (ak , bk ) are the linear coefficient parameters, i is the
index of a pixel, and k is the index of a local window with
a radius w. Assume IIN is the filtering input image, and
the minimized reconstruction error between IIN and IGF is
defined as follows:

ak =
1
|ω|

∑
i∈wk IG(i)IIN (i)− µk I IN (k)

σ 2
k + ε

(4)

bk = I IN (k)− akµk (5)

where µk and σ 2
k are the mean and variance in IG in window

k , and ε is a regularization parameter controlling the degree
of smoothness. The output of guider filtering is computed by:

IGF (i) =
1
|w|

∑
k:i∈wk

(ak Ii + bk )

= aiIg(i)+ bi (6)

where āi and b̄i are the average of a and b, respectively, on the
window ki centre at i.

2) DUAL-WINDOW GUIDED FILTER STRUCTURE
As a guided filter is designed for grey images or colour
images, it cannot be utilized for HSI cubes directly. Then,
we use SVD to select some single-band images and extend the
original guided filter into a dual-window structure (as shown
in Fig. 4.) to improve the detection probability for anomaly
targets.

For each single-band image, targets are influenced deeply
by their nearest neighbour pixels but relatively shallower for
further neighbour pixels. Then, if we letDiffi be the output of
a single-band image, it can be described as:

Diffi = Inneri − Outeri (7)

where Inneri and Outeri represent the results of the guided
filter by using inner and outer filtering windows, respectively.

For the background region, the inner window filter and
outer window filter obtain almost the same background
description, and the difference of this region will be close to
zero. For the region that contains anomaly targets, the outer

FIGURE 5. Abnormity degree calculate.

window smooths the anomaly pixels with more background
regions than the inner window. Then, the difference between
these two windows will be greater than the situation without
anomaly targets. The outer window builds the background
description, but the inner window reserves the anomaly tar-
gets, and the difference between the inner and outer windows
relatively enhances the anomaly targets.

C. ABNORMILTY DEGREE CALCULATION
For each selected single-band image, through the devia-
tion calculation between the two windows mentioned above,
we can obtain an enhanced different image in which the
potential anomaly targets in the original single-band image
can be highlighted.

We reorganize the different processed images into a new
3-D hypercube. Then, each pixel in the new data is reverted
to a vector. However, differing from the original data, the
background pixel vector is near zero, and the anomaly target
vector is much larger than the zero vector in the hypercube.
This phenomenon leads to different energies between the
background and target vectors. Then, we use the energy to
measure the abnormity degree of each pixel’s vector from the
reorganized data, and greater energy means a greater abnor-
mity degree. To improve computational efficiency, we design
a diagonal matrix operation to efficiently compute the energy
of each pixel between the bands, as illustrated in Fig. 5. If we
let di be the abnormity degree, for vector xi, its energy can be
described as:

di = xi ∗ xTi (8)

The reorganized data Ir with the size k ×M × N is trans-
formed into a 2-D matrix I ′r with the size k × (M · N ); then,
the abnormity degree resultD can be efficiently calculated as:

D = I ′r ∗ I ′
T
r (9)

By using this approach, we can obtain a detection map in
which the value equals each pixel’s abnormity degree. This
process is illustrated in Fig. 5.
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D. SPATIAL REGULARIZATION MODEL
Mixed pixel and point spread phenomena widely exist in
hyperspectral images of the real world. This leads to the
target spectra being influenced by the background spectra
around it and increases the missing alarm probability, espe-
cially for subpixel targets. To address this situation, inspired
by the key technique in infrared target detection systems
reported in [26], we design an efficient regularization model
to enhance the abnormal subpixel spectral detection perfor-
mance.

We modelled the mixed pixel and point spread phe-
nomenon using the following formula:

I (x, y) = I0 exp

{
−
1
2

[
(x − x0)2

σ 2
x

+
(y− y0)2

σ 2
y

]}
(10)

where I0 is the anomaly detection result, (x0, y0) denotes the
centre location of the candidate target, and σx and σy are the
horizontal and vertical extent parameters, respectively. I (x, y)
represents the value of the surrounding location (x, y).
The subpixel target I0 is surrounded by the direct neigh-

bour domain and the diagonal neighbour domain, and they
approximately contain the following relationships:

p =
ln I0 − lnM
ln I0 − lnN

(11)

where IM and IN represent the average value of the direct and
diagonal neighbour domains, respectively. p is the indicator to
judge whether a subpixel target is a target and equals 0.5 only
under ideal conditions. We set the protection interval of p
to [0.3, 0.7]. For the subpixel target, we design a regulation
function to enhance its abnormity degree as follows:

Dr = Di

/[
1

1+ exp(−p)

]
(12)

where Dr is the enhanced abnormity degree of the subpixel
target Di. Thus, we can obtain a regulated detection result
with more distinguishability.

IV. EXPERIMENTS AND DISCUSSION
Extensive experiments are conducted in this section.
To evaluate the effectiveness and robustness of our method,
we compare it with several outstanding hyperspectral
anomaly detection methods (Global RX, Global Kernel-RX,
Local RX, Local Kernel RX, robust PCA, LSMAD, LRASR,
FrFE [27] and GTVLRR [28]) based on two real-world and
public datasets.

We exploited receiver operating characteristic (ROC)
curves to evaluate the performance of different algo-
rithms [29]. ROC curves describe the varying relationship of
PD (probability of detection) changing with PFA (false alarm)
at different thresholds to measure the anomalies. PD and PFA
are defined as follows:

PD =
NTT
NT

, PFA =
NFT
NB

(13)

FIGURE 6. AUC scores under different band numbers.

whereNTT is the number of correct detection target pixels and
NT is the total number of total true target pixels. NFT repre-
sents the number of background pixels labelled as targets, and
NB indicates the total number of background pixels.
For a further comparison of the anomaly detector perfor-

mance, another more frequently used performance measure
named the area under the ROC curve (AUC) is applied to
further evaluate the detection accuracy [30]. AUC calculates
the area under the curve of ROC curves.

A. DATASETS
For a fair comparison, two widely used real-world hyper-
spectral anomaly detection datasets collected by different
sensors and containing different surfaces are applied in the
experiment.

1) HYDICE URBAN DATASET
The first scene is the most commonly used dataset in hyper-
spectral anomaly detection experiments; it was collected
by the Hyperspectral Digital Imagery Collection Experi-
ment (HYDICE) from a land cover region [31] and is com-
posed of buildings, vegetation, roads, and vehicles. There are
21 sub- or pure pixels marked as anomalies in these data,
whose size is 80 × 100, and the spatial resolution is 3 m.
Moreover, the spectral bands of this dataset are 162 after
removing 48 water absorption and low signal-to-noise bands.

2) AVIRIS AIRPORT DATASET
The second dataset is a part of an airport in San Diego col-
lected by the Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS) [32]. In our experiment, the dataset consists of
100 × 100 pixels and 188 spectral channels after removing
the bad bands with a 3.5 m spatial resolution. This dataset
is composed of buildings, vegetation, runways, an apron,
and three airplanes. As usual, those airplanes are marked as
anomaly targets consisting of 64 pixels. However, we found
that embedded roofs seem to be unusual spectra in this scene.
Here, we still respect and follow the normal process and
regard the three airplanes as anomalies.

B. PARAMETER ANALYSIS AND SETTING
1) THE NUMBER OF RESERVE BAND
In our framework, we exploit the SVD model to remove
the redundancy band. Each band of SVD transformed data
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FIGURE 7. AUC scores under different filter parameters w and ε. Fig. 7 (a) and (b) show the AUC scores for the HYDICE Urban and AVIRIS Airport
datasets, respectively.

describes different information components of the original
hyperspectral image, and we need enough band information
to establish the stable background description and highlight
the potential targets. Then, we first test the proposed frame-
work on two datasets with different reserve band numbers to
find the best parameter setting.

As illustrated in Fig. 6, different datasets seem to need dif-
ferent reserve band numbers. For the HYDICEUrban dataset,
a satisfactory AUC score was obtained under 5 reserve bands,
and the detection performance remained stable when the band
number increased. However, for the AVIRIS dataset, many
more reserve bands were needed to obtain excellent detection
performance. Then, for a fair comparison, we chose 20 SVD
reserved bands in our experiment for further analysis.

2) FILTER PARAMETERS
The parameters of the designed dual-window guided filter
include w and ε, which indicate the window size and degree
of smoothness, respectively. In our dual-window structure,
we set the outer window size twice over the inner window,
and the outer window smoothness degree was ten times over
the inner window. For simplicity to illustrate the performance
of two parameters, we show the detection AUC score changes
under two datasets with different outer filter parameters
in Fig. 7.

In this parameter analysis experiment, we set w ranging
from 2 to 20 and ε ranging from 2 to 20 to test the AUC
scores. It seemed that the detection performance was sensi-
tive to the window size w. For the HYDICE Urban dataset,
better detection performance was obtained when w increased
to 5. However, for the AVIRIS Airport dataset, satisfactory
detection performance was obtained when w increased to 14.
This situation is related to the size of anomaly targets, and the
targets in the Airport dataset are much larger than the targets
in the Urban dataset; thus, it may need a larger filter window
size.

Although anomaly target detection is an unsupervised task,
what we want to detect is guidance information to determine
the filter window. In our experiment, we still followed strin-
gent anomaly detection without any prior information, and

in the follow-up experiments, we set the same parameters
w = 15 and ε = 10.

C. DETECTION PERFORMANCE ANALYSIS
In this section, we compare the proposed framework with
several typical and newly proposed outstanding hyper-
spectral anomaly detection methods both qualitatively and
quantitatively.

1) QUALITATIVE EVALUATION
For qualitative evaluation, we normalized the detection
results to [0, 1] and binarized the result on the threshold
values set according to the first 1% and 2% of the results
of each algorithm. The results on the two datasets are illus-
trated in Fig. 8 and Fig. 9. For the HYDICE Urban dataset,
Fig. 8 presents the acquired detection results of the compared
methods. Fig. 8 (k) is the ground truth map, Fig. 8 (l) is
the pseudocolour image, and (a) to (j) are the corresponding
detection results of different methods. At threshold values
set according to the first 1% value of the result under each
method, FrFE and the proposed method correctly detect all
the targets and remove most of the background. Other algo-
rithms, i.e., Global RX, Global Kernel RX, and LRASR, have
lost the targets within the red circle region marked in the
ground truth map in Fig. 8 (k). This situation occurs because
those targets contain a lower abnormity degree than many
background regions, which interferes with the judgement of
the anomaly targets.

For the AVIRIS Airport dataset, we set the threshold values
according to the first 2% value of the result under each
method. We can see that the shape of three airplanes was
clearly visible in the detection results of LRASR, Global
Kernel RX, FrFE and the proposed methods. The proposed
method reserves complete target shapes, which means that
there are discriminative differences between targets and the
background and that the targets are more obvious and effort-
less for detection. Compared with other methods, the yellow
block region and red block regionmarked in the pseudocolour
image Fig. 9 (l) is the notable false detected region in many
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FIGURE 8. Detection results for the HYDICE Urban dataset: (a) Global RX, (b) Local RX, (c) Global Kernel RX, (d) Local Kernel RX,
(e) LRASR, (f) RPCA, (g) LSMAD, (h) GTVLRR, (i) FrFE, (j) Proposed, (k) ground truth, (l) pseudocolour image.

FIGURE 9. Detection results for the AVIRIS Airport dataset: (a) Global RX, (b) Local RX, (c) Global Kernel RX, (d) Local Kernel RX, (e) LRASR,
(f) RPCA, (g) LSMAD, (h) GTVLRR, (i) FrFE, (j) Proposed, (k) Ground Truth, (l) pseudocolour image.
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TABLE 1. AUC scores of the proposed framework and compared methods
on two real-world datasets.

methods (i.e., LSMAD, RPCA), but those two regions are
well restrained in our result.

2) QUANTITATIVE EVALUATION
The qualitative evaluation results on two datasets veri-
fied the effectiveness of the proposed anomaly detection
framework. Considering that the visual assessments may be
inaccurate, we employed the semi-log ROC curve to quantita-
tively evaluate the performance of all the methods, as shown
in Fig. 10. Moreover, we repeatedly conducted the experi-
ments 5 times, and the statistical average AUC scores are
illustrated in Table 1.

Fig. 10 (a) shows the semi-log ROC curves of the first
dataset. The probability of detection for our method grew
much faster than that of the other methods and achieved the
smallest false alarm rate when all the anomaly targets were
detected.

For the second dataset, semi-log ROC curves are shown
in Fig. 10 (b). We can see that the Global RX method
achieved poor performance due to the complex background.
The GTVLRR method showed better performance at low
false alarm rates, but the fault-detected background region
influenced (red block region marked in Fig. 9 (l)) the detec-
tion performance. For our methods, we still achieved the
smallest false alarm rate when all the anomaly targets were
detected.

As Table 1 shows, except for GTVLRR and LSMAD,
the other methods all presented a stable performance, and the
proposed method achieved the highest AUC score on both
scenes, as expected. This demonstrates the effectiveness of
the proposed hyperspectral anomaly detection framework.

D. TIME COST ANALYSIS
For a more comprehensive evaluation of the detection per-
formance, we calculated the computational costs of different
anomaly detection methods and present them in Table 2.
Here, we repeated the Experiments 5 times to statistically cal-
culate the average costs. The testing hardware and software
conditions are listed as follows: Intel Core i7–4790 3.6 GHz
CPU, 16 G DDR3 RAM, Windows 10, MATLAB R2020a.

TABLE 2. The computational costs of different anomaly detection
methods on the two datasets (in seconds).

TABLE 3. The computation costs of each step (in seconds).

In Table 2, we can see that our framework achieved faster
detection speed than other state-of-the-art methods except
for the Global RX model, which adopts linear projection
to estimate the anomalies. Combining qualitative analysis,
the results demonstrate that our method is an effectivemethod
for hyperspectral anomaly target detection tasks and shows
outstanding performance compared with the state-of-the-art
methods (i.e., LRASR, FrFE).

To comprehensively analyse the time costs of our methods,
we calculated the computational costs of each processing
step, and the results are listed in Table 3.

As illustrated in Table 3, the main computational costs
were concentrated around the SVD-based spectral dimen-
sionality reduction process (almost 60% of computational
costs). A dual-window guided filter is efficient in highlighting
potential anomalies, and abnormity degree calculation and
spatial regulation also incur rare time costs. Then, a more
concise dimensionality reduction method will further reduce
the computational costs and improve the efficiency of the
framework (i.e., PCA).

Based on the abovementioned analysis, our approach per-
forms better in visualization results, detection accuracy, and
time costs, and these results benefit from all aforementioned
advantages: faster detection and more reliable results.

E. EACH STEP ANALYSIS
To demonstrate the importance of each step, we exploited
the AUC score to evaluate the performance of the pro-
posed framework under the situation without different steps.
We reserve the abnormity degree calculation step as the basic
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FIGURE 10. Semi-log ROC curves of anomaly detection methods on two datasets: (a) HYDICE Urban dataset, (b) AVIRIS Airport dataset.

TABLE 4. Auc score of the proposed method without different steps.

process and gradually add other steps. Moreover, we test
the situation when we without dimension reduction (dual-
window guided filter, abnormity degree calculate and spa-
tial regulation are reserved) or dual-window guided filter
(dimension reduction, abnormity degree calculate and spatial
regulation are reserved). Finally, we use the basic guided filter
to replace the designed dual-window structure for further
comparison.

As illustrated in Table 4, the detection performance is
improvedwhenwe add each step until we obtain the complete
framework that confirms the effectiveness of each step.When
we removed the dimension reduction step or dual-window
guided filter from the proposed framework, the AUC score
was significantly reduced, which demonstrates the impor-
tance of the dimension reduction and dual-window guided
filter. The result of adding the dual-window guided filter also
means the framework without the spatial regulation model,
compare with the result of the complete framework, we know
that spatial regulation also improved the detection perfor-
mance to some degree. There is an obvious contrast between
using the dual-window guided filter and the basic guided
filter, which demonstrates the effectiveness of the designed
dual-window guided filter.

V. CONCLUSION
In this paper, we proposed a novel hyperspectral anomaly
target detection framework based on spectral dimensionality
reduction and a guided filter. In our framework, we exploited

SVD to reduce the spectral band. Then, we improved the
guided filter into a dual-window structure to achieve a more
purified background description and highlight the potential
anomaly targets. After the filtering process, we reorganized
the filtering results into a new 3-D hypercube and exploited
an efficient matrix operation to achieve the abnormity degree
of every pixel. Finally, we designed a spatial regulationmodel
to enhance the detection performance, especially the sub-
pixel anomaly targets. Extensive experiments demonstrate
that our proposed framework outperforms the state-of-the-art
methods in terms of both accuracy and computational costs.
For future work, we will focus on a high-efficiency band
selection and spectral dimensionality reduction strategy to
further improve the performance of the proposed framework.
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