IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 23, 2021, accepted August 26, 2021, date of publication September 7, 2021, date of current version September 16, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3110911

Next-Generation Neural Networks: Capsule
Networks With Routing-by-Agreement

for Text Classification

NIKOLAI A. K. STEUR™ AND FRIEDHELM SCHWENKER", (Member, 1IEEE)

Institute of Neural Information Processing, Ulm University, 89081 Ulm, Germany

Corresponding author: Friedhelm Schwenker (friedhelm.schwenker @uni-ulm.de)

Authors thank Ulm University for continuous support. The work of Friedhelm Schwenker is supported by the German Research

Foundation (DFG) under Grant SCHW 623/7-1.

ABSTRACT These days, neural networks constantly prove their high capacity for nearly every application
case and are considered as key technology for learning systems. However, neural networks need to
continuously evolve for managing new arising challenges like increasing task complexity, explainability
of decision making processes, expanded problem domains, providing resilient and robust systems etc. One
possible enhancement of traditional neural networks constitutes the innovative Capsule Network (CapsNet)
technology, which combines the expressiveness of distributed entity representations with an intelligent and
interpretable signal propagation, named as routing-by-agreement. Since CapsNets represent a relatively
young acquirement, further research is essential for gaining profound knowledge about CapsNet theory
and best practices for diverse application areas. This paper wants to contribute to the progress of CapsNets
for the task of text classification. For this purpose, various research questions about this technology get
formulated and experimentally answered with the aid of six selected datasets. In addition, this paper serves
as a possible starting point for researchers as well as for practitioners to deal with CapsNets in the text
domain, by supplying a survey about its theory, text classification basics and the combination of both areas.
The analysis results empirically prove the robustness of CapsNets with routing-by-agreement for a wide
spectrum of net architectures, datasets and text classification tasks. Hence, CapsNets can be viewed as a
next-generation neural network technology, which offers high potential as text classification method and
should be topic of future research.

INDEX TERMS Capsule models, capsule networks, language modeling, neural networks, representation

learning, routing-by-agreement, routing procedures, text classification.

I. INTRODUCTION

Since technological advances in computer systems enabled
the computation of heavy calculations in relatively small
time through massively parallel systems, like mulit-processor
computers or Graphical Processing Units (GPU)s, the way
was prepared for the neural network technology in many
application areas. Common applications for neural net-
works represent among others computer vision, time series
forecasting, anomaly detection, speech recognition and
machine translation. Especially, the development of gathering
tremendous amount of data through the progressive
digitalization in almost every sphere of life, opened nearly

The associate editor coordinating the review of this manuscript and
approving it for publication was Tony Thomas.

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

unlimited application fields and enabled the training for
creating high-performance neural networks. In recent years,
neural networks write another success story with the aid of
easy to use software libraries (e.g. TensorFlow [1]), which
bring the capability of this potent technology to almost each
company. Despite the powerfulness of contemporary neural
networks, the demanded requirements on this technology
regularly escalate caused by statutory regulations, expanding
problem domains, increasing task complexity, frame condi-
tions with respect to the used datasets etc. In consequence
of this, the neural network technology must be continuously
enhanced and redefined for satisfying new arising challenges.

One bearer of hope for sustainably enhancing traditional
neural networks embodies the innovative Capsule Network
(CapsNet) technology, which combines the expressiveness

125269

https://orcid.org/0000-0002-8182-6781
https://orcid.org/0000-0001-5118-0812

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

of distributed entity representations with an intelligent and
interpretable communication between consecutive capsule
layers. Although the idea behind capsules already arose one
decade ago [2], the breakthrough of CapsNets took about six
further years and the introducing of an intelligent routing
between adjacent capsule layers [3]. Because of this long
journey for showing the potential of CapsNets, they can be
still characterized as a relatively new acquirement in the field
of neural networks. However, the CapsNet technology still
needs further research to gain knowledge about best prac-
tices for dealing with CapsNets in diverse application areas
and, specifically, to improve the theoretical understanding of
CapsNets and its dynamics.

This paper wants to contribute to the progress of the
CapsNet technology in the application field of text classifi-
cation. In more detail, the contribution of this paper is three-
fold: Firstly, a comprehensive overview of CapsNet theory
including capsule models and diverse routing procedures is
provided. Secondly, basic knowledge about language mod-
eling and the task of text classification is supplied. Thirdly,
various research questions about different CapsNet configu-
rations are formulated and experimentally investigated in the
context of text classification. In particular, this paper should
serve as possible starting point for dealing with CapsNets in
the text domain for researchers as well as for practitioners.
Nevertheless, this paper also covers advanced topics and ideas
which hopefully motivate further research about CapsNets.

The structure of this paper is defined as follows: Section /7
Fundamentals begins with the presentation of CapsNet theory
and the covering of basic knowledge about text classifica-
tion. The capsule theory involves the consideration of two
capsule models, the construction of capsule layers and the
introduction to distinct routing procedures. The text classi-
fication basics comprise general characteristics of language
modeling, different kinds of representation learning models
and a reflection on trends in the area of text classification.
Section /1l Used Text Datasets introduces the selected text
classification datasets for the analysis part of this paper. Espe-
cially, a textual description and some relevant statistics are
given for each dataset. Section IV Related Work supplies as
literature review about the use of CapsNets for the task of text
classification. In addition, the most important related works
are more precisely described. Section V Analyses focuses on
the analysis of distinct CapsNet configurations, by defining
an appropriate analysis model, describing the training setup
and formulating research questions which get experimentally
answered. Section VI Conclusion finishes the paper with a
brief final statement about the potential of CapsNets with
routing-by-agreement as text classification method.

Il. FUNDAMENTALS

This section contains information about technologies and
methods which are relevant for the understanding of the
subsequent work. It starts with an introduction to the theory
of CapsNets by covering the used capsule models in this
paper, explaining the structure of distinct capsule layers and

125270

elucidating the routing-by-agreement process as commu-
nication behavior between consecutive capsule layers.
In addition, different routing procedures are described and
discussed. This section ends with the presentation of text
classification basics like language modeling, representation
learning models and conventional text classification methods.

A. CAPSULE NETWORKS

Hinton et al. [2] initially introduced the concept of forming
scalar-output neuron groups, named as capsules, by propos-
ing a transforming autoencoder which was able to apply
a translation operation on a visual entity within an input
image. After this work, there passed about six years without
substantial progress in the area of capsule technology. Only
the work of Sabour et al. [3] illustrated the practical use of
capsule-based neural networks by establishing an inter-layer
dynamic which follows a strategy, named as routing-by-
agreement. Since this groundbreaking work CapsNets were
adopted for various machine learning tasks including image
recognition [3]-[7], text classification [8]-[21], knowledge
graph completion [22], medical research [23], and many other
fields.

1) CAPSULE MODELS

One key idea of CapsNets, compared to conventional neural
networks, constitutes the replacement of scalar-output neu-
rons with capsules. Basic properties of a capsule include the
encoding of complex entity characteristics in its distributed
representation and the ability for quantifying the existence
probability of the observed entity [3], [4]. In general, the con-
cept of capsules with both mentioned properties can be real-
ized in various ways. The two capsule models, which will
be used in the further proceeding of this paper, are displayed
in Fig. 1.

Fig. 1 illustrates the two capsule models according to [3]
and [4], respectively. Capsule model (a) is represented as
a group of scalar-output neurons, arranged in the form of
a vector p. This vector stores the instantiation parameters
of the considered entity. For example, in a visual task such
an entity could be a low-level feature like a rectangle or
a high-level feature like a house. The vector elements in a
capsule specify the instantiation of the observed entity in the
current input. Obviously, a visual entity like a house can have
diverse instantiation parameters such as the thickness of its
lines, skewness or hue, but also the number of windows or
the type of construction. This intuition about the stored entity
properties in capsules for visual tasks analogously holds
in the domain of text classification. In that sense, capsules
could progressively embrace semantics of phrases, clauses
and sentences depending on the considered task. Imaginable
instantiation parameters for textual entities may be intensities
of certain sentiments, the form of expression or grammar
characteristics. But such latent variables in text classification
tasks are rarely explored and much more difficult to capture
for humans than entity properties in visual tasks. The prob-
ability that an observed entity appears in the current input is

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

IEEE Access

instantiation parameters activation

I

So-0e

(a)

instantiation parameters activation
A
|
]
\ I

P

(b)

FIGURE 1. Vector-output (a) and matrix-output (b) capsule models, based
on the concepts of [3] and [4], respectively. Vector p and matrix P are
composed of instantiation parameters of the observed entity. The
red-colored components illustrate the calculations needed for
determining the existence probability of the considered entity.

given by the length of the instantiation parameter vector ||p||2
and is nominated as activation. In particular, this definition of
capsule activation is biologically plausible since the existence
probability of an entity strongly correlates with the intensity
of its instantiation parameters, thus, if no entity is recognized
with high confidence, the instantiation parameters should also
not be determined [3].

Capsule model (b) encodes the instantiation parameters
of its observed entity in matrix form. Using a matrix
instead of a vector for encoding instantiation parameters,
results in practical advantages for recognizing 3-D instances
in images, by inherently providing viewpoint equivariance
through multiplying instantiation parameter matrices with
discriminatively learned transformation matrices [2], [4].
The precise dynamic between capsule layers is explained in
section /I-A3 Routing-By-Agreement. Since the effects of
matrix-output capsules on tasks with textual data have not
been explored yet (to the best of our knowledge), this cap-
sule model was especially selected for further investigation.
The activation of capsule model (b) is defined as the sum
over all matrix elements, fed into the sigmoid function. The
application of the sigmoid function bounds all activations
to values in the range of [0, 1]. Therefore, the activation of
a matrix-shaped capsule represents a true probability value.
To emphasize that activation values are only calculated if they
are explicitly requested (e.g. to provide a probability distri-
bution over class capsules in the output layer of a network),
the activation output of both capsules are drawn as dotted
arrows.

There exist three main reasons for the choice of both
capsule models in Fig. 1:

VOLUME 9, 2021

« Lightweight and layer-independent models

o Learning of hierarchical feature relationships

o Parallel attention mechanism through adjustable

inter-layer dynamic feasible.

First, capsule model (a) and (b) can be reduced to mod-
els solely containing an instantiation parameter vector or
matrix, since the calculation of the capsule activation can
be categorized as on-demand functionality. This leads to
computationally lightweight capsule models compared to
other more complex models. For instance, Wang et al. [16]
proposed a much more comprehensive capsule model for text
classification, consisting of internal representation, proba-
bility and reconstruction modules. Moreover, Wang et al.’s
model [16] was dedicated for the output layer in a network
architecture. On the contrary, capsule model (a) and (b) can
be easily employed layer-independent in a neural network
architecture, depending on the realization of the inter-layer
communication. Evidently, capsule model (a) and (b) are
computationally lightweight related to other more complex
capsule models, but consume much more resources compared
to an equivalent network architecture based on scalar-output
neurons. However, the resulting expressiveness for capturing
information about observed entities significantly increases
with the use of capsules. Principally, Wang et al.’s capsule
model [16] can also be used in different layers of a neural
network, although the authors indented this model for the
output layer, but the main drawback of this model lies again
in its required computational effort.

The second argument for the choice of capsule model
(a) and (b) thematizes the ability to build hierarchical rela-
tionships from lower-level features to higher-level ones,
which can be characterized as normal behavior within neural
networks. Besides, at this point we could just introduce an
arbitrary nonlinearity (e.g. an activation function) between
consecutive capsule layers and propagate the weighted sum
of all capsule outputs from the previous layer to each capsule
in the next-higher layer. This would enable the network to
learn hierarchical patterns as expected. Actually, one method
already exists that utilizes this approach for the inter-layer
communication of CapsNets in the field of text classification
(cf. Static Routing in section II-A3 Routing-By-Agreement).

The last reason regards the implementation of the dynamic
behavior between capsule layers as parallel attention mech-
anism [3], [8]. For this purpose, Sabour et al. [3] firstly
introduced the notion of routing-by-agreement which ful-
fills the assignment of part-to-whole relationships. Briefly
explained, lower-level capsules encode entities that represent
parts to the wholes which are in turn encoded in the entities
of the next-higher capsule layer. For instance, in computer
vision parts could be a nose, mouth or eyes and the cor-
responding whole could be a human face. Now, a routing-
by-agreement procedure tries to dynamically route recog-
nized parts to their wholes in the next-higher layer. This
dynamic should reduce the noise ratio in higher-level cap-
sules and acts like a parallel attention mechanism, because
this process is applied for each higher-level capsule [3], [8].

125271

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

Thus, routing-by-agreement supports the learning of more
complex hierarchical relationships. The concrete implemen-
tation of a routing-by-agreement procedure can also be
strongly problem-specific to exploit expert knowledge in a
given domain.

2) CAPSULE LAYERS

One problem that may arise when designing a CapsNet is
how to build an introducing capsule layer upon scalar-valued
features. A possible solution can be the extraction of instan-
tiation parameters from a preceded convolutional layer.
Fig. 2 depicts the conversion of the output from a 2-D Convo-
lutional Layer (Conv2D) into a convolutional capsule layer.
A Conv2D was selected for illustration purposes, using a 1-D
Convolutional Layer (Conv1D) would follow the same con-
cept. First of all, the feature maps of the convolutional layer
are pooled into groups with size corresponding to the number
of instantiation parameters d for one capsule. Afterwards,
the scalar values at each 2-D position in a group of feature
maps are gathered in order to shape an instantiation parameter
vector or matrix with d elements. Finally, the resulting cap-
sule feature maps are collected to constitute a convolutional
capsule layer. The initial capsule layer within a network is
usually referred to as Primary Capsules (PrimaryCaps) [3].
To ensure equal-sized feature map groups, the number of
feature maps n must fulfill the constraint

nmodd = 0. €))]

i7" 1

R —=
Conv2D h E h Primary h
h - Caps
w w m
Sw . . w

FIGURE 2. Exemplary proceeding for building a convolutional capsule
layer upon a 2-D convolutional layer, based on the concept of [3].

Hence, the required number of filters m of the Conv2D
is given as m = n/d, for providing a desired cap-
sule dimensionality. Spatial information is preserved in the
combined capsule-based feature maps. As a consequence,
the width w and the height % dimension remain unchanged.
The great advantage of concatenating scalar-valued features
to instantiation parameter vectors or matrices relies on the

125272

exponentially increasing efficiency compared to scalar-valued
features [3].

Principally, capsules can be composed of arbitrary
scalar-valued features. For example, another possibility rep-
resents the conversion of hidden states in a Recurrent Neural
Network (RNN) layer into entity instantiation parameters
for capsules [13], [16]. Nevertheless, the above presented
concept for creating PrimaryCaps based on a regular convo-
lutional layer is one of the most frequent applied variants.

After the composing of PrimaryCaps as initial layer for
each CapsNet, conventional neural network layers can be
simply transferred into capsule-based versions by rather oper-
ating on capsules than on scalar-output neurons. As a remark,
capsule layers still follow another inter-layer dynamic than
regular neural network layers which must be taken into
account for implementation purposes.

3) ROUTING-BY-AGREEMENT

The general routing-by-agreement process can be summa-
rized in five chronological steps: 1. Each capsule in a
lower-level layer predicts the instantiation parameters for
all entities encoded in capsules of the next-higher layer.
2. The instantiation parameters of a higher-level capsule are
computed based on the predictions from the preceded layer.
3. Predictions that are in coherence with the instantiation
parameters of a capsule in the next-higher layer are likely to
be part of the higher-level entity. 4. Therefore, the contribu-
tion of agreeing predictions to the instantiation parameters
of the higher-level capsule gets increased. S. This process
can be iteratively applied since changing the contribution
of predictions, in turn leads to changes in the instantiation
parameters of higher-level capsules [3].

Fig. 3 illustrates the sending of predictions from a
fully-connected capsule layer to the subsequent one. For
instance, the prediction l}ﬂi for capsule c} is computed as
multiplication of U; with the corresponding transformation
matrix W;;. Using transformation matrices as connection
weights, instead of scalar values, results in the ability to

oW aauby-Ag-buiznoy

FIGURE 3. Visualization of the general routing-by-agreement process
between two fully-connected capsule layers, oriented on formulae
from [3].

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

IEEE Access

encode complex spatial relationships between capsules from
consecutive layers [3]. The prediction Uj is stated as matrix
for supplying a generic mathematical formulation for vector
and matrix-shaped capsule models. All predictions of the
preceded capsule layer are finally processed by a chosen
routing-by-agreement procedure, which specifically weights
the collection of inputs for each capsule in the subsequent
layer. A prediction can be mathematically expressed as

A~

Uji = W;jUi @ bjj. (@)

In opposite to Sabour et al. [3], the computation of pre-
dictions was extended with a connection-specific bias which
gets element-wise added to the transformed outputs of pre-
ceding capsules. Other approaches frequently use solely
matrix multiplication for determining capsule predictions, as
Sabour et al. [3] initially proposed. Hinton et al. [4] also
added two learnable biases per capsule but how they were
exactly involved was not further explained. Zhao et al. 8]
assigned an individual bias term to each higher-level capsule
that is added to predictions from the preceded layer. Thus,
as opposed to Hinton et al.’s [4] or Zhao et al.’s [8] approach,
in this paper each connection between consecutive capsule
layers gets assigned an individual bias term.

The bias term in (2) can be interpreted as a dimmer
which controls the intensity of predictions. Since the intensity
of predictions can directly affect the magnitude of capsule
activities in a subsequent layer, depending on the chosen
routing-by-agreement procedure, a bias term can amplify
the expressiveness of a CapsNet architecture. Another view
of such a bias term is to understand it as a memorization
mechanism that restricts the hypothesis-space for function
approximation based on trained samples [24]. Hence, this
modification should improve the convergence behavior of a
CapsNet and also speed up its training.

Although a routing-by-agreement process is frequently
used as dynamic behavior between capsule layers, the inter-
layer communication within a CapsNet can be abstracted
to a generalized routing function that owns the ability to
fully control the signal propagation from on capsule layer
to the next one. Such a routing function takes all predictions
U'~! from a preceding layer and determines the instantiation
parameters U’ for all capsules in the subsequent layer:

U = route(fjl_l)
Wlth Ul c Rmxcxd’ fjl_l c Rnxmxaxb' (3)

In this paper, capitalized and bold letters in formulae
denote the mathematical construct of tensors. A tensor can
be described as a numerical array defined on a regular grid
with an arbitrary number of dimensions [25]. In this work,
tensors are only used for multidimensional arrays with at
least three dimensions. The dimensions m and n correspond
to the number of capsules in the / and (! — 1)-layer, respec-
tively. The dimensions a up to d represent the dimension-
ality of instantiation parameters for capsules in both layers.
Again, the capsule dimensionality is in both cases defined

VOLUME 9, 2021

as matrix for providing an universal formulation for vector
and matrix-shaped capsules. Besides, the distinction of the
capsule dimensionality between both layers indicates that
capsule dimensionalities can be implicitly modified from
layer to layer through the shape specification of transforma-
tion matrices:

Case Dimensions
Vec — Vec bxa)yx@ax1l)y=MBx1) (4a)
Mat — Mat (e xa)*(axb)=(cxb) (4b)
Vec — Mat (ax 1)x(1 xb)=(axb) (4c)
Mat — Vec (1 xa)*(axb)=(xb). (4d)

In principle, the shape of instantiation parameters can be
arbitrarily chosen to be in vector (Vec) or matrix (Mat) repre-
sentation per capsule layer. All possible capsule dimension-
ality conversions between two adjacent layers are illustrated
in (4). The required dimensions for transformation matrices
are highlighted in red color for each case. To ensure arbitrary
conversions, capsule vectors must be sometimes existent as
column or row vectors. Furthermore, resulting instantiation
parameter matrices may be rearranged in the last instance.
However, these additional reshaping operations should not be
an important problem from a technical perspective. A relevant
property that results from the use of transformation matrices
is the capability to shrink or grow capsule dimensionality
between adjacent layers on demand, at the time of model
definition.

4) ROUTING PROCEDURES

Dynamic routing was simultaneously proposed with the
term routing-by-agreement [3]. The pseudo code of the
dynamic routing procedure is displayed in Listing 1. Dynamic
routing is an iterative method that receives as input the
prediction 1;; of all capsules in the previous layer and the
number of iterations r for applying the routing. Predictions
are represented in vector form and their agreement to the
current instantiation parameters of a higher-level capsule is
measured with the dot product of both vectors. In the end,
the procedure returns the new instantiation parameters v; for
the higher-level capsule j. Hence, this procedure needs to be
conducted for each capsule in the higher-level layer.

There are some aspects that should be noticed to dynamic
routing. First, the idea of this routing procedure is to repeat-
edly determine the likelihood that a lower-level capsule is part
of an entity represented by a higher-level capsule and, then,
correspondingly weight its contribution to this higher-level
capsule. A contribution weight ¢; is also called coupling
coefficient [3]. This communication behavior can be seen
as a parallel attention mechanism between capsule layers,
which tries to filter relevant features [3]. The squash function
acts similar to an activation function which implements an
additional nonlinearity within the network by normalizing
capsule outputs between layers. Generally, this increases
the learning capacity of the neural network and stabilizes

125273

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

procedure ROUTING(d;, 7, 1)
for all capsule 7 in layer [and capsule j in layer (I + 1):
bij +~0
for r iterations do
for all capsule ¢ in layer (:
c; < a; - leaky—softmax(b;)
for all capsule j in layer (I 4 1): s; < >, ¢;;0)
for all capsule j in layer (I + 1): v; < squash(s;)
for all capsule ¢ in layer [and capsule j in layer (I+1):
bij <= bij + (i, v;)
return v;

LISTING 1. Pseudo code of the original dynamic routing procedure
from [3] with modifications (in red) suggested in [8]; Notation adjusted
for listing uniformity in this paper.

signal propagation. According to Sabour et al. [3], the squash
function can be formulated as

lIsill> s
1+ 1112 1811

This function normalizes vector lengths to be in range
of [0,1], whereas vector orientations are preserved.
Obviously, the dynamic routing procedure accomplishes all
principles associated with the routing-by-agreement concept,
since part-to-whole assignments between capsule layers are
supported by checking the consensus between lower and
higher-level capsules. This selective choice of input features
leads to the advantage of reducing noise ratios in higher-level
capsule inputs which increases the overall efficacy of a
CapsNet. The main shortcoming lies in the computational
effort for repeatedly adjusting part-to-whole assignments
that grows with higher iteration numbers. However,
Sabour et al. [3] experimentally demonstrated that three
iterations should be sufficient for fast convergence, while
redefining the logits b;; between capsules.

The red-colored parts in Listing 1 highlight two enhance-
ments, proposed by Zhao et al. [8]. These enhancements
comprise the inclusion of lower-level capsule activity @; and
using a leaky-softmax variant, instead of the common softmax
function. A possible way for computing activations for vector
and matrix-shaped capsules was already explained. Increas-
ing or decreasing coupling coefficients based on lower-level
capsule activations is also biologically plausible, because the
existence probability of an entity should be entangled with its
propagation to higher-level entities (cf. [3]). A leaky-softmax
function is applied to allow a slight transfer of irrelevant
information through the network, which should help to reduce
the routing of noise to relevant higher-level capsules [8].
Regarding text classification, such irrelevant information
could be stop words, punctuation marks or just words with
less informative content [12], [20]. Moreover, an orphan
category [3], [8], [12], [20] as an auxiliary output capsule
can then capture background noise in the last instance. Since
Zhao et al. [8] did not explain the concrete implementa-
tion of their leaky-softmax function, this paper provides its

&)

squash(s;) =

125274

procedure EM ROUTING(a, V)
Vi € QL,j S QL+1Z Rij — 1/|QL+1|
for t iterations do
Vj € Qp41: M-STEP(a, R, V, j)
Vi € Qp: E-STEP(u, 0, a,1)
return a, M
procedure M-STEP(a, R,V 7)
> for one higher-level capsule, j
Vie Qp: Rij — Rij * Ay
~Rij‘/ih
Vh: M? < 227:1 Rij ’ ; hy2
Vh: (of)? - i)
costh < (B, + log(cr;-’)) > Rij
a; < logistic(A(Ba — >, cost"))
procedure E-STEP(i, 0, a, V, 1)
> for one lower-level capsule, ¢

V] S QL+1: | 1 — WCILP(— Zh

Vi€ Qpir: Ry« —23P1
7€ 841 ij ZkenLH ann

(Vli—ul)?)
2(0‘;7')2

LISTING 2. Pseudo code of the EM routing procedure [4];
Notation adjusted for listing uniformity in this paper.

own realization. This paper uses a leaky-softmax variant
which is represented as a two-round softmax function:

leaky-softmax(b;) = softmax(softmax(b;) * o). (6)

The learnable parameter « controls the distance from
high-probability values to values that were stated after the
first round to be zero. Fig. 4 visualizes an exemplary applica-
tion of the leaky-softmax function. After the first application
of the softmax function in subfigure (b) solely the four logits
with the previously dominating magnitudes have probability
values higher than zero. But after the weighting with « and
the second application of the softmax function, subfigure (c)
shows that all zero-probabilities were lifted to values slightly
above zero.

Another routing-by-agreement implementation repre-
sents EM routing [4] which is grounded on the
Expectation-Maximization (EM) algorithm [26]. The EM alg-
orithm applies alternating an expectation and maximiza-
tion step for iteratively computing maximum-likelihood
estimates [26], [27]. Especially, the EM method can be
utilized as clustering algorithm for Gaussian mixtures, which
tries to find Gaussian-like clusters within a collection of data
points [4], [28]. The belonging of data points to clusters is
realized with soft assignments [28].

EM routing adopts the EM clustering algorithm for Gaus-
sian mixtures to assign lower-level features to higher-level
ones [4]. The corresponding pseudo code is illustrated in
Listing 2. This routing procedure clusters incoming pre-
dictions from lower-level capsules to higher-level capsules.
Thus, each higher-level capsule defines its own Gaussian-like
cluster. Similar predictions from lower-level capsules should
be close together in the prediction space and vote for

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

IEEE Access

0.6

~
S

-
&

1

=

o
w

Contribution

"
S

Contribution

o
~

w
e
-

l. il .MM

J

o

14
o

0.08 4

0.06 1

Contribution

o
°
g

0.02 1

N

IR

—1

0.00 -

5 10 15 20

Capsule Indices

(a)

25 5 10

15

Capsule Indices

(d)

20 25 30 0 5 10 15 20 25 30

Capsule Indices

(©)

FIGURE 4. Two-round softmax function as leaky-softmax implementation with « = 2.

concrete instantiation parameters of higher-level entities.
As Hinton et al. [4] pointed out, this cluster process can
be characterized as non-trivial task since each higher-level
capsule receives as input different data points through the
multiplication with discriminative transformation matrices.
In addition, Hinton et al. [4] argued that this situation leads
to symmetry breaks and fast convergence. In general, both
of these properties are desirable in the context of neural
networks. The EM routing procedure obtains as input the
votes V and activations a of all capsules from layer L to
capsule j from layer (L 4 1). The term vote is here used
as synonym for a prediction from a lower-level capsule.
EM routing processes predictions in vector form.

The routing process starts with the initialization of the
responsibilities R;; which a higher-level capsule j takes for
a lower-level capsule i. The inverse temperature sched-
ule A provides a specific value for each iteration in
the EM process [4]. Both constants 8, and 8,, as well as the
inverse temperature schedule A, are jointly trainable with the
entire CapsNet. The temperature schedule can be understood
as an implementation of simulated annealing [29], where
temperature steers the degree of freedom to allow seemingly
suboptimal solutions within an optimization process. Usually,
temperature starts high and gets progressively decreased dur-
ing an optimization process to first overcome local optima
and, finally, stabilizing the found solution [27]. Theoreti-
cally, also again increasing temperature could result in pos-
itive effects for solution finding, for instance, if oscillating
behavior can be observed. Equally to dynamic routing, it is
recommended to run EM routing with three iterations [4].

One similarity between EM routing and the enhanced
dynamic routing variant denotes the use of capsule activa-
tions to influence the connection strengths between lower
and higher-level capsules. The main difference between both
routing procedures represents the high-computational effort
within EM routing compared to dynamic routing, since
EM routing involves more complex calculations. However,
the cluster finding approach with Gaussian mixtures in
EM routing appears more powerful than the trivial dynamic
routing with dot product agreement and, therefore, EM rout-
ing harbors potential for faster convergence during model
training.

VOLUME 9, 2021

procedure k-Means Routing(fj7 T)
cs s 1 ~
Inltlah.ZC ViR >0y
for r iterations do
bij < (Tl T,
¢ij + softmax(b;;)
J
Vi 2 Cijy)
return squash(v;)

LISTING 3. Pseudo code of the k-Means routing procedure [11]. The
original term Wj;u; was replaced with ii; ; since incoming predictions are
already transformed inputs; Notation adjusted for listing uniformity in
this paper.

In coherence with EM routing, k-Means routing assigns
incoming predictions to clusters represented by higher-level
capsules. k-Means routing is based on the prominent
k-Means [30], [31] (also called Isodata [27]) clustering algo-
rithm. In the k-Means algorithm, a cluster k is represented
as the arithmetic mean puy (often named as prototype) of
its associated data points [28]. During the iterative fitting
process, data points are alternating re-assigned to their nearest
cluster centre and the means of clusters are re-calculated until
a termination criterion is satisfied [28].

The k-Means routing procedure, illustrated in Listing 3,
follows the same intuition like EM routing. In that sense,
higher-level capsules correspond to clusters and predic-
tions of lower-level capsules represent data points. The
procedure begins with the initialization of each cluster pro-
totype v;. For this purpose, a mean is calculated over the
passed vector-shaped predictions U. Afterwards, the clus-
tering process is applied for r iterations to repeatedly
determine the coupling coefficients c;;. As measure for
the agreement between cluster prototypes and predictions,
the cosine-similarity b;; is used. Finally, each prototype v;
gets processed by a squash function and, then, returned as
instantiation parameters for higher-level capsules. As squash
function, the same variant which was used in dynamic routing
can be utilized.

One essential difference of k-Means routing compared
to conventional k-Means clustering represents the use
of soft assignments instead of hard assignments [28].

125275

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

Hard assignments mean that each data point is exactly
assigned to one cluster. Since k-Means routing applies the
softmax function on the measured similarities, probability
values for cluster memberships are determined and not only
the nearest cluster gets assigned to a data point. According
to Ren et al. [11], if for the number of iterations r holds
r — oo then k-Means routing tends to produce only
hard assignments, which could be problematic because
a lower-level feature is normally part of more than one
higher-level feature. To mitigate this undesirable behavior
they also used r = 3 iterations in their experiments [11].

The k-Means clustering algorithm can be characterized as
a special implementation of the general EM algorithm [28].
So, k-Means routing is also strongly related to EM routing.
This holds in particular since k-Means routing realizes as
well soft assignments. The main benefit of k-Means routing
compared to EM routing is its computational simplicity [27].
Besides, EM clustering generally needs many more itera-
tions to converge to an approximate level as k-Means with
the same number of iterations [28]. However, EM routing
has the ability to form Gaussian clusters whereas k-Means
routing can solely consider spherical clusters. With respect to
the computational effort, k-Means routing is comparable to
dynamic routing. Furthermore, both routing procedures con-
duct a squash function to normalize instantiation parameter
vectors. One main difference between k-Means and dynamic
routing is that dynamic routing repetitively performs the
squash function, whereas k-Means routing only applies it
once at the end of the routing process.

To be precise, static routing is not actually a realization
of routing-by-agreement since it propagates capsule outputs
from a preceded layer directly to the subsequent layer and
does not follow any agreement approach between lower and
higher-level capsules. The motivation behind involving such
a contrary approach in the considerations of this paper is
to additionally evaluate the routing-by-agreement concept in
a general manner for text classification. This is especially
useful for assessing the high computational effort which nor-
mally arises with the use of iterative routing-by-agreement
approaches.

Listing 4 illustrates the pseudo code for a simple static
routing procedure. This procedure only adds up all incoming
predictions from the previous layer and normalizes the result-
ing sum with a squash function. The application of a nonlin-
earity like a squash function is here stringently required, since
nonlinearities within neural networks are essential for their
learning capacity. In a conventional neural network nonlin-
earities are implemented using activation functions. Actually,
capsule networks can provide two types of nonlinearities.

The first represents the specific inter-layer communication
(iff any nonlinearity is included, e.g. routing-by-agreement)
and the second can be realized based on auxiliary normal-
ization or activation functions. Kim et al. [10], the authors
of static routing, assumed that in the text domain examin-
ing exact spatial relationships could be counter-productive
because of the inherent variability in text. For instance, they

125276

procedure Static Routing(f])
Vi€ Qi sy =30,
return squash(s;)

LISTING 4. Pseudo code for a static routing procedure, based on the
concepts from [10].

argued that the precise order of sentences is not a crucial
feature for the correct classification of a document [10].

The major benefit of static routing embodies its marginally
computational effort compared to all previously presented
routing procedures. Another advantage could be that all
lower-level features are propagated to all higher-level cap-
sules which leads to a fair treatment for all capsules. On the
other hand, this also supports the transmission of noise. Static
routing integrates no attention mechanism, whereby selective
power gets removed from a CapsNet.

If routing procedures are technically realized with an uni-
form interface, routing algorithms can be easily replaced
in a CapsNet architecture and are freely selectable per net-
work layer. The possibility for choosing different routing
procedures per layer, offers great potential for exploiting
domain-specific knowledge in distinct abstraction levels.
Evidently, trainable parameters in routing algorithms are also
adaptable per CapsNet layer.

B. TEXT CLASSIFICATION BASICS

The task of text classification belongs to the large field of
Natural Language Processing (NLP) [25], [32], [33] in which
spoken or written text gets processed by a computer system to
understand or generate natural language. Text can be grasped
as times series data that comprise observations in the pro-
gression of time. In this view, observations correspond to
characters or words, and the progression of time represents
the semantic accumulation defined by the sequential order
of characters or words. In general, time series data can be
stochastically described by a stationary or nonstationary dis-
tribution [28]. To act on a stationary distribution means that
certain statistical attributes (e.g. mean or variance) of time
series data are invariant in time [34]. The task of recognizing
patterns in natural language can be categorized as investi-
gation of a stationary distribution, since natural language
follows certain structures like grammar or other semantics
that are preserved over time. Evidently, a statistical model
can encounter previously unknown vocabulary which can
influence the underlying distribution, but such exceptions can
be handled in various ways.

1) LANGUAGE MODELING

First of all, it is necessary to internalize the inherent charac-
teristics of natural languages and the difficulties that come
along with them. Words in natural languages can be assigned
to lexical categories which can be in turn summarized in syn-
tactic categories and, finally, joined to form specific phrase
structures of sentences [33].

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

IEEE Access

The exemplary sentences in Fig. 5 emphasize the vari-
ability in natural languages and depict the complexity for a
computer system to capture semantics. All three sentences
consist of the same four words and follow the same sentence
structure of subject-verb-object. In addition, the adjective
“hot” varies in its position from sentence to sentence, and in
the last sentence the punctuation was also changed. Despite
the nearly identical looking of the sentences, their mean-
ings could be quite different. For example, if we regard the
expressed sentiments within each sentence, the first sentence
may be the response to the simple question: “Would you like
to have some tea?”’. In this situation, no relevant sentiments
would be present. But if a waiter serves you a cup of cold
coffee, you may complain about the temperature of your
coffee. This could be expressed with the second sentence
because an adjective at the end of a statement often signals an
intonation. A correlated sentiment with such a sentence can
be displeasure. The latter sentence even goes a step further
and reveals the strong emotion of anger which is highlighted
by the use of a comma and an exclamation point.

subject
\ verb
|

| prefer hot coffee.

adjective
object

e

| prefer coffee hot.

| prefer coffee, hot!

FIGURE 5. Three exemplary sentences with similar meaning to visualize
the variability in natural language. In particular, the position of the
adjective in combination with punctuation has a significant

impact on the sentiments, expr d by these sentences.

Another important aspect, which is visualized in Fig. 5,
is the task-specific assignment of lexical categories. In other
tasks than sentiment analysis, it could be irrelevant to detect
subjects and objects in sentences. So, the description object
for the term ‘“‘coffee” could be replaced with the lexical
category of noun and the label subject for “I”” could also be
substituted with the grammatical class pronoun. Hence, this
trivial example already gives a great outlook about the inher-
ent complexity in natural language. One can imagine how this
complexity grows with the use of nested and sophisticated
sentence structures.

However, changing word order and punctuation does not
reflect the only possibility for affecting the expressiveness
of statements in natural language. A look at human inter-
action in a more general manner, reveals that semantics in
natural language are transported over various communication
channels. Therefore, to fully understand subtle intentions
and sentiments in statements requires the consideration of
all these channels. As Fig. 6 depicts, at least five communi-
cation channels can be identified within human interaction.

VOLUME 9, 2021

{ Channels \

Speech

Facial expression

Gesture

Content

FIGURE 6. Different communication channels in human interaction.
In textual data, the content of statements is fully observable and subtle
context can be partially inferred through content accumulation.

Undoubtedly, transferring semantics in human interaction
involves many cognitive abilities. For instance, the intonation
of spoken words or breaks between two words enrich the
content about what was said with semantics. Other commu-
nication channels represent facial expression and gesture that
can steer attention and, evidently, transport emotions to a
conversational partner.

Besides, each content can be encapsulated within a context
or situation. Consider the following sentence: “I never liked
John.”. Without any context, one could say it is more or less
an emotionless statement, reflecting an opinion. But if we
know that John recently died, the above sentence could seem
heartless or just inappropriate. Another point is that words can
also be ambiguous in their meaning, for example, the word
“duck” could mean a waterfowl or describing a movement
depending on the concrete context [33]. Principally, a content
can have long, mid or short-term dependence on a context.
In the case of text classification, a computer system can
fully access the communication channel content based on the
provided textual data. Generally, computer systems can build
up a context based on word and sentence sequences. In some
cases, further context information can also be supplied
from the given application domain and appended meta-data
(e.g. keywords or topic assignments) to the text data. All other
channels are completely inaccessible with respect to the task
of text classification. Thus, a lot of semantic power gets lost
and the severity for the task of text classification increases.

2) REPRESENTATION LEARNING

Both aforementioned capsule models offer a high expressive-
ness for considered entities through their distributed represen-
tation. The key idea behind distributed representations lies in
their ability to implicitly learn diverse concepts and decouple
them from each other. So, each concept can be interpreted
as a degree of freedom in the entity space. Each instantia-
tion parameter can represent an unique concept. An impor-
tant characteristic about distributed representations denotes
their capability to learn gradual changes in concepts without

125277

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

requiring training samples for each possible configuration.
This property enables strong generative power for a rep-
resentation learning model by creating a continuous entity
space, with the concepts as different directions. For instance,
a concept in the image domain could be a color scale or
skewness degree. In particular, Sabour et al. [3] observed that
instantiation parameters can encode compositions of features
like “width and translation” or ““scale and thickness™ for the
visual classification of handwritten digits. One concept can
also signal that a certain object is available in an image or not.
Obviously, in this case emerges a lack of explainability about
intermediate states between the endpoints existent and non-
existent, but since the model learns this concept implicitly,
in general one cannot influence the behavior for gradual
changes. [25]

To optimally support the high capability of capsules to
describe entity properties, a variety of task-specific and
expressive features must be provided as input to the ini-
tial capsules. Based on the inherent complexity in natural
languages regarding word order, sentence composition, tex-
tual padding and sequential behavior, which determine the
text meaning as much as the concrete words, it is essential
to choose proper representation learning models for a text
classification task. One way to distinguish between represen-
tation learning models is to consider statistical measures, spa-
tial relations, sequential behavior and relevance filtering for
accessing textual patterns. In that sense, representation learn-
ing models can be differentiated into statistics-, structure-,
sequence- and attention-based models (cf. [12]). Addition-
ally, word embeddings can be categorized as a representation
learning model for expressing relationships between words,
or more generally tokens [25].

Statistics-based models compute statistical measures for
describing textual data. Usually, such models use a sparse
Bag-of-X [35] representation which consists of a collection of
X-like elements and their corresponding number of appear-
ance (cf. [12]). One simple variant of this representation is
the Bag-of-Words (BoW) representation which separates a
textual sample in individual words and counts the occurrence
of each word [33], [35], [36]. Evidently, for providing compa-
rability between BoW representations of two textual samples,
a common vocabulary must be predefined (e.g. using the
training data). Since the vocabulary has a fixed size v, each
textual sample can be described by an integer-based vector
with length v. Using a BoW representation with an extensive
vocabulary results in very sparse vectors. The weighting of
terms in textual samples on the basis of word counts is
referred to as term frequency (tf) [36]. As a consequence of
using tf, the spatial structure of textual samples gets com-
pletely lost, which removes a lot of semantics [35]. In par-
ticular, relevant words for classifying a textual sample occur
much more rarely than other words such as articles, pronouns,
prepositions or conjunctions. Seemingly irrelevant words for
a given task are called stop words [35], [36]. One strategy
for mitigating the noise ratio in BoW representations is to
reduce the common vocabulary by removing such stop words.

125278

However, the trend in information retrieval systems shows
that the list of stop words generally shrinks [36].

Another possibility depicts the use of a Bag-of-n-Grams
(BonG) representation [35]. An n-gram corresponds to a
sequence of tokens with length n [25], [35]. n-Grams with
values n € {1, 2,3} are called unigram, bigram and tri-
gram, respectively [25]. In general, the type of tokens can
be arbitrary, for instance, tokens may denote words, sylla-
bles or characters [33]. Fig. 7 illustrates a possible way for
extracting trigrams with an unidirectional sliding window
approach. Since no padding is used, the sliding window starts
at position 1 and moves until it reaches position 4 to ensure
valid trigrams. With an increasing window size n the ratio of
semantic preservation grows. But this structure preservation
claims auxiliary costs for storing and processing n-grams
since high values of n result in much more tokens per original
text fragment [35]. Using n-grams as smallest operating units
with larger values for n (means n > 2) leads to a combination
of statistics- and structure-based models. In some sense also
a notion of sequential behavior is retained since an n-gram
summarizes n tokens in a predefined order.

1 2 3 4 5 6
I prefer a cup of tea
1 1
1 1
1 1
prefer a cup =
. J
Y

window size n

FIGURE 7. Extraction of n-grams with a sliding window approach (n = 3).

Structure-based representation models try to retain spatial
information of textual data. Spatial information about text is
especially relevant in situations where an understanding of
complex semantics is essential to fulfill a classification task.
One example for such a task could be sentiment analysis
since feelings are often subtly encoded in certain grammar
structures. One way for capturing spatial relations between
tokens was already presented with the concept of n-grams.
Regarding n-grams, the size of n determines the degree of
representing structural information.

Retaining structural information of textual data does not
stringently require to store information about directly adja-
cent words. It rather means that relevant spatial information is
preserved for solving a certain classification task. Following
the simple sliding window approach in Fig. 7 for n-gram
extraction, a straightforward realization in neural networks
can be established with a convolutional layer. Specifically,
a convolutional operation can be extended by a dilation rate
which defines the expansion of a convolutional filter with
respect to the distance between filter elements in the consid-
ered receptive field [37]. Yu ez al. [37], for example, utilized

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

IEEE Access

convolutional layers with various dilation rates to achieve
multi-scale context aggregation for dense prediction in the
image domain. Zheng et al. [12] correctly pointed out that dif-
ferent dilation rates in the extraction of word-based n-grams
lead to varying granularity levels which could describe word-,
phrase-, clause- or sentence-level structures.

CapsNets are inherently able to describe spatial rela-
tionships through their distributed representation and
the use of transformation matrices [2]-[4]. Moreover,
a routing-by-agreement procedure, which tries to accomplish
part-to-whole assignments between lower and higher-level
entities, can effectively support the learning of spatial fea-
tures [3], [4]. Since spatial relations can represent crucial
properties depending on the concrete task, it should be quite
natural that capsules are forced to learn this structural context.
In coherence with this, Wu et al. [17] stated that capsules
could depict grammatical structure information and spatial
distance of local features.

In contrast to structure-based models, sequence-based
models do not directly focus on a special contextual struc-
ture but rather accumulate over text sequences to memorize
relevant text fragments and to describe various-term depen-
dencies. Fig. 8 conveys the intuition behind forming a context
based on previous inputs. In this example the current observed
element represents the fifth word “of . The sequence-based
model manages a context, visualized with a color code. The
color code symbolizes the ratio of stored context information
from previous words. This context can then get involved into
the consideration of a new element.

1 2 3 4 5 6

| hEEl

—

context element

FIGURE 8. Visualization of context accumulation with unidirectional
processing of word sequences.

Fig. 9 shows a recurrent neuron which receives as second
input per time step ¢ its previous output y,_;. The terms
x; and y; correspond to the input x and output y at time ¢.
A mathematical definition [25] for the output of a recurrent
unit 18

i =f s, yi—1; 0). @)

Thus for computing the neural output y;, a function f with
a defined set of parameters 6 consumes the current input x;
and the accumulated neuron output y,_1. There exist various
ways for the concrete implementation of function f. The
specification of function f strongly depends on the question
about which contextual information is needed for solving

VOLUME 9, 2021

Vi

Yit-1
Xt

FIGURE 9. Basic recurrent neuron, graphic inspired by [32].

a certain task. A Recurrent Neural Network (RNN) [38]
represents a neural network that is composed of recurrent
neurons or contains in some way backwards directed connec-
tions [25], [32]. In opposite to convolutional layers which
share parameters through the repeated application of the
same kernels on sequences of samples, recurrent layers
share parameters by repetitive accumulating previous sam-
ples using the same function parameters [25], [38].

One major challenge in sequence-based models denotes
the ability to represent long-term dependencies. Despite the
great potential of RNNs to learn contextual information about
sequential data, the difficulty of capturing long-term depen-
dencies grows with the total sample length. This central prob-
lem arises from the mostly applied optimization algorithm
backpropagation [38] which enables learning within neural
networks, but suffers in deeper neural nets from the effects
of exploding or vanishing gradients [39]-[41]. Since RNNs
can be easily transformed into feedforward neural networks
with shared weights by unfolding in time, this often yields
to very deep net structures [38], [39]. For mitigating the
negative effects of exploding or vanishing gradients, adjusted
learning algorithms [39] may be applied instead of traditional
backpropagation, initialization of weights in a RNN can be
done using prior knowledge [39], or normalization strategies
like Batch Normalization (BN) [40] or Layer Normalization
(LN) [41] can be utilized. Roughly speaking, normalization
strategies standardize activities in neural network layers to
have zero-mean and unit-variance for preventing internal
covariate shift to the subsequent layer, which significantly
speeds up training convergence [40], [41]. Especially, LN has
a strong positive impact on stabilizing the learning process
within RNNSs since it can handle variable-length inputs by
standardizing layer outputs individually for each sample and
each time step [41]. However, BN provides better statistic
estimates, if fixed-length inputs are given, by considering
mini-batches instead of single samples [40].

Apart from simple recurrent neurons, other important and
specialized cells for storing contextual information about

125279

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

sequential data are Long Short-Term Memory (LSTM) [42]
and Gated Recurrent Unit (GRU) [43]. Both LSTM and GRU
belong to the class of gated RNNs that are able to save
contextual information regarding different time spans, can
learn to filter relevant information by just forgetting irrelevant
parts of sequences, and should provide stable derivatives to
prevent the exploding and vanishing gradient problem [25].
A neural gate can be realized as multiplication operation
between a weighted input wx; and a control signal g;, which
equips a neural network architecture with the opportunity to
propagate only relevant signals [42]. An elementary neural
gate is illustrated in Fig. 10. The multiplication operation is
displayed as ® operator that consumes as inputs wx; and g;.
Since the control signal g; results from an arbitrary input,
processed by the sigmoid function, values of g; lie in the range
of [0; 1]. This enables a neural gate to let pass any percentage
of an input signal wx;. A crucial property of such a neural
gate represents the ability to steer error flows by learning
when to interrupt error flows and when to pass them [42]. This
control mechanism can be mathematically described with the
formulae
oL 9L dy,

Wt (xrw)gr 3w dy; ow (8)
3)’; . . 3yt
— =1 =0; lim — =ux;. 9
a0 w - amo8 ot aw ©)
Xt w
YVt

It

FIGURE 10. Neural gate with sigmoidal control input g;, inspired
by [25], [32], [42].

Equation (8) illustrates the backpropagation of a computed
error from a loss function L with respect to the parameter w.
Since % = x4, the gate signal g, controls the error flow.
Equation (9) states both edge cases with a completely closed
(g: — 0) and open (g, — 1) gate.

A regular LSTM cell comprises a forget, input and output
gate, which steer the deletion of the previous state, the passing
of external inputs and the releasing of cell’s output signal,
in the given order [25]. All gates decide to open or close
based on the previous state and the current input [25], [32],
[42]. The input gate partially solves the problem of dealing
with long-term dependencies by protecting the accumula-
tion of contextual information from irrelevant inputs [42].
This significantly increases the maximally possible time for
grasping past context. Moreover, the output gate can protect
subsequent units from perturbed, intermediate states [42].

In general, GRU cells are considered as much eas-
ier to compute and implement compared to LSTM cells.

125280

Contrary to LSTM, GRU cells solely contain two gates,
namely a reset and update gate. Similar to the forget gate in
LSTM, the reset gate can be used to delete information of the
current state. This happens in coordination with the update
gate, since it determines the ratio of the previous state which
is kept for the next state. [43]

It is important to note that the behavior of neural gates
within both LSTM and GRU cells is learnable during model
training, with the use of weights for the computation of a
control signal g; [25], [32], [42], [43]. A LSTM or GRU
cell can represent function f in (7) [43]. It is difficult to
meaningfully distinguish LSTM and GRU from each other,
since both cells act very similar. However, both types of gated
RNN cells, more or less, solve the problem of various-term
dependencies and mitigate the flaw of effectively describing
long-term dependencies. This offers great potential for a com-
puter system to understand semantics in natural language.

Attention-based models can learn to concentrate on spe-
cific parts in samples that are necessary for solving a
given task [32]. In the text domain, attention mechanisms
mainly have their origin in the task of neural machine trans-
lation which tries to transform textual data into equally
meaning textual data in a different language [44], [45].
Bahdanau et al. [44] proposed a neural machine translation
model including a jointly trained feedforward neural network
for determining energy values for words at time step ¢, then
the energy values were converted into valid probabilities and
finally multiplied with the features for the corresponding
words in order to represent attention on specific words. This
proceeding can be abstracted to a simple attention mecha-
nism, as visualized in Fig. 11.

1 2 3 4 5 6
I prefer a cup of tea
w
prefer a cup of tea

FIGURE 11. Attention mechanism for weighting a word sequence through
element-wise multiplication with a learned weight vector w. The color
scale from white to red signals the focus on individual words from high to
low, respectively. The constraint }_; w; = 1 holds.

The exemplary word sequence gets element-wise multi-
plied with a learned weight vector w. Similar to the work
of Bahdanau et al. [44], the elements of the weight vector
should sum up to one, to ensure a valid probability distri-
bution. In this example, applying the weight vector w leads
to concentrating on words such as “I”’, “prefer”” and “tea”
whereas “cup” is not that much important, and the words ““a”
and “of” could be completely ignored. The idea of focusing
only on relevant parts of input data for solving a certain
task is as simple as powerful. It significantly diminishes

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

IEEE Access

noise in input data and behaves similar to a dimensionality
reduction method. This property is particularly desirable for
the processing of long sentences [44], [45], or more generally
speaking for long text sequences. Principally, a variety of
attention mechanism realizations are possible. For instance,
Luong et al. [45] experimentally compared a global attention
implementation with a local one (that restricted attention to
a defined window) for the task of neural machine translation.
Especially, they explored different methods for computing
attentional scores such as the dot product, multiplication with
an intermediate weight matrix and weighted concatenation of
hidden state vectors [45].

The use of routing-by-agreement in CapsNets inher-
ently realizes a kind of parallel attention mechanism [3],
[8] between consecutive layers, by weighting contribu-
tions from lower-level capsules to higher-level ones. Thus,
routing-by-agreement can be viewed as a special type of
an attention-based representation model. Similar to the
attentional implementation of Bahdanau et al. [44] and
Luong et al. [45], CapsNets with routing-by-agreement allow
a model to implicitly learn to concentrate on relevant aspects
in input signals.

Word embeddings address the problem of ignoring rela-
tionships between words, as it occurs using e.g. BoW rep-
resentation. For this purpose, word embeddings provide a
distributed representation that has the ability to describe
latent relations between individual words by their location
in the word embedding space [25]. Latent relations in nat-
ural languages are composed of synfactic and semantic reg-
ularities [46]. More precisely, a distributed and real-valued
representation enables the encoding of contextual features
and offers a way for expressing similarities between words,
which both should improve the generalizability of a language
model [25], [46], [47].

Various strategies are imaginable for transforming word
indices or one-hot encodings into an expressive and dis-
tributed representation. One strategy is the use of a simple
RNN which projects an incoming word, then processes the
result with a simple RNN unit and finally outputs a prob-
ability distribution over the total vocabulary [46]. Another
common strategy represents the method word2vec, pro-
posed by Mikolov et al. [48], which generates word vectors
through extracting the context of the regarded word. For
generating word embeddings with the word2vec framework,
Mikolov et al. [48] designed the two models continuous BoWw
and continuous skip-gram. Both models extract contextual
information of a word w through a learned projection of or
for the surrounding words of w [48].

Besides word2vec, a currently state-of-the-art technique
for computing expressive word embeddings represents
Global Vectors for Word Representation (GloVe) [47]. Sim-
ilar to word2vec, GloVe creates word representations based
on word co-occurrence statistics within the training cor-
pus. Instead of training a model using local context win-
dows, as e.g. in the continuous skip-gram model, GloVe’s
authors claim their method to have a more global view on

VOLUME 9, 2021

syntactic and semantic regularities by considering global
statistics of the training data. In fact, GloVe significantly
outperforms word2vec in capturing syntactic and semantic
regularities. [47]

Other approaches for creating word embeddings operate
on subword level to represent words as compounds of word
parts [49]. The general idea is related using n-grams on the
word level, but subword embeddings ensure deeper insights
in language characteristics like word endings and the meaning
of combined words, that is especially advantageous in natural
languages like German (e.g. see the German word “Blumen-
topferde”” which means ““potting compost” in English) [49].

Fig. 12 illustrates two ways of how the use of word
embeddings can reflect task-specific or semantic relation-
ships between words, solely by their learned location within
a word embedding space. Subfigure (a) depicts the implicit
forming of word clouds in the word embedding space. In this
example, each cloud can be assigned to a task-specific topic
like Past & Future or Middle Ages & Technology. There-
fore, exploring trainable word embeddings has the potential
for knowledge gaining about a considered problem domain.
Subfigure (b) shows word embeddings which were learned
with focus on capturing syntactic and semantic regularities,
as proposed in [46]-[48], [50]. Ideally, learned contextual
properties can be expressed with vector offsets between word
embeddings [46]. For instance, subfigure (b) provides a
construction of the distributed representation of the word
“queen’ based on the word “king”’, by substituting the prop-
erty “man” for “woman”. This construction can be mathe-
matically applied by a subtraction followed by an addition,
as stated in subfigure (b). This cryptic formulation elucidates
the circumstance that king behaves to queen like man behaves
to woman, since the difference in both pairs lies in the gender.
Evidently, in practice the precision of word embeddings and
their relations are limited. Hence, an appropriate similarity
measure for vector spaces must be applied for determining
the nearest word embedding for a computed vector [46].

As a remark, known idiomatic phrases like “New York”,
“Air Canada”, “Boston Globe™ etc., should be identified
and considered as one word in an embedding space, to deal
with their special meanings [50]. One crucial benefit of word
embeddings is that pretrained word representations can be
exploited for other related tasks [46]. Word embeddings are
in strong coherence with CapsNets because both techniques
build expressive, distributed representations of observed
entities.

3) TRENDS IN TEXT CLASSIFICATION

Since the NLP domain consists of a wide spectrum of dif-
ferent classification tasks including sentiment analysis, con-
tent summarization, aspect extraction, information retrieval,
adequacy check etc., a tremendous number of methods were
developed and exploited to solve specific text classification
tasks. To keep things short, some selected methods for text
classification are presented in the following. The aim is to

125281

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

-———
-
- ~

.“ " robots AN
, .
’ [.CII N
ll digital
[]
\ future ,
\\ o ,/
~._ data .-
// knight \\ \
/ . [\
[PMMCe castle \ Topics
\ o ® 1
v king @ past
N ’
ol o Jueen .

—_— =

(a)

> X4

- . W _
kin man + woman ueen
(b)

FIGURE 12. (a) Visualization of learned relationships in a word embedding space, based on [25]. (b) Exemplary construction of a similar
word by manipulating specific properties of a word embedding, based on [46], [48], [50].

explain the progress in time of text classification technologies
and to identify trend-setting developments in this area.

The first attempts for accessing patterns in textual data
have their origin in statistical considerations of term fre-
quencies with respect to single documents and relative to
all documents [51]. For example, the statistical method term
frequency — inverse document frequency (tf-idf) ranks docu-
ments by the relevance of their containing terms and is mostly
used in the area of information retrieval [36]. However, sta-
tistical measures like tf, inverse document frequency (idf) or
tf-idf can be principally utilized for arbitrary tasks in the text
domain. A contemporary statistics-based approach for text
classification, which achieves for many datasets comparable
results to extensive neural networks, in much less time, rep-
resents the combination of BoW or BonG with word embed-
dings and a simple linear classifier [52]. Exemplary linear
classifiers for text classification are Perceptron-Like Classi-
fiers [53], Naive Bayes [54] and Support Vector Machines
(SVM)s [55], [56]. (Of course, SVMs can be easily trans-
formed into nonlinear classifiers with the aid of an appropri-
ate kernel function [56].)

One can recognize a trend in text classification methods
in the direction of neural network technologies. Neural
network approaches include neural-based word embeddi-
ngs [46]-[48], RNNs [38], [57]-[59], Convolutional Neural
Networks (CNN)s [58], [60]-[62] and other net structures.
CNNs offer the benefit of processing variable-length input
using local feature extractors with shared parameters [60].
Text classification with CNNs is mostly applied on word-
level, but character-level models are also common [61], [62].
Despite CNNs are not as much prominent for context build-
ing as RNNs regarding NLP, stacked CNN architectures
supply also capability for extracting underlying context.

125282

The most prominent recurrent cells represent LSTM [42]
and GRU [43]. Although RNNs can access sequential pat-
terns, they still suffer from long-term dependencies [39].
Dai et al. [63] proposed one feasible solution to mitigate
the flaws of LSTM for describing long-term dependencies
by initializing a LSTM-based RNN with weights obtained
from a pretrained autoencoder. An extension to a regular
RNN represents a Bidirectional RNN (BRNN) which manages
contextual information for the past and future in sequen-
tial data [64]. Evidently, bidirectional processing can also
be exploited for other neural network technologies. Often,
diverse neural network approaches are combined to create
more powerful feature extractors, or to improve classification
ability. For instance, Wang et al. [58] extracted local fea-
tures with two parallel arranged CNN layers and, afterwards,
merged all local features to obtain the overall input to a
subsequent LSTM layer.

Another trend regarding text classification models denotes
the enrichment of existing models with attention mech-
anisms to significantly improve resulting performance.
Yang et al. [65] conceptualized a hierarchical attention net-
work for document classification which exploits document
structure by step-wise building a comprehensive context,
beginning with words up to sentences. Hu et al. [57] designed
amodel consisting of stacked LSTM hidden states aggregated
into an attentional hidden state vector. Vaswani et al. [66] elu-
cidated the power of attention mechanisms in the text domain
by proposing a transformer architecture for neural machine
translation that refrains from the use of RNN and CNN layers,
by representing a system solely composed of self-attention
modules in combination with multi-head attention.

Interestingly, CapsNets reflect this progress in the area
of text classification by embodying a mixture of neural

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

IEEE Access

network technologies with a distributed parallel attention
mechanism. Utilizing word embeddings in combination with
CapsNets is also strongly consistent due to the use of dis-
tributed representations in both techniques. Major advan-
tages of distributed representations and parallel attention
mechanisms are noise and dimensionality reduction (through
focus and robust representation learning) and, eventually,
diminished training time. Moreover, robust representations
often decrease the number of required training data. Thus,
it can be assumed that in near future neural network tech-
nologies, attention mechanisms, distributed representations
and especially CapsNets will still dominate the field of text
classification.

Ill. USED TEXT DATASETS
In order to obtain convincing results in the analysis part of
this paper, six text classification datasets are regarded with a
wide spectrum of characteristics. The six datasets are chosen
to satisfy the following criteria:

« small and large-sized datasets

« varying number of classes

« diverse classification tasks

« different sample granularity levels.
The size of a dataset contributes to the overall task complex-
ity, more data have the potential to embody more latent vari-
ables, but neural networks are known as technology which
needs a lot of data to generalize well. Specifically, large
datasets prevent overfitting of models, because just memoriz-
ing certain terms in samples would not be enough for solving
a task. Another indicator for task complexity represents the
number of classes. Generally, task severity increases with the
amount of classes within a dataset. Intuitively, considering
many classes amplifies the division of the training corpus,
which reduces the number of samples per class. Further-
more, a high number of classes requires a classification
model to capture many latent variables for ensuring class
discrimination. This situation gets even exacerbated when a
dataset is imbalanced, means classes have different numbers
of associated samples. Certain classification tasks are more
challenging than others. For example, in sentiment analysis
seemingly positive phrases can be embedded in a strongly
ironic context which actually represents contrary sentiments.
In addition, some classification tasks mainly depend on syn-
tactic and sequential structures, whereas others can solely
be solved by observing relevant terms. The last criterion for
dataset selection refers to the granularity level of samples.
Granularity levels may be document, sentence, phrase, state-
ment etc. and provide a simple measure for determining task
difficulty. For instance, a dataset with samples that repre-
sent whole documents have the potential to suffer from the
well-known curse of dimensionality. With respect to sequen-
tial data, enlarged sample granularity levels particularly cause
negative effects for grasping long-term dependencies. The
remainder of this section introduces the chosen datasets and
discusses significant properties derived from their statistical
values.

VOLUME 9, 2021

The Subjectivity Dataset (SD)' provides a collection for
learning the distinction between objective and subjective
statements. Each sample statement corresponds to a sentence
or textual, sentence-like snippet. All objective samples were
gathered from Internet Movie Database (IMDB),2 whereas all
subjective ones were compound of customer movie reviews
from Rotten Tomatoes.> Sentences and textual snippets con-
tain at least ten words. The number of samples per class is
strongly balanced. But the dataset can marginally comprise
wrong labelling, since class assignments to samples were not
manually verified. [67]

LIAR” serves as benchmark dataset for detecting fake
news. This dataset contains short statements which were man-
ually labeled by PolitiFact.’ Additionally, labelling decisions
are supported with comprehensive resources like analysis
reports or links to source documents. This dataset is divided
into the six classes: pants-fire, false, barely-true, half-true,
mostly-true and true where the truth content continuously
increases in the given order. Besides the short statements,
the dataset provides auxiliary meta-information about sur-
rounding context and the associated speaker. For instance,
context information concerns the subject, venue and used
media. Speaker information among others considers knowl-
edge about the truth content of previous statements, the res-
ident state and the belonging party. The LIAR dataset has
a little imbalance regarding the class pants-fire since this
category has approximately half as many samples as the other
classes. [68]

In this paper, no meta-information supplied by the LIAR
dataset is used for text classification. This means that no
additional context or speaker information provided by the
dataset is fed into the analysis model. The idea behind this
proceeding is to examine if CapsNets are able to find latent
variables in syntax or certain words to detect fake news.
In principle that should be possible since CapsNets offer more
representational capabilities than regular neural networks.

The 20 Newsgroups (20-NG)° dataset is a corpus of
email-like conversations in twenty newsgroup forums with
different topics. ‘“Email-like” means that each sample con-
tains header information including From, Subject and Organi-
zation fields as usual in emails. Furthermore, each email-like
sample describes questions or answers of users under the
given subject. The number 20 refers to the various topics such
as diverse politic talks, computer system issues, scientific
exchange etc. It is not exactly clear who created the 20-NG
dataset. In this paper, the “bydate” dataset version (some
headers and duplicates were removed) from Jason Rennie’s

1 Available at
rotten_imdb.tar.gz

2 www.imdb.com

3www.rottentomatoes.com

4 Available at https://www.cs.ucsb.edu/~william/data/liar_dataset.zip

5www.politifact.com

6 Available at http://qwone.com/~jason/20Newsgroups/20news-bydate.
tar.gz

www.cs.cornell.edu/people/pabo/movie-review-data/

125283

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

home page’ is used. Rennie assumes that the 20-NG dataset
was originally built up by Ken Lang for his paper [69] about
a recommender system for online news articles. According
to Rennie’s dataset description, many of the 20 classes are
strongly related, whereas others are highly different. For
example, the superior topic about computer systems is com-
posed of five subtopics, whereas the general issue about
religion has three subclasses. Hence, superior classes are
overrepresented within the 20-NG dataset.

The Clickbait Dataset (CBD)? defines a two-class collec-
tion for clickbait detection in online news articles. For that
reason, headlines of news articles from reliable and dubious
online resources were gathered. To mitigate the problem of
false negatives in the samples of the class clickbait, the dataset
creators let manually validate their assumption about click-
bait articles from volunteers. Headline samples for the class
non-clickbait were collected from a serious online news arti-
cle provider which internally applies a review process and
uses guidelines for preventing clickbaits. In particular, CBD’s
creators showed that clickbait headlines follow specific syn-
tactic structures that can be helpful for differentiating serious
news articles from dubious ones. [70]

The IMDB Review Dataset (IMDB-RD)’ describes a
data collection with informal movie reviews from the IMDB.
Maximum 30 reviews per movie were taken. Each movie
review corresponds to a written consumer feedback in form
of a document. Reviews are exclusively categorized into
the two classes positive or negative. Only reviews with
high emotional polarity are utilized, means reviews with
strong positive or negative ratings. This dataset is completely
balanced. [71]

AG’s News Topic Classification Dataset (AG-NTCD)!0
comprises a subset of the original AG’s corpus of news arti-
cles'! dataset which was collected by Antonio Gulli and
consists of more than one million news articles. According
to Gulli’s home page, his dataset was initially used in the
papers [73], [74]. Zhang et al. [61] created the AG-NTCD
as subset from Gulli’s original dataset by solely considering
the top four classes using the provided title and description
of news articles for classification. The four classes with the
highest number of corresponding samples are: World, Sports,
Business and Sci/Tech. In opposite to Zhang et al. [61],
in this paper the AG-NTCD is further reduced by only
taking the sentence-like descriptions of news articles into
consideration.

As Chakraborty et al. [70] correctly pointed out in their
paper about detecting clickbaits, online media (especially
informal resources) follow specific syntactic rules (e.g. over-
expressed and symbolic punctuation such as ! “21”,
coREkER), “xD” ete.) and use an extended vocabulary

7http://qwone,com/~jason/

8 Available at https://github.com/bhargaviparanjape/clickbait

9 Available at https://ai.stanford.edu/~amaas/data/sentiment/acllmdb_
vl.tar.gz

10 Available at TensorFlow Datasets [72]

11 http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

125284

with many abbreviations (e.g. “LOL”, “OMG”,
“ASAP” etc.). Since some of the selected datasets con-
sider informal online resources like the CBD or IMDB-RD,
it should be helpful to apply a tokenizer which brings along
the capacity for additionally recognizing specific internet
vocabulary. For this purpose, the TweerTokenizer'? from
the Python natural language toolkit nltk is used. In more
detail, this tokenizer finds regular words, separates punctu-
ation, detects hash tags (e.g. “#thisisahashtag’) and recog-
nizes symbolic structures like smileys or arrows (such as
“:-P” or “—”"). This tokenizer is applied for determining
the subsequent statistical values for all datasets. Moreover,
the tokenizer option for converting all tokens into lowercase
is activated.

Table 1 lists the central properties for the six regarded
datasets. The collection of datasets covers a wide spectrum
of different properties. Almost all displayed datasets have
distinct tasks and operating levels. In addition, the number
of classes for the classification tasks also shows variability.
Evidently, the sample granularity levels of the datasets often
correlate with the vocabulary size. The given granularity
levels can be sorted from fine to coarse: Headline — Sentence
— Statement — Review — Email. This ordering is reflected
by the number of tokens 7, as listed in Table 2. The difference
between sentence and statement-level is that statements can
comprise more than one sentence, but the overall amount of
tokens is still small.

TABLE 1. Primary statistics to all six used datasets. The columns c, s and
v denote the number of classes, the number of samples and the
vocabulary size, respectively. The tilde sign over s and v means

that the values are approximated in scale of thousands.

Dataset c 5 v Level Task Description
SD 2 10K 23K Sentence Subjectivity Check
LIAR 6 13K 15K Statement Fake News Detection
20-NG 20 19K 210K Email Topic Assignment
CBD 2 26K 25K Headline Clickbait Detection
IMDB-RD 2 50K 150K Review Sentiment Analysis
AG-NTCD 4 240K 79K Sentence Topic Assignment

In particular, Table 2 gives a clue about the sample per
class balance in each dataset. SD, IMDB-RD and AG-NTCD
appear to be totally balanced since the minimum, maximum
and average number of samples per class are equal. In the
other three datasets some classes could be under or over-
represented which may increase task complexity. The num-
ber of tokens per sample also indicates classification task
severity. All datasets have a high variance in the number of
tokens per sample. The big amount of maximal tokens for the
AG-NTCD, despite using sentence-level, can be explained
by the circumstance that news article descriptions often use
semicolons to enrich remarks.

12https://www.nltk.org/api/nltk.tokenize.html#module—
nltk.tokenize.casual

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

IEEE Access

TABLE 2. Minimum, maximum and average values to the number of
samples per class s; and to the number of tokens per sample ¢;. Again, all
values are approximated whereby numbers marked with K are rounded
regarding thousands and other values are rounded regarding their
decimals.

Dataset Smin Smaz -§avg tmin imaz iavg
SD 5K 5K 5K 7 120 24
LIAR 1K 3K 2K 2 552 20
20-NG 628 999 942 19 89K 400
CBD 10K 16K 13K 1 79 12
IMDB-RD 25K 25K 25K 8 3K 278
AG-NTCD 60K 60K 60K 3 225 36

IV. RELATED WORK

In 2018, Zhao et al. [8] utilized the CapsNet technology
with dynamic routing for text classification. They stated that
their work presents the first empirical investigation for text
modeling using CapsNets, to the best of their knowledge. One
central aspect of their work was the design of the enhanced
dynamic routing procedure. They showed that enhanced
dynamic routing generally led to higher accuracies for six
tested benchmark datasets than the classic dynamic rout-
ing procedure. For their experiments, the authors designed
a simple CapsNet architecture which was composed of an
embedding layer, one convolutional layer, one primary cap-
sule layer, one convolutional capsule layer and, finally, one
fully-connected capsule layer for realizing text classification.
This basic architecture was used for analyzing the text clas-
sification potential of CapsNets in two variants: The first
variant solely used the basic architecture and the second one
utilized the basic architecture three-times in a concurrent
manner with different kernel sizes in the first convolutional
layer. The computed class probabilities in the second vari-
ant were finally combined with a Capsule Average Pooling
(CAP) layer. Since the second variant is able to capture
features with various n-gram granularity levels, by varying
the convolutional window size, it generally results in higher
classification accuracies. Another important aspect in the
work of Zhao et al. depicts the transfer of a text classification
model, trained with single-label data, to a multi-label text
classifier for free. Such a transfer is possible because of the
high capacity of capsules to learn rich representations of
the classification entities supported by an intelligent routing
between consecutive capsule layers.

In 2018, Srivastava et al. [9] adopted CapsNets for solv-
ing the contemporary problem of identifying aggression and
toxicity in user comments. They focused their experiments
on a minimal use of preprocessing, handling unknown words
and coping with transliterations. Their CapsNet architecture
was strongly oriented on the aforementioned classification
model from Zhao er al. [8]. The only differences represent
the use of a RNN as first feature extractor layer instead of
a convolutional layer and the insertion of a focal loss. The
RNN layer was introduced because of its ability to deal with
time-dependent patterns which experimentally led to better

VOLUME 9, 2021

results than a CNN. Additionally, the focal loss should hit
the difficulty of imbalanced data since examples of toxic user
comments are rare compared to the whole amount of available
user comments. Their model accuracy outperformed all other
considered benchmark neural network methods. Moreover,
their CapsNet model was resilient against Out-of-Vocabulary
(OOV) words, if the word embedding layer was randomly
initialized at the beginning of the training.

In 2018, Kim et al. [10] comprehensively investigated
the potential of CapsNets in the area of text classification.
Their work was restricted on capsules consisting of pose
vectors and the use of dynamic routing between consecutive
capsule layers. Their CapsNet architecture was composed of
an Exponential Linear Unit (ELU) gate layer as filter for
relevant inputs without losing spatial information, a con-
volutional capsule layer to build an internal representation
of entities and a fully-connected capsule layer for applying
the classification task. The classification results showed that
the proposed CapsNet architecture with the use of dynamic
routing achieves competitive accuracies on the benchmark
datasets. Moreover, the authors argued that the dynamic rout-
ing procedure, introduced by Sabour et al. [3] for visual
object recognition, was not suitable for text classification
since information about the precise spatial relation of individ-
ual words could reduce the model robustness to varying word
positions in sentences or documents. Hence, they proposed
the static routing procedure which propagates capsule outputs
equally weighted to all capsules in the consecutive layer.
Their experiments with static routing on the seven benchmark
datasets led to accuracies which outperformed dynamic rout-
ing and the considered state-of-the-art neural networks in the
most cases.

In 2018, Ren et al. [11] combined the concept of Compo-
sitional Coding (CC) with vector-shaped capsules and intro-
duced a routing-by-agreement procedure based on the simple
k-Means clustering algorithm. The basic idea behind CC is
to build up word embeddings from few basis vectors which
should lead to less parameter consumption without signifi-
cant performance loss. The authors proposed a basic CapsNet
architecture consisting of an introducing CC capsule layer
and a mixture of recurrent and capsule layers. The CapsNet
was tested on eight text classification datasets and the results
were compared with the outcome of two highly-specialized
state-of-the-art technologies for text classification. The num-
ber of parameters of the considered models were adjusted
to each dataset to perform best. The results showed that
the CapsNet architecture reaches competitive classification
accuracies and has in many cases a fewer number of required
parameters.

Although there already exists a lot of other work identi-
fiable in the domain of text classification using CapsNets,
the above presented works were covered in more detail
because they provide argumentations for distinct routing
concepts or serve as fundamental source for text classifica-
tion with CapsNets. Nevertheless for the sake of complete-
ness, some more related work about text classification with

125285

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

CapsNets is briefly mentioned below: Zheng et al. [12] pro-
posed a sophisticated CapsNet consisting of feature extrac-
tors for different granularity levels, vector-shaped capsules
and an attentive aggregation layer to force versatile struc-
ture representation learning. Aly et al. [13] showed that
a simple CapsNet architecture is sufficient for hierarchi-
cal multi-label classification and achieves best results with
deep label hierarchies compared to traditional methods.
Fei et al. [18] integrated a topic and a capsule module into
a neural net architecture to extensively capture textual char-
acteristics of sentiments for multi-label emotion classifica-
tion. Bhattacharjee [14] utilized CapsNets for successfully
overcoming the task of detecting textual clickbaits in social
media. Similar to [9], Jain et al. [15] combined feature
engineering, RNN techniques and attention mechanisms with
CapsNets to an ensemble approach that applies sentiment
analysis for a question-answering system to find inappropri-
ate user-provided text. Wang et al. [16] designed a different
capsule model, as proposed in [3] or [4], for sentiment analy-
sis. Their much more complex capsule model encapsulates a
representation, probability and reconstruction module. They
used each capsule as a standalone detector for one entity
and returned the existence probability and an internal vector
representation of the observed entity. The internal vector
representation was only used for defining one part of the
loss function for training the network. Through an analysis
of weights in the applied attention mechanism, the authors
were able to rank words by their relevance for classification
categories. Chen et al. [19] introduced a transfer capsule net-
work for learning sentiment polarity in diverse aspects based
on existing text classification models. Wu et al. [17] proposed
a triplet capsule network with an adjusted triplet loss function
to force the network’s ability to assign latent features with
low discriminative power to the correct class and, therefore,
improve classification effectiveness. Xiao et al. [20] designed
a multi-task learning CapsNet which involves a task routing
procedure to cluster shared features by their relevance for
different tasks. Liu ef al. [21] developed a generative expla-
nation framework for text classification that is able to pro-
vide human-readable, fine-grained rationale for classification
predictions.

V. ANALYSES

This section focuses on the analysis of distinct CapsNet
configurations to gain insights about how capsule-based nets
inherently work, and how different routing procedures influ-
ence model performance for the task of text classification.
For that reason, research questions are formulated and subse-
quently answered based on experimental results.

A. MODEL DEFINITION

The classification model for analyzing diverse CapsNet con-
figurations is illustrated in Fig. 13. The analysis model
starts by transforming incoming words into vector represen-
tation through the application of a word embedding layer.
The subsequent dropout layer ensures that the model learns

125286

Word Embedding

[I
4

. . [. |
) L U
Iy | 3-grams | 4-grams | 5-grams g | RNN-1 | w | 3-grams
3 3 w
5) 3
o v Q
N s 3
‘4 { M : RNN-2 :
CapsNet-1 | CapsNet-1 | CapsNet-1 | | CapsNet-2 | CapsNet-2 |
Yy Y@ Yy® y® Yy®

Capsule Average Pooling

Yy

FIGURE 13. Ensemble classification model for CapsNet hyperparameter
analysis.

strong representations for all word embedding dimensions.
Afterwards, the resulting word embeddings get simulta-
neously processed by five sub-networks. The entrance of
each sub-network corresponds to a representation learn-
ing module. The representation learning modules of the
first three sub-networks can be categorized as Structural
Feature Extractors (FE)s since they build n-gram fea-
tures with distinct granularity levels. In contrast to this,
the fourth sub-network extracts sequential features using a
preceded RNN. The last sub-network utilizes an Hybrid FE
which is represented by a mixture of a structural and a sequen-
tial FE. Each sub-network ends with its own CapsNet for
classification. These CapsNets use identical hyperparameter
configurations, defined by the current analysis run. Thus,
the analysis model is actually an ensemble approach, which
comprises five submodels that can be jointly trained. The total
prediction Y7 for an incoming sample is finally calculated
as the arithmetic mean over all voted sub-predictions Y.
Advantages of the designed analysis model are:

« different feature types as input for CapsNets
« increasing confidence in analysis results
« computational efficiency through parallel architecture.

The intention behind the extraction of different feature
types is to provide a comprehensive consideration about
the potential of CapsNets for representing complex entities,
independent from the concrete feature kind. Additionally,
structural and sequential features are common features in
the text domain. The encapsulation of five sub-networks
within the basic analysis model significantly increases the
confidence in analysis results, because the result of each
analysis can be interpreted as the averaged result over five
sub-analyses, through the five sub-networks and the Capsule
Average Pooling (CAP) layer. This provides a stabilizing
effect on the model performance for different runs. Since each
sub-network acts as isolated component independent from
all other sub-networks, computations of sub-networks can

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

IEEE Access

be concurrently applied, which amplifies the computational
efficiency of the model.

Fig. 14 displays the structure of the used CAP layer. The
CAP layer receives as input a list of capsule outputs with
equal capsule dimensionality. Then, the CAP layer deter-
mines the activation for each class capsule. Here, activations
are computed as the length of the instantiation parameter
vectors and normalized by the softmax function, applied once
per voting. Matrix-shaped capsules are rearranged into vector
form before activation calculation, which improves compara-
bility between both capsule models. Finally, the CAP layer
returns the arithmetic mean over the activation values for the
various classes. The CAP layer does not guarantee a valid
probability distributions for the final class prediction, means
that the probabilities of all classes does not imperatively sum
up to one. Nevertheless, this behavior is not crucial for the
subsequently proposed analyses.

' Capsule Average
Pooling Layer

1 m
EZL P
1
I [|

softmax softmax o softmax
T T 1
vl llvll cee llvll
®®...® ®®...® L ®®...®

I I I

FIGURE 14. Capsule average pooling layer as voting mechanism for
predictions from different capsule sub-networks, based on [8], [9].

As a note, a similar parallel CapsNet model for analy-
sis purposes was already proposed by Zhao et al. [8]. But
Zhao et al.’s designed architecture was restricted to the use
of structural FEs with different granularity levels. Moreover,
the structure of their CapsNet classifiers differs from them
used in this paper. (More information about the used classi-
fiers is provided in the remainder of this section.) [8]

Implementing an ensemble of representation learning
modules with own classification components, that are jointly
trained, should enforce the overall network to learn strong
entity representations, as already described by Zhao ez al. [8].
For that reason, the model accesses the internal structure of
input data over three kind of feature extractors: Structural FE,
Sequential FE and Hybrid FE.

Subfigure (a) in Fig. 15 visualizes the detailed struc-
ture of the components within all feature extractors in the
designed classification model: n-Grams are constructed by
applying a regular ConvlD with 16 filters, a kernel size of
n, a stride of 1 and the Rectified Linear Unit (ReLU) acti-
vation function. Both RNN modules consist of Bidirectional

VOLUME 9, 2021

I . |)
Conv1D: RelLU, . .8
1611 BiGRU:

n-grams %

{ PrimaryCaps:
G

‘T* ~N
L i
2 2
3 3
3 <
] 8
DenseCaps: DenseCaps:
m, C,, Routing m, C,, Routing
\

(b)

FIGURE 15. (a) Sub-modules for all FEs in the analysis model. (b) Both
CapsNet classifiers for the analysis model.

GRUs (BiGRU)s. Since RNN-2 is combined with a preceding
n-gram FE in the analysis model, the number of BiGRUs is
halved compared to RNN-1. This should help to balance the
various FE modules. Although, balancing is difficult because
there are three structural FEs in use and only one instance
from the other FEs. Furthermore, the hybrid FE has the
potential to be much more powerful than the other FEs, since
the number of stacked layers significantly increases modeling
ability, in general. The hybrid FE in the classification model
was inspired by Wang et al.’s model [58], which builds a com-
mon LSTM layer upon two concatenated convolutional sub-
networks. To optimally support the representation learning
process in the following analyses, BN is used in combination
with CNN layers and LN is applied for RNN layers.

One crucial problem of time-window approaches such as
n-grams lies in the choice of the underlying granularity, too
small n-grams can ignore relevant contextual information
whereas too large n-grams harbor the risk of overfitting on the
training data [75]. Because Zhao et al.’s analysis [8] supplied
meaningful results, the same granularity levels for the n-gram
feature extractors are chosen. Thus, 3-grams, 4-grams and
5-grams are utilized.

Suitable for the different FEs in the analysis model, two
distinct CapsNet classifiers are defined, as illustrated in sub-
figure (b). Both CapsNet classifiers are composed of two cap-
sule layers where the prior layer corresponds to PrimaryCaps
and the last layer contains the class capsules.

CapsNet-1 represents the classifier for all structural FEs.
Since structural FEs provide the input to their classifiers in
the form of an one-dimensional input sequence, CapsNet-1
is equipped with an introducing PrimaryCapsiD layer. The
PrimaryCaps1D layer creates capsules with desired capsule
dimensionality by conducting a regular one-dimensional con-
volution and gathering capsule sequences by concatenating
feature maps. This convolutional operation is followed by the
application of a BN layer for stabilizing input distributions

125287

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

to the next layer. The PrimaryCapslD layer in the
CapsNet-1 component uses a ReLU nonlinearity, outputs 16
capsule types (correspond to feature maps with capsules),
a kernel size of 6 and a stride length of 3. The parameter
C1 means the resulting set of capsules. Afterwards, the cap-
sules C with their current outputs get flattened. Normally,
the flatten operation just constitutes a reshaping operation.
Finally, the flattened capsule outputs are propagated to the
DenseCaps layer which embeds the class capsules in a
fully-connected feedforward layer. The number of output
capsules m is predefined by the used dataset with its specific
classification task. Moreover, the DenseCaps layer manages
its own Routing procedure instance.

The input for the CapsNet-2 component represents a col-
lection of scalar-outputs produced by a preceding BiGRU
layer. Therefore, CapsNet-2 can be connected to both sequen-
tial and hybrid FEs. First of all, the CapsNet-2 classifier
rearranges the collection of incoming scalar-values to form
PrimaryCaps. Then, capsule outputs are sent to a DenseCaps
layer with same parameter configuration as the equivalent
layer in the CapsNet-1 component.

B. TRAINING SETUP

Table 3 lists the general hyperparameters that are used in each
analysis. The hyperparameter list is divided into Model and
Training parameters. Training parameters are only applied
during the optimization of a model, whereas model param-
eters are fixed for a model’s lifetime.

TABLE 3. General hyperparameters for all analyses.

Type Parameter Value
Mini-batch Size 32
< Embedding Size 16
32 Dropout Rate 0.2
= Sequence Length E((;il;)g
Vocabulary Size 1+ \Vt(f‘)lm\
Epochs 10
& | Optimizer Adam
5 Loss Function Categorical Cross Entropy
= Early Stoppin Restore best parameters
y Stopping based on validation loss

In general, the mini-batch size of a model is an impor-
tant hyperparameter which influences training and prediction
speed, and resulting classification accuracy. Interestingly,
Bhattacharjee [14] experimentally showed for the CBD that
varying the mini-batch size had solely a marginal effect on
the accuracy of the tested CapsNet. Evidently, this experi-
mental result can only be seen as an indication and not be
transferred to all datastets in general. However, one central
aim of this paper is to empirically investigate the raw capacity
of CapsNets in the text classification domain, without adjust-
ing general hyperparamters to fit best on the six considered
datasets. No pretrained word embeddings are utilized for an
unbiased analysis and for obtaining task-specific word repre-
sentations. To prevent overfitting and to enforce the learning

125288

of meaningful distributed representations for all considered
datasets, a relatively small embedding size of 16 is used.
This is also supported by the dropout layer which ignores
random 20% of the word embedding dimensions during a
training step. The sequence length f[%; is the average number
of tokens for the regarded dataset d. The average sequence
lengths are calculated over the whole datasets for practical
simplicity. However, they should be near the same as the
average sequence lengths of the associated training sets. The

vocabulary size corresponds to the cardinality |Vt(ffl)in| of the
vocabulary set within the training data of each dataset d.
The (14) supplement results from one auxiliary token as
placeholder for unknown words. Each analysis model with
a specific parameter configuration is trained for 10 epochs.
The Adam [76] optimizer with default parameter configura-
tion in TensorFlow is used for gradient descent optimization.
At the moment of this writing, the default learning rate of the
Adam optimizer is A = 0.001.'3 As loss function the cross
entropy is applied which gives a notion about the dissimilarity
between a predicted probability distribution and the ground
truth [25]. The categorical cross entropy is a special kind of
the cross entropy for target labels in the shape of one-hot
encodings. Again, the categorical cross entropy is utilized
with TensorFlow’s default parameter configuration.'* Early
stopping represents a simple regularization strategy for pre-
venting overfitting of models by aborting the training process
when the error on the validation set does not decrease after a
predefined number of epochs [25], [28], [32]. In this work
early stopping is only conducted to restore the best learned
parameters with respect to the error on the validation set.

All analyses are conducted on a single 64-bit-machine
with an Intel i7-8550U CPU with 1.80 GHz. The CPU
comprises four physical cores and can simultaneously pro-
cess eight threads. The computer system is equipped with
16 GB memory.

The only applied preprocessing to all six datasets includes
the tokenization using the already mentioned TweetTok-
enizer'® from the Python nitk module. The tokenization pro-
cess involves the transformation of all tokens into lowercase.
For each analysis, all datasets get completely shuffled and
divided into a training, validation and test set with split ratios
of 70%, 15% and 15%, respectively.

C. ROUTING PROCEDURE COMPARISON

The goal of this analysis is to provide a thorough overview
of the performance of CapsNets with various routing proce-
dures in the text classification domain. All routing procedures
which were introduced in the fundamentals of this paper
are investigated. In particular, the static routing procedure
is included in order to test if routing-by-agreement indeed

13https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
14https://WWW.tensorﬂow.org/api_docs/python/tf/keras/losses/
CategoricalCrossentropy

15 https://www.nltk.org/api/nltk.tokenize.html#module-
nltk.tokenize.casual

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

IEEE Access

has a positive effect on text classification performance. If the
use of routing-by-agreement procedures would result in no
performance improvement, the excluding of such procedures
could save valuable computing resources. Another aspect of
this analysis represents the exploration if a routing procedure
outperforms the other ones with respect to the six considered
datasets. These objectives are summarized in the following
research questions (RQ)s:

RQ 1a: Does the use of routing-by-agreement positively

affect text classification performance?

RQ 1b: Is there a dominating routing-by-agreement

procedure?

The analysis results for empirically answering the above
research questions comprise: the final accuracies for all
datasets in Table 4, the mean epoch durations in Table 5 and
six plots about the validation loss development in Fig. 16.
The specific hyperparameter configuration for this analysis
involves the use of vector-shaped capsules with vector lengths
of 4 and 8 for the first and second capsule layer, respectively.

TABLE 4. Final percentage accuracies on the corresponding test sets for
the routing procedure comparison. The best accuracy achieved for each
dataset is emphasized in bold and underlined. All values below 90% are
bold and colored in red.

Dataset Static Dynamic Enhanced k-Means EM

atase Routing Routing Dynamic Routing Routing Routing
SD 99.67% 99.80% 99.80% 100.00% 99.53%
LIAR 75.86% 91.92% 91.35% 92.28% 84.57%
20-NG 43.14% 92.68% 98.37% 62.81% 95.75%
CBD 99.97% 99.95% 99.95% 99.97% 99.77%
IMDB-RD 96.87% 90.61% 98.55% 97.65% 93.64%
AG-NTCD | 96.86% 96.01% 96.87% 96.80% 96.46%

TABLE 5. Mean durations for one epoch in each training process. All
durations are stated in seconds [s].

Dataset Static Dynamic Enhanced k-Means EM

Routing Routing Dynamic Routing Routing Routing
SD 4s 65 6s 5s 7s
LIAR 7s 14s 14s 11s 17s
20-NG 401s 1017s 1054s 723s 1585s
CBD 7s 10s 11s 9s 11s
IMDB-RD 196s 283s 287s 238s 332s
AG-NTCD 190s 333s 348s 268s 394s

The mean epoch runtimes in Table 5 are rounded to sec-
onds. The order of the routing procedures from short to
long durations is: Static Routing — k-Means Routing —
Dynamic Routing — Enhanced Dynamic Routing — EM
Routing. Because all routing-by-agreement procedures use
the same number of iterations i = 3, the training duration
discrepancy completely results from the computational effort
of the routing algorithms. These algorithm runtimes also need
to be kept in sight when deciding for a routing procedure for
a CapsNet model.

Numeric instabilities sometimes occurred when using
enhanced dynamic routing or EM routing. Then, it was nec-
essary to partially re-run the corresponding analysis to obtain
complete results. In this context, it was particularly difficult

VOLUME 9, 2021

to provide numerically stable routing procedure implementa-
tions since problems rarely arose, which heavily complicated
debugging. This means that, although evidently numeric
problems such as division by zero, negative numbers under
the root etc. were prevented, the handling of distributed repre-
sentations in combination with iterative and computationally
intense routing algorithms, though, can lead to numeric insta-
bilities. Further research is desirable for resilient algorithm
design of routing-by-agreement procedures.

RQ 1a: The first formulated research question can be
answered with: Yes, but it depends. According to the analysis
results, static routing was inferior to all routing-by-agreement
procedures for the datasets LIAR and 20-NG. For all other
datasets, the use of static routing led to comparable accuracies
to the routing-by-agreement strategies. In classification tasks
where static routing achieves sufficient performance, it could
be preferred for inter-layer communication, since its compu-
tational effort is dramatically lower than for the considered
routing-by-agreement algorithms.

One possible reason for the low classification accuracy of
static routing on the 20-NG dataset could be that this dataset
contains many noise which is not eliminated by an intelligent
routing procedure. The 20-NG dataset habors high potential
for containing noise, because of its large mean sample length.
One argument against this explanation represents the high
accuracy reached for the IMDB-RD which has similarly long
samples on average. Another reason for the bad performance
of static routing on the LIAR and 20-NG datasets could arise
from the lack of modeling complex part-to-whole relations.
In that sense, the ability to selectively route low-level features
to high-level ones could be crucial for solving the text classi-
fication tasks of these datasets. Hence, testing distinct routing
algorithms within a CapsNet could lead to deep insights about
the inherent data structure and the regarded classification
task.

In general, the validation loss curves attribute routing-
by-agreement procedures a more effective learning process
than static routing. In consequence of this, Kim et al.’s [10]
conjecture that static routing should make a CapsNet for text
classification more robust by ignoring complex relationships
between low-level and high-level capsules cannot be con-
firmed based on the analysis results. In summary, the experi-
ments indicate that routing-by-agreement procedures are usu-
ally superior to static routing. But if static routing is sufficient
for solving a certain task, its use can save valuable computing
resources.

RQ 1b: Indeed, enhanced dynamic routing definitely
provides dominating results against the rest of the rout-
ing algorithms. The classification accuracies of enhanced
dynamic routing are constantly high. It reached for the three
datasets 20-NG, IMDB-RD and AG-NTCD the best values
at all. For the remaining datasets, it also comes close to
the best reached accuracies. Moreover, enhanced dynamic
routing supplies the best validation loss progresses for all
considered datasets, except the LIAR dataset. Its validation
loss curve for the LIAR dataset can be categorized as the

125289

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

SD LIAR
0.65 A Static Routi
® atic Routing —— Static Routing
—A— Dynamic Routing . . 1.775 4 —A— Dynamic Routing
4 Enhanced Dynamic Routing —&— Enhanced Dynamic Routing
0.60 —€— k-Means Routing 1.770 4 —— k-Means Routing
—l— EM Routing : —— EM Routing
a ")
S 8 1.765
~ 0.55 A CRY
c
o S
" =}
g 8 1.760 A
2 0.50 - g
1.755 A
0.45 1.750 1
1.745 A
T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Epochs Epochs
(@) (b)
20 - NG
CBD
3.0 1 —@— Static Routin
. g. —@— Static Routing
—A&— Dynamic Routing 0.365 | .)
. . —&— Dynamic Routing
2.9 1 —— Enhanced Dynamic Routing . .
. —&— Enhanced Dynamic Routing
—€- k-Means Routing)
i i —— k-Means Routing
——- EM Routin 0.360
2.8 1 9 -~ EM Routing
& : v\ - & & 8 w
3 A A4 v A 4 v u
2 2.7 S 0.355 A
2 s
o S
©
% 2.6 1 2 0.350 A
> 2
2.5
0.345 4
2.4 A
0.340 1
2.3
T T T T T T T T T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Epochs Epochs
(©) (d)
IMDB - RD AG - NTCD
0.650 " N
—@— Static Routing
0.625 - 0.86 —&— Dynamic Routing A .
—&— Enhanced Dynamic Routing
0.600 A —— k-Means Routing
0.85 A —— EM Routing
9 0.575 - a
o o
3 - 0.84 1
c C
© 0.550 A 'f:)
S 3 0.83 1
T 0.525+ ©
> >
0.500 4 —® Static Routing 0.82
—&— Dynamic Routing
0.475 4 —* Enhanced Dynamic Routing 0.81 4
-4~ k-Means Routing :
0.450 { —#— EM Routing
1 2 3 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Epochs Epochs
(©)] ®

FIGURE 16. Validation loss development for all six datasets over ten epochs. For each dataset the five considered routing procedures are investigated.

But again, the results emphasize that different routing pro-
cedures work well for distinct datasets and tasks. Therefore
in a practical application, it is recommended to test various
routing procedures in the first instance to gain an intuition

second worst because the global loss minimum is the sec-
ond highest and the model seems to overfit early. Despite
these observations, enhanced dynamic routing reaches an
high classification accuracy above 90% for the LIAR dataset.

125290 VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

IEEE Access

SD
—@— (4x1),(8x1)
—A— (2x2), (4x2)
0.60 -
2
8 0.551
c
o
S
©
h]
T 0.50
>
0.45
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Epochs
(@
20 - NG
3.0 -8~ (4x1), (8x1)
—A— (2x2), (4x2)
2.9 1
2.8 1
%]
%]
S
= 2.7 1
S
=
©
226
©
>
2.5
2.4
23 T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Epochs
(©
IMDB - RD
0.60 A —— (4x1), (8x1)
—h— (2x2), (4x2)
0.58
0.56

Validation Loss
o o o
w w wv
o N S
\ N L

0.48 -
0.46 A
1 2 3 4 5 6 7 8 9 10
Epochs
(©)

Validation Loss

Validation Loss

Validation Loss

LIAR

1.775 A

1.770 A

1.765 A

1.760 A

1.755 A

1.750 A

—0— (4x1),(8x1)
—A— (2x2), (4x2)

5 6 7 8 9 10
Epochs

(b)

CBD

0.3550 1

0.3525 4

0.3500 A

0.3475 4

0.3450 4

0.3425 4

0.3400 4

0.3375 4

—@— (4x1),(8x1)
—A— (2x2), (4x2)

AG - NTCD

0.830 A

0.825 A

o
©
N
<]
L

o
0
it
€]
L

0.810 A

0.805 A

—&— (4x1), (8x1)
—h— (2x2), (4x2)

5 6 7 8 9 10
Epochs

()

FIGURE 17. Validation loss development for all six datasets over ten epochs. For each dataset the use of vector-shaped versus matrix-shaped capsules is

investigated.

about which routing algorithms satisfy the defined applica-
tion requirements best and should be examined in further

tests.

VOLUME 9, 2021

Enhanced dynamic routing will be utilized as routing

procedure in all further analyses, since it supplied convinc-
ing classification results for all six datasets. Furthermore,

125291

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

it appears to be more robust than static routing, k-Means
routing and EM routing because each of these algorithms
has a significant deficit in the final accuracies for at least
one dataset. In addition, enhanced dynamic routing achieved
for each dataset similar or better accuracies compared to the
traditional dynamic routing procedure.

D. VECTOR SHAPE VS. MATRIX SHAPE

Matrix-shaped capsules were initially conceived to model
2-D affine transformations to naturally capture 3-D view-
point variations for image data [2], [4]. The desired affine
transformations are inherently applied through multiplica-
tion with the transformation matrices which get learned dur-
ing model training. To the best of our knowledge, this is
the first time where matrix-shaped capsules are explored
for the text domain. This analysis wants to answer the
question if matrix-shaped capsules negatively or positively
influence model performance compared to vector-shaped
capsules, as proposed in the subsequent research question.
For this purpose, two CapsNet configurations get examined.
One configuration uses for both capsule layers in the CapsNet
classifiers vector-shaped capsules and the second configura-
tion utilizes matrix-shaped capsules.

RQ 2: Are vector or matrix-shaped capsules preferable
for text classification?

The analysis results for empirically answering the above
research question comprise: the final accuracies for all
datasets in Table 6 and six plots about the validation
loss development in Fig. 17. The first configuration uses
vector-shaped capsules with vector length 4 and 8 for both
capsule layers, respectively. The second configuration uti-
lizes matrix-shaped capsules with dimensionality (2 x 2) and
(2 x 4) for the two capsule layers. Thus, both configurations
provide for each capsule the equal number of instantiation
parameters for the same layers.

Contrary to the works [2], [4], no square matrices are
used for all capsule layers. This decision was made because
the focus does not lie on enabling 2-D affine transformation
operations, which are especially helpful in the image domain,
but rather investigating if the kind of feature composing and
the dimensionality of transformation matrices significantly
affects the classification performance of a model.

The number of parameters comprised by transformation
matrices varies when vector or matrix-shaped capsules are
involved. Equation (10a) and (10b) give an abstract formula-
tion for the multiplication of transformation matrices (colored
in red) with the output of vector or matrix-shaped capsules.
For instance, the previously defined capsule dimensions for
the first CapsNet configuration lead to calculations of the type
(Bx4)%(4x 1) = (8 x1). Hence, a transformation matrix with
8 x 4 = 32 trainable parameters must be created. The second
CapsNet configuration encompasses transformation compu-
tations of the form (4 x 2) % (2 x 2) = (4 x 2) which results in
only 4 x 2 = 8 trainable parameters per lower to higher-level

125292

TABLE 6. Final percentage accuracies on the corresponding test sets for
the comparison between vector and matrix-shaped capsules. The best
accuracy achieved for each dataset is emphasized in bold and underlined.

Dataset | (4x1),(8x1) (2x2),(2x4)
100.00% 99.93%

LIAR 92.18% 91.50%
20-NG 97.49% 97.88%
CBD 99.95% 99.95%
IMDB-RD 99.12% 98.95%
AG-NTCD 96.67% 96.80%

S8
S8

» »

& B &=

&=

—— R e ——
Atomic Composed Complex
Features Features Entities

FIGURE 18. Visualization of growth in concept diversity.

capsule connection.

Case Dimensions
Vec — Vec (a; x b)) x(by x 1)=(a; x 1) (10a)
Mat — Mat (ap X b)) % (by x ¢p) = (ap x ¢3) (10b)

To ensure a kind of comparability between both CapsNet
configurations, it was decided to equip each configuration
with the same number of instantiation parameters for capsules
in each layer. Thus, the vector and matrix-shaped capsules
should be able to provide the same expressiveness for entity
representation. Therefore, the constraints

by = bycy, ax = axcy (11)

can be concluded. The number of associated parameters p; for
one transformation matrix within the CapsNet configuration i
can be calculated as

pi = ajb;. (12)

For the first configuration follows: p1 = a1 by =
ax by c%. The second CapsNet configuration encapsulates

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

IEEE Access

SD
0.625 A —&— (2x1),(2x1)
0,600 - —A— (2x1), (4x1)
—— (4x1), (4x1)
0.575 A
9 0.550 -
o
-
_5 0.525 4
®
2 0.500 A
©
>
0.475 4
0.450
0.425 4
T T T T T T T T ! T
1 2 3 4 5 6 7 8 9 10
Epochs
(a)
20 - NG
3.0 —8— (2x1),(2x1)
—A— (2x1), (4x1)
2.9 4 —— (4x1), (4x1)
2.8 A
%]
%)
(=}
- 2.7 4
c
o
=}
©
T 2.6
©
>
2.5 A
2.4 A
2.34
1 2 3 4 5 6 7 8 9 10
Epochs
(©
IMDB - RD
0.58 4 —o— (2x1),(2x1)
—A— (2x1), (4x1)
0.56 —— (4x1), (4x1)
0.54
%]
%)
o
- 0.52
C
2
©
S 0.50 A
©
>
0.48
0.46
0.44 A
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Epochs
(e)

Validation Loss

Validation Loss

Validation Loss

LIAR

1.785 4

1.780 1

1.775 1

1.770 4

1.765 A

1.760 4

1.755 1

1.750 4

1.745

1 2 3 4 5 6 7 8 9 10
Epochs

(b)

CBD

—— (2x1),(2x1)
—A&— (2x1), (4x1)
—#— (4x1), (4x1)

0.3550

0.3525

0.3500 -

0.3475 A

0.3450 -

0.3425

0.3400

0.3375

1 2 3 4 5 6 7 8 9 10
Epochs

(@

AG - NTCD

0.825

0.820

0.815 A

0.810

0.805

1 2 3 4 5 6 7 8 9 10
Epochs

®

FIGURE 19. Validation loss development for all six datasets over ten epochs. For each dataset the impact of a growing capsule dimensionality within

the progress of CapsNets is investigated.

transformation matrices with py = ap b, trainable parame-
ters. From this abstract definitions for p; and p; results the
relation p; = c% p2. This means that a two-layered CapsNet
with matrix-shaped capsules has 1 /c% times less parameters
per transformation matrix than a CapsNet with vector-shaped

VOLUME 9, 2021

capsules and an equivalent number of instantiation
parameters.

The term feature composing means in this context the
difference in linear combinations within a regular matrix mul-
tiplication, when vector or matrix-shaped capsules are in use.

125293

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

|

| .
SeqFE
CapsNet-2

CapsNet-1 CapsNet-2

Embedding

n-StrFEC
SeqFEC
3-HFEC

Dropout

¢

v

v

FIGURE 20. Division of the basic analysis model into its FEs with
corresponding CapsNet classifiers.

In the case of vector-shaped capsules, each transformation
matrix gets multiplied with an instantiation parameter vector.
During multiplication, the resulting matrix is compound of
the dot products between each row in the transformation
matrix and the instantiation parameter vector. In opposite
to this, if matrix-shaped capsules are used instead, matrix
multiplication is applied by forming the dot product between
each row in the transformation matrix and each column in
the instantiation parameter matrix. Thus, trainable parameters
of the transformation matrix are shared over the columns of
an output from a matrix-shaped capsule. This observation
agrees with the number of trainable parameters for both
CapsNet configurations. Nevertheless, it is difficult to make
meaningful statements about the impact of this special way of
weight sharing. Intuitively, it seems more contra-productive
than helpful because capsules have the ability to store diverse
entity properties and using one weight for two or more fea-
tures sacrifices expressiveness. Applying quantitative anal-
yses also may be difficult since balancing between two
possible test configurations would be already tough.

RQ 2: The analysis results show that CapsNets with vector
or matrix-shaped capsules both work well for the task of
text classification. According to the conducted experiments,
the use of vector or matrix-shaped capsules has an marginal
impact on the development on validation loss curves during
model optimization. Theoretically, the vector-based CapsNet
variant has an advantage in model expressiveness over the
matrix-based one, through the higher number of learnable
parameters in total. However, both CapsNet configurations
achieve almost the same final classification accuracy for all
examined datasets. Future experiments with larger CapsNet
architectures on more complex datasets and classification
tasks are desirable for producing more convincing results
about the effects of distinct capsule models.

E. GROWING CAPSULE DIMENSIONALITY

Fig. 18 supplies an intuition about how concept diversity
may grow within a neural network. This intuition is imparted
by illustrating an exemplary step-wise progress in concept
development. Fig. 18 is divided into three stages with increas-
ing concept complexity from the left to the right-hand side.
At the beginning, some Afomic Features are given, visualized

125294

as squares with unique colors. If a neural network processes
images, atomic features are often pixel intensities. In the
case of text classification, atomic features may be single
characters or words. The next stage consists of Composed
Features that are represented as other square units which can
contain up to four atomic features. If each position in the
four-element grid of a composed feature can be any atomic
feature or the absence of a feature then there would exist five
options for assignment per grid position. This would lead to
5% = 625 possible composed features in the second stage.
The third stage continues this proceeding by forming even
more Complex Entities after the same pattern as before. So,
complex entities again correspond to four-element grids but
are now assembled using composed features. Thus the third
stage would produce 625* ~ 10'! combinations, which is
a tremendous amount of possible concepts that should be
captured by a computation model in order to fully understand
a task-specific domain. Furthermore, this situation already
occurs within three stages.

This intuition can be straightforwardly transferred to the
development from low-level features up to representing com-
plex entities within neural networks. In that sense, the stages
in Fig. 18 would represent three consecutive neural network
layers. One could argue that in real use cases neither all
possible features/concepts are relevant for the given task
nor the feature space is free of noise, which may signifi-
cantly reduce the whole feature space per neural network
layer. Nevertheless, a neural network model usually handles
input data with much higher dimensionality than just four
atomic features, in the most cases feature spaces are rather
real-valued than discrete, features can be duplicated in time or
space depending on the input data, and typical neural network
architectures are composed of many more layers than three.
To name just a few examples. Putting all this together leads to
the conjecture that going deeper in a neural network increases
the need for representational capacity of features/entities per
layer.

This analysis wants to provide evidence about if continu-
ously increasing capsule dimensionality, in the progress of
a neural network architecture, has a beneficial impact on
classification performance of a CapsNet model. Addition-
ally, this should implicitly prove the assumption that fea-
ture/concept diversity grows from layer to layer within a
neural network. Sabour et al. [3] also recommended to extend
the vector dimensionality of capsules with increasing depth
of a CapsNet to support the progress in entity complexity.
Unfortunately, Sabour et al. [3] did not deliver any proof
or experiment to confirm their conjecture. For supplying
meaningful analysis results, one configuration uses increas-
ing capsule dimensionality, while two further configurations
utilize a constant capsule dimensionality for all layers. In par-
ticular, the two further configurations serve as baselines to
evaluate the effects of the first CapsNet configuration. The
corresponding research question is subsequently formulated:

RQ 3: Should the capsule dimensionality be increased
in the progress of a network architecture?

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement IEEEACC@SS

0.65 A
0.60 A
7
]
-
S 0.55 A
©
S
©
> 0.50 1
0.45 A
0.40 A
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Epochs
(@
20 - NG
3.0 4
—&— 3 —StrFEC
—&— 4 —StrFEC
2.9 1 —d— 5 —StrFEC
—- SeqgFEC
2.8 1 - 3-HFEC
%]
%]
o
-
c 2.7
ie]
=}
©
S
T 2.6 1
>
2.5
2.4 A
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Epochs
©
IMDB - RD
—@— 3 - StrFEC
—&— 4 —StrFEC
0.50 A —— 5 —StrFEC
—&— SegFEC
—- 3 -HFEC
(9]
8 0.48 -
-
f=
o
=}
©
il
© 0.46
>
0.44

1 2 3 4 5 6 7 8 9 10
Epochs
(O]

Validation Loss

Validation Loss

Validation Loss

LIAR
1.81 A
1.80 A
1.79 A
1.78 A
1.77 A
1.76
1.75 A
T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10
Epochs
(b)
CBD
0.360 A —&— 3 - StrFEC
—A— 4 —StrFEC
—— 5 —StrFEC
0.355 A —— SeqgfFEC
—— 3-HFEC
0.350 A
0.345 A
0.340 A
0.335 A
1 2 3 4 5 6 7 8 9 10
Epochs
(d)
AG - NTCD
0.84 A —— 3 -—StrFEC
—A— 4 - StrFEC
—d— 5 —StrFEC
0.83 4 —— SeqFEC
- 3-HFEC
0.82 -
0.81 -
0.80 -

1 2 3 4 5 6 7 8 9 10
Epochs
®

FIGURE 21. Validation loss development for all six datasets over ten epochs. For each dataset the influence of distinct FEs is investigated.

The analysis results for empirically answering the above
research question comprise: the final accuracies for all
datasets in Table 7 and six plots about the validation loss
development in Fig. 19. All CapsNets for this analysis

VOLUME 9, 2021

are composed of vector-shaped capsules. The first CapsNet
configuration with increasing capsule dimensionality uses
for its first layer the capsule dimensionality (2 x 1) and
for its second layer (4 x 1). Therefore, the capsule vector

125295

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

TABLE 7. Final percentage accuracies on the corresponding test sets for
analyzing the impact of a growing capsule dimensionality. The best
accuracy achieved for each dataset is emphasized in bold and underlined.

Dataset | (2x1),(2x1) (2x1),(4x1) (4x1),(4x1)
SD 100.00% 100.00% 99.93%
LIAR 90.67% 89.99% 92.44%
20-NG 98.51% 96.99% 98.90%
CBD 99.97% 99.97% 99.95%
IMDB-RD 99.16% 99.17% 98.56%
AG-NTCD 97.00% 96.83% 96.62%

dimensionality is doubled from the first to the second layer.
The two CapsNet configurations for the baselines were cho-
sen to give a lower and an upper boundary for the results of the
first configuration. The configuration for the lower boundary
only contains capsules with dimensionality of (2 x 1). The
capsules for both layers within the configuration for the
upper boundary have a dimensionality of (4 x 1). Evidently,
the CapsNet for providing the lower boundary encompasses
less parameters than the first configuration with increasing
capsule dimensionality. Analogously, the upper boundary
encapsulates more parameters than the first configuration
with increasing capsule dimensionality.

RQ 3: This research question can be answered with: Yes,
generally the capsule dimensionality should be increased
in the progress of a network architecture. This answer is
grounded on the potential for receiving a positive effect on
model optimization when capsule dimensionality grows with
the depth of a neural net. Although the analysis results only
show beneficial impacts on the validation loss curves for the
LIAR dataset and the CBD, it mostly comes for free and can
reduce the total number of model parameters. More precisely,
the number of parameters can be pruned as side effect because
usually neural networks are pyramid-shaped with less units
from one layer to the next one. For instance, if a CapsNet has
two layers with (4 x 1), (4 x 1) capsule dimensionalities,
then using the dimensionalities (2 x 1), (4 x 1) instead can
significantly decrease the number of parameters of the whole
model and possibly retain model performance. In contrast to
this, using the dimensionalities (2x 1), (2x 1) could meaning-
fully lower model performance. Of course, this is a theoretical
statement which strongly depends on the given dataset and the
classification task. However, a growing capsule dimensional-
ity can reduce the number of trainable parameters which has
the potential to mitigate the omnipresent problem of over-
fitting and to improve generalizability of a model. Besides,
the conducted analysis does not give indications for nega-
tive effects when a growing capsule dimensionality is used.
The classification accuracies for the test sets of all datasets
in Table 7 show no significant differences. Hence, future
analyses with much deeper CapsNets and more demanding
classification tasks may be helpful for further investigations
about the effects of a growing capsule dimensionality on
model performance. Finally, the analysis results can be con-
sidered as indicator that feature/concept diversity grows with
the depth of a neural network architecture.

125296

TABLE 8. Final percentage accuracies on the corresponding test sets for
analyzing the impact of distinct FEs. The best accuracy achieved for each
dataset is emphasized in bold and underlined. All values below 90% are
bold and colored in red.

Dataset | 3-SwFEC ~ 4-SwFEC 5-SwFEC SeqFEC 3-HFEC
SD 99.73% 99.87% 99.87% 99.40% 98.60%
LIAR 90.35% 90.93% 90.93% 76.96% 59.38%
20-NG 82.20% 90.20% 93.08% 54.64% 61.96%
CBD 99.82% 99.92% 99.87% 99.90% 99.59%
IMDB-RD 98.96% 99.19% 99.08% 97.32% 96.79%
AG-NTCD 95.20% 95.57% 95.51% 97.20% 97.13%

F. FEATURE EXTRACTION ABLATION STUDY

This analysis wants to explore performance differences
between distinct FEs for the six regarded datasets. For this
purpose, each test configuration is reduced to a single FE
with CapsNet classifier from the basic analysis model. Fig. 20
illustrates the three FE Classifier (FEC) types: Structural
FEC (StrFEC), Sequential FEC (SeqFEC) and Hybrid FEC
(HFEC). Moreover, each FEC receives its input from an
individual word embedding layer followed by a dropout layer.
Because of the missing CAP layer which was utilized as
final layer in the basic analysis model, it is necessary to
additionally calculate class probabilities. This is realized by
determining capsule vector lengths and then processing the
lengths by a conventional softmax function. This analysis
thematizes the below research question:

RQ 4: What is the influence of different FEs on the
classification performance of CapsNets?

The analysis results for empirically answering the above
research question comprise: the final accuracies for all
datasets in Table 8 and six plots about the validation loss
development in Fig. 21. All CapsNets for this analysis consist
of vector-shaped capsules. For each CapsNet the capsule
dimensionalities (2 x 1), (2 x 1) are utilized for both capsule
layers, respectively. Each test configuration is compound of
one distinct FEC.

RQ 4: The analysis results emphasize that the performance
of a CapsNet classifier can strongly vary with the use of
different FE types. In general, FEs influence the resulting
model performance depending on the given dataset and the
regarded classification task. As illustrated in Table 8, struc-
tural FEs with coarser n-gram granularity like four or five
should be the choice in the first instance, since they supplied
stable performance for all six tested datasets. This leads in
turn to the conclusion that n-grams are the preferred low-level
feature type for CapsNet classifiers in the text domain. For
some classification tasks and datasets FEs with sequential
components outperform structural ones, as it happened for the
AG-NTCD with respect to the final accuracies and validation
loss curves. In particular, the SeqFEC caused better validation
loss progresses for all datasets, except for the 20-NG dataset.
Furthermore, a HFEC has potential for improving model
performance in exceptional cases. However, the tested HFEC
appears to be often less robust than a totally sequential FE.

VOLUME 9, 2021

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

TABLE 9. Summary of the central findings for the conducted analyses and possible next steps for future research.

Analysis

Findings

Future Research

Routing Procedure
Comparison

e In general, static routing appears to be inferior to
routing-by-agreement procedures for the task of text
classification.

e The use of static routing significantly reduces com-
putational costs compared to routing-by-agreement
procedures.

e Enhanced dynamic routing should serve as default
routing procedure implementation for the task of text
classification.

e Testing distinct routing procedures in the first in-
stance helps to reason about inherent characteristics of
the considered dataset and classification task.

e Resilient algorithm design for routing-by-agreement
procedures is desirable.

Vector Shape
vs.
Matrix Shape

e Both vector-shaped and matrix-shaped capsules seem
to be appropriate for the task of text classification.

e Further tests with enlarged CapsNet architectures
and more challenging text classification tasks should
be conducted for emphasizing possible differences be-
tween the impacts of vector-shaped and matrix-shaped
capsules on model performance.

Growing Capsule
Dimensionality

e In general, the capsule dimensionality should be
increased in the progress of a CapsNet architecture for
potentially retaining or improving model performance
with possibly less parameters.

e The analysis results suggest that feature/concept
diversity grows with the depth of a neural network.

e Other experiments with deeper CapsNet architectures
and more complex text classification tasks should
be conducted for further investigating the effects of
growing capsule dimensionality.

Feature Extraction
Ablation Study

e Coarser n-gram (means n € {4,5}) FEs should
serve as default input to CapsNets for the task of text
classification.

e Performance differences between CapsNet models
with structural and sequential FEs appear to have a
strong dependence on the concrete text classification
task.

e Testing distinct feature types in the first instance
helps to reason about inherent characteristics of the

IEEE Access

considered dataset and classification task.

In practice, both structural and sequential low-level fea-
tures should be examined in isolation to get a feeling about the
importance of distinct feature types. Testing various low-level
feature types for a classification task can help to gain knowl-
edge about the structure of latent variables and the problem
domain in a general manner.

VI. CONCLUSION

Table 9 recapitulates the central findings of the conducted
analyses, mostly formulated as recommendations for the
design of CapsNets in the text classification domain, and
lists possible next steps for future research. In summary,
it can be said that CapsNets combine the powerful methods
of distributed entity representations and intelligent routing
procedures with the aim to supersede conventional neural
networks with single-output neurons and static signal propa-
gation. These modifications can be seen as logical extensions
for neural networks to overcome prominent flaws of this
technology. For instance, prominent flaws are retaining noise
through static signal propagation and the lack of explainabilty
caused by non-transparency in routing and chaotic repre-
sentation of entities distributed over entire layers. Moreover,
the analysis results of this paper empirically proved that
the performance of CapsNets with routing-by-agreement is
robust for a broad variety of configurations, datasets and text

VOLUME 9, 2021

classification tasks. This significantly reduces the risk of
wrong design decisions in the development process of a text
classification model. In that sense, CapsNets can be con-
sidered as next-generation neural networks, actually. On the
other side, it can be argued that CapsNets with routing-
by-agreement procedures evidently demand more compu-
tational resources than traditional networks. Thus, in text
classification tasks where CapsNets with static routing or
regular neural networks are sufficient, simpler network
approaches should be preferred. However, this paper compre-
hensively illustrated the potential of CapsNets and routing-
by-agreement strategies for the use in the text classification
domain. Since CapsNets with routing-by-agreement repre-
sent a relatively young technology, future research is desir-
able for enriching the theory about CapsNets and for further
exploring their performance as text classification method.

ACKNOWLEDGMENT
The work is based on excerpts from the master’s thesis of
Nikolai A. K. Steur.

REFERENCES

[1] M. Abadi et al., “TensorFlow: Large-scale machine learning on heteroge-
neous distributed systems,” 2016, arXiv:1603.04467. [Online]. Available:
http://arxiv.org/abs/1603.04467

125297

IEEE Access

N. A. K. Steur, F. Schwenker:

Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

[2]

[3]

[4]
[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-
encoders,” in Proc. Int. Conf. Artif. Neural Netw. (ICANN), 2011,
pp. 44-51.

S. Sabour, N. Frosst, and G. E Hinton, “Dynamic routing between
capsules,” 2017, arXiv:1710.09829. [Online]. Available: http://arxiv.
org/abs/1710.09829

G. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with EM routing,”
in Proc. Int. Conf. Learn. Represent. (ICLR), 2018, pp. 1-15.

X.Zhang, P. Luo, X. Hu, J. Wang, and J. Zhou, “Research on classification
performance of small-scale dataset based on capsule network,” in Proc. 4th
Int. Conf. Robot. Artif. Intell. (ICRAI), 2018, pp. 24-28.

Y. Feng, X. Zhu, Y. Li, Y. Ruan, and M. Greenspan, ‘‘Learning capsule
networks with images and text,” in Proc. 32nd Conf. Neural Inf. Process.
Syst. (NIPS), 2018, pp. 1-5.

T. Vijayakumar and R. Vinothkanna, “Capsule network on font style
classification,” J. Artif. Intell. Capsule Netw., vol. 2, no. 2, pp. 64-76,
May 2020.

M. Yang, W. Zhao, J. Ye, Z. Lei, Z. Zhao, and S. Zhang, “Investigating
capsule networks with dynamic routing for text classification,” in Proc.
Conf. Empirical Methods Natural Lang. Process., 2018, pp. 3110-3119.
S. Srivastava, P. Khurana, and V. Tewari, “Identifying aggression and
toxicity in comments using capsule network,” in Proc. 1st Workshop
Trolling, Aggression Cyberbullying (TRAC), 2018, pp. 98-105.

J. Kim, S. Jang, S. Choi, and E. Park, “Text classification using cap-
sules,” 2018, arXiv:1808.03976. [Online]. Available: http://arxiv.org/
abs/1808.03976

H. Ren and H. Lu, “Compositional coding capsule network with k-means
routing for text classification,” 2018, arXiv:1810.09177. [Online]. Avail-
able: http://arxiv.org/abs/1810.09177

'W. Zheng, Z. Zheng, H. Wan, and C. Chen, “Dynamically route hierarchi-
cal structure representation to attentive capsule for text classification,” in
Proc. 28th Int. Joint Conf. Artif. Intell., Aug. 2019, pp. 5464-5470.

R. Aly, S. Remus, and C. Biemann, ‘“Hierarchical multi-label classifica-
tion of text with capsule networks,” in Proc. 57th Annu. Meeting Assoc.
Comput. Linguistics, Student Res. Workshop, 2019, pp. 323-330.

U. Bhattacharjee, “Capsule network on social media text: An application
to automatic detection of clickbaits,” in Proc. 11th Int. Conf. Commun.
Syst. Netw. (COMSNETS), Jan. 2019, pp. 473-476.

D. K. Jain, R. Jain, Y. Upadhyay, A. Kathuria, and X. Lan, “Deep
refinement: Capsule network with attention mechanism-based system for
text classification,” Neural Comput. Appl., vol. 32, no. 7, pp. 1839-1856,
Apr. 2020.

Y. Wang, A. Sun, J. Han, Y. Liu, and X. Zhu, “Sentiment analysis by
capsules,” in Proc. World Wide Web Conf. World Wide Web (WWW), 2018,
pp. 1165-1174.

Y. Wu, J. Li, V. Chen, J. Chang, Z. Ding, and Z. Wang, “Text classification
using triplet capsule networks,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2020, pp. 1-7.

H. Fei, D. Ji, Y. Zhang, and Y. Ren, “Topic-enhanced capsule network
for multi-label emotion classification,” IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 28, pp. 1839-1848, 2020.

Z. Chen and T. Qian, “Transfer capsule network for aspect level sentiment
classification,” in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics,
2019, pp. 547-556.

L. Xiao, H. Zhang, W. Chen, Y. Wang, and Y. Jin, “MCapsNet: Capsule
network for text with multi-task learning,” in Proc. Conf. Empirical Meth-
ods Natural Lang. Process., 2018, pp. 4565-4574.

H. Liu, Q. Yin, and W. Y. Wang, “Towards explainable NLP: A generative
explanation framework for text classification,” in Proc. 57th Annu. Meet-
ing Assoc. Comput. Linguistics, 2019, pp. 5570-5581.

D. Q. Nguyen, T. Vu, T. D. Nguyen, D. Q. Nguyen, and D. Phung, “A cap-
sule network-based embedding model for knowledge graph completion
and search personalization,” 2018, arXiv:1808.04122. [Online]. Available:
http://arxiv.org/abs/1808.04122

Y. Wang, L. Huang, S. Jiang, Y. Wang, J. Zou, H. Fu, and S. Yang, “Capsule
networks showed excellent performance in the classification of hERG
blockers/nonblockers,” Frontiers Pharmacol., vol. 10, p. 1631, Jan. 2020.
N. J. Nilsson, “Introduction to machine learning: An early draft of a
proposed textbook,” in Draft of Notes for a Standford course on Machine
Learning, 2005, pp. 9-11. Accessed: Oct. 26, 2020. [Online]. Available:
https://ai.stanford.edu/~nilsson/mlbook.html

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016, pp.21-31, 70-73, 239-242, 363-372,
397-401, and 448-543.

125298

(26]

(27]
(28]
[29]

(30]

(31]

(32]

(33]
(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

(47]

(48]

(49]

(50]

[51]

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Roy. Stat. Soc., Ser. B,
Methodol., vol. 39, no. 1, pp. 1-22, 1977.

S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed. Amster-
dam, The Netherlands: Elsevier, 2009, pp. 45-46, 741-745, and 807-808.
C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006,
pp. 259-261, 423-444, and 605-607.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proc. 5th Berkeley Symp. Math. Statist. Probab.,
vol. 1, 1967, pp. 281-297.

S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. IT-28, no. 2, pp. 129-137, Mar. 1982.

A. Géron, Hands-on Machine Learning With Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems,
2nd ed. Newton, MA, USA: O’Reilly Media, 2019, pp. 141-142 and
279-607.

S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. London, U.K.: Pearson, 2016, pp. 860-885 and 888-890.

R. Davidson and J. G. Mackinnon, Econometric Theory and Methods.
London, U.K.: Oxford Univ. Press, 2009, pp. 270-271.

A. Zheng and A. Casari, Feature Engineering for Machine Learning:
Principles and Techniques for Data Scientists, 1st ed. Sebastopol, CA,
USA: O’Reilly Media, 2018, pp. 41-76.

C. D. Manning, P. Raghavan, and H. Schiitze, An Introduction to Informa-
tion Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2009, pp. 27-28
and 117-119. [Online]. Available: http://www.informationretrieval.org/
F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-
tions,” 2015, arXiv:1511.07122. [Online]. Available: http://arxiv.org/abs/
1511.07122

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533-536,
Oct. 1986.

Y. Bengio, P. Simard, and P. Frasconi, ‘‘Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5, no. 2,
pp. 157-166, Mar. 1994.

S. loffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” Proc. 32nd Int. Conf. Mach.
Learn., vol. 37, 2015, pp. 448-456.

J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” in Proc.
Deep Learning Symp. (NIPS), 2016, pp. 1-14. [Online]. Available: arXiv:
1607.06450v1

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

K. Cho, B. van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN
encoder—decoder for statistical machine translation,” in Proc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP), 2014, pp. 1724-1734.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2015, pp. 1-15. [Online]. Available: arXiv: 1409.0473v7

T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-
based neural machine translation,” in Proc. Conf. Empirical Methods
Natural Lang. Process., 2015, pp. 1412-1421.

T. Mikolov, W.-T. Yih, and G. Zweig, “Linguistic regularities in contin-
uous space word representations,” in Proc. Conf. North Amer. Chapter
Assoc. Comput. Linguistics, Hum. Lang. Technol., 2013, pp. 746-751.

J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532-1543.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2013, pp. 1-12. [Online]. Available: arXiv: 1301.3781v3

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Trans. Assoc. Comput. Linguistics,
vol. 5, pp. 135-146, Dec. 2017.

T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in
Proc. 26th Int. Conf. Neural Inf. Process. Syst. (NIPS), vol. 2, 2013,
pp. 3111-3119.

K. S. Jones, “A statistical interpretation of term specificity and its applica-
tion in retrieval,” J. Document., vol. 28, no. 1, pp. 11-21, 1972.

VOLUME 9, 2021

IEEE Access

N. A. K. Steur, F. Schwenker: Next-Generation Neural Networks: CapsNets With Routing-by-Agreement

[52] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for [71] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
efficient text classification,” in Proc. 15th Conf. Eur. Chapter Assoc. “Learning word vectors for sentiment analysis,” Proc. 49th Annu. Meeting
Comput. Linguistics, vol. 2, 2017, pp. 427-431. Assoc. Comput. Linguistics, 2011, pp. 142-150.

[53] A. Gkanogiannis and T. Kalamboukis, “A perceptron-like linear super- [72] TensorFlow Datasets, a Collection of Ready-to-Use Datasets. Accessed:
vised algorithm for text classification,” in Proc. Int. Conf. Adv. Data Jan. 16, 2021. [Online]. Available: https://www.tensorflow.org/datasets
Mining Appl., 2010, pp. 86-97. [73] G. M. Del Corso, A. Gulli, and F. Romani, “Ranking a stream of news,”

[54] A. McCallum and K. Nigam, “A comparison of event models for naive in Proc. 14th Int. Conf. World Wide Web (WWW), 2005, pp. 97-106.
Bayes text classification,” in Proc. AAAI Workshop, Learn. Text Catego- [74] A. Gulli, “The anatomy of a news search engine,” in Proc. Special
rization, 1998, pp. 41-48. Interest Tracks Posters 14th Int. Conf. World Wide Web (WWW), 2005,

[55] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LIB- pp- 880-881.

LINEAR: A library for large linear classification,” J. Mach. Learn. Res., [75] A. Graves and J. Schmidhuber, ‘“Framewise phoneme classification with
vol. 9, pp. 1871-1874, Jun. 2008. bidirectional LSTM and other neural network architectures,” Neural Netw.,

[56] T.Joachims, “Text categorization with support vector machines: Learning vol. 18, no. 5, pp. 602-610, 2005.
with many relevant features,” in Proc. Eur. Conf. Mach. Learn. (ECML), [76] D.P.Kingmaand]J.L.Ba, “Adam: A method for stochastic optimization,”
1998, pp. 137-142. in Proc. Int. Conf. Learn. Represent. (ICLR), 2017, pp. 1-15. [Online].

[57] H.Hu, M. Liao, C. Zhang, and Y. Jing, “Text classification based recurrent Available: arXiv: 1412.6980v9.
neural network,” in Proc. IEEE 5th Inf. Technol. Mechatronics Eng. Conf.

(ITOEC), Jun. 2020, pp. 652-655.

[58] R. Wang, Z. Li, J. Cao, T. Chen, and L. Wang, “Convolutional recurrent
neural networks for text classification,” in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2019, pp. 1-6.

[59] P.Liu, X. Qiu, and X. Huang, “Recurrent neural network for text classifi-
cation with multi-task learning,” in Proc. 25th Int. Joint Conf. Artif. Intell. NIKOLAI A. K. STEUR received the B.Sc. degree
(IJCAI), 2016, pp. 2873-2879. in computer science from Baden-Wuerttemberg

[60] Y. Kim, “Convolutional neural networks for sentence classification,” in Cooperative State University, Mosbach, Germany,
Proc. Conf. Empirical Methods Natural Lang. Process. (EMNLP), 2014, in 2018, and the M.Sc. degree with distinction
pp. 1746-1751. in computer science from Ulm University, Ulm,

[61] X.Zhang,J. Zhao, and Y. LeCun, ‘‘Character-level convolutional networks Germany, in 2021.
for text classification,” in Proc. Adv. Neural Inf. Process. Syst. (NIPS), His research interests include algorithms and
vol. 28, 2015, pp. 649-657. . methods for data science, machine learning, artifi-

[62] A..Conncau, H. Schwenk, L. Ba.rral.ﬂt, an.d Y. LeCun, “Very deep convo- cial intelligence, and the state-of-art development
lutional networks for text classification,” in Proc. 15th Conf. Eur. Chapter o . . S

R . . of artificial neural networks in various application

Assoc. Comput. Linguistics (EACL), Valencia, Spain, vol. 1, Apr. 2017, . .

pp. 1107-1116. domalqs. He was award.ed for the Best Presentation from the Conference
[63] A. M. Dai and Q. V. Le, “Semi-supervised sequence learning,” in Proc. Committee at ICACTE, in 2018.

Adv. Neural Inf. Process. Syst. (NIPS), 2015, pp. 3079-3087. [Online].

Available: arXiv: 1511.01432v1.
[64] M. Schuster and K. K. Paliwal, ‘Bidirectional recurrent neural networks,”

IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673-2681, Nov. 1997.

[65] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical FRIEDHELM SCHWENKER (Member, IEEE)
attention networks for document classification,” in Proc. Conf. North received the Diploma and Ph.D. degrees from the
Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol., 2016, University of Osnabriick.
pp. 1480-1489. He is currently a Professor in computer sci-

[66] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, ence with the Institute of Neural Information Pro-
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. 31st cessing, Ulm University. He has (co-)edited over
Conf. Neural Inf. Pr ocess. Syst. (NIPS), 2017, pp. 5998-6008. 20 special issues and workshop proceedings pub-

[67] B. I?ang z'lnd L. Lee,v A sentimental equyatlon: Senument analysis using lished in international journals and publishing
subjectivity summarization based on minimum cuts,” in Proc. 42nd Annu. . .

. L companies, and published more than 250 papers
Meeting Assoc. Comput. Linguistics (ACL), 2004, p. 271. . gt . .

[68] W.Y. Wang, ““Liar, liar pants on fire’: A new benchmark dataset for fake . A at .m.te.rnatlonal conferences aqd Journé'ils. His
news detection,” in Proc. 55th Annu. Meeting Assoc. Comput. Linguistics r§s§arch 1nt§rests include artnflc.lal neural network.s,' ma(.;hme lea.rmng, §ta-
Short Papers, vol. 2, 2017, pp. 422-426. tistical lea.rmng theory, data mining, pattern recognition, information fusion,

[69] K. Lang, “Newsweeder: Learning to filter netnews,” in Proc. 12th Int. and affective computing.

Conf. Mach. Learn., 1995, pp. 331-339. Dr. Schwenker served as the (Co-)Chair for the IAPR TC3 on Neural Net-

[70] A. Chakraborty, B. Paranjape, S. Kakarla, and N. Ganguly, “Stop click- works and Computational Intelligence. He was the chair from 2016 to 2020.

bait: Detecting and preventing clickbaits in online news media,” in
Proc. IEEE/ACM Int. Conf. Adv. Social Netw. Anal. Mining (ASONAM),
Aug. 2016, pp. 9-16.

VOLUME 9, 2021

He founded the IAPR TC9 on Pattern Recognition in Human-Computer
Interaction.

125299

