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ABSTRACT Brillouin optical correlation-domain reflectometry (BOCDR) is a fiber-optic distributed sens-
ing technique with single-end accessibility and high spatial resolution. In BOCDR, the measured Brillouin
gain spectrum (BGS) distribution is generally given by a convolution of the intrinsic BGS distribution and the
beat-power spectrum. Inmost conventional implementations, the Brillouin frequency shift (BFS) distribution
is directly obtained using the measured BGS distribution. Determining the BFS distribution on the basis
of the intrinsic BGS distribution will give potentially higher spatial resolution, which can be achieved by
deconvolution of the measured BGS distribution. In this work, we employ a convolutional neural network to
perform this deconvolution processing in BOCDR and show its potential for spatial resolution enhancement.
A spatial resolution which is 5 times higher than the nominal value is demonstrated.

INDEX TERMS Brillouin scattering, convolutional neural network, distributed strain sensing, optical fiber
sensing, spatial resolution.

I. INTRODUCTION
Optical fiber sensors based on Brillouin scattering have
attracted immense interest in the past decades because of
their distributed strain and temperature measurement capa-
bilities [1]–[7], which find promising applications in damage
detection and structural health monitoring. Brillouin scatter-
ing refers to the phenomenon in which pump light injected
into an optical fiber interacts with acoustic phonons, gen-
erating backscattered Stokes light propagating in the direc-
tion opposite to that of the pump light [1]. The frequency
downshift of the Stokes light with respect to that of the
pump light, commonly referred to as Brillouin frequency shift
(BFS), provides information on the strain and temperature
changes along the length of the optical fiber. Numerous
distributed sensing techniques have been developed, each of
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which can be classified into either of the following categories:
‘‘analyzers’’—in which light is injected into both ends of the
fiber under test (FUT) to induce stimulated Brillouin scatter-
ing [2], [4], [6], or ‘‘reflectometers—in which light is injected
into only one end of the FUT to exploit spontaneous Brillouin
scattering [3], [5], [7]. These categories are further subdi-
vided into one of the following spatially-resolving domains:
time [2], [3], frequency [4], [5], and correlation [6], [7].

This study focuses on Brillouin optical correlation-domain
reflectometry (BOCDR) [7], which operates on the basis
of correlation control of continuous light waves in a self-
heterodyne scheme. BOCDR offers operation by single-FUT-
end light injection, high spatial resolution [9], [10], high
sampling rate [11], [12], random accessibility [7], cost effi-
ciency [13], [14], and some others [15], [16].

Distributed sensing in BOCDR is achieved through the
synthesis of optical coherence functions (SOCF) [7], [17].
Laser output is divided into reference light and pump light,
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both of which are sinusoidally frequency-modulated to pro-
duce correlation peaks (sensing points) along the FUT.
By tuning the modulation frequency so that only one correla-
tion peak is left within the range of the FUT, the Brillouin
scattering signal occurring at the position of interest can
be spatially resolved. The peak frequency monitored by the
electrical spectrum analyzer (ESA) provides the BFS, and
correspondingly, the strain or temperature change applied
to the FUT. In particular, the BFS shifts by 480 MHz/%
tensile strain or by 1.18MHz/K temperature change applied
to standard silica single-mode fibers (SMFs) [7], [17].

Since the BFS is directly related to the intrinsic dis-
tribution of the Brillouin gain spectrum (BGS), while the
measured BGS distribution is given by the convolution of
the intrinsic BGS distribution and a so-called ‘‘beat-power
spectrum’’ [17], determining the intrinsic BGS distribution
(and therefore the BFS distribution) from the measured BGS
distribution requires deconvolution of the latter. Conven-
tionally, this has been achieved by calculating the Fourier
transform of both the measured BGS distribution and the
beat-power spectrum, and then by applying deconvolution
in the frequency-domain, which, in the absence of noise,
is merely a point-by-point division of the two signals in
the Fourier domain [18]. The derived signal is subsequently
inverse Fourier-transformed to obtain the deconvolved signal
associated with the intrinsic BGS distribution. Performing
this deconvolution, however, requires knowing in advance
both the functions of the measured BGS distribution and the
beat-power spectrum; otherwise, derivation of the intrinsic
BGS distribution from the measured BGS distribution will
be extremely difficult, if not impossible.

The spatial resolution 1z and the measurement range dm
of BOCDR are given by [17]

1z =
Vg1vB
2π fm1f

, (1)

dm =
Vg
2fm

, (2)

respectively, where fm is the modulation frequency, 1f is
the modulation amplitude of the laser frequency, 1vB is the
Brillouin gain bandwidth, and Vg is the group velocity of the
light propagating through the fiber core. Spatial resolution
in conventional systems pertains to the distance between the
correlation peak and the point at which the full width of
the beat spectrum broadens twice as wide as 1vB, whereas
measurement range is defined as the distance between neigh-
boring correlation peaks [6], [7], [17]. Clearly, there is a trade-
off relationship between 1z and dm, which both vary with
fm and 1f . In a conventional setup, where fm = 1.0 MHz,
1f = 1.0 GHz, and 1vB = 30 MHz, the spatial resolution
is approximately 1.0 m and the measurement range is about
100 m. Note that even with the same modulation parameters,
longer measurement range and higher spatial resolution can
be obtained using several schemes, such as temporal gat-
ing [19], double modulation [20], and chirp modulation [21];

however, additional devices such as electro-optic modulators
introduce complexity and extra cost to the system.

Using a machine learning algorithm to improve the signal
processing can be advantageous in terms of simplicity and
cost, as it simply requires the neural network to be properly
trained, after which the BFS and the corresponding strain or
temperature change occurring at a section of the optical fiber
can be conveniently and directly obtained from the measured
BGS without the need for additional equipment or deconvo-
lution as in conventional systems. Several studies have pre-
viously proposed the use of machine learning algorithms to
improve the signal processing in distributed Brillouin sensors.
In particular, artificial neural networks [22], [23], support
vector machines [24], autoencoders [25], and deep neural
networks [25], [26] have been proposed for more robust
extraction of strain and temperature changes in time-domain
analyzers.

In this paper, we propose a deep learning algorithm based
on convolutional neural network (CNN) to directly obtain the
intrinsic BFS distribution from the measured BGS distribu-
tion in BOCDR using regression. We also report potential
improvement of the shortest strained length that can be real-
ized for BFS extraction, which, throughout this paper, will
be referred to as spatial resolution. Although Yao et al. [27]
and Chang et al. [28] also proposed a CNN-based machine
learning algorithm to obtain the BFS distribution from the
measured BGS distribution, [27] did not report any specific
results, whereas [28] reported that the spatial resolution of
their system remained independent of the CNN, having used
input data with varying BGS traces. Here, we also report an
improvement of the spatial resolution by at least five times
that of the nominal value.

II. NETWORK ARCHITECTURE
A convolutional neural network is a class of deep neural
network widely used in image processing and computer
vision. It has been successfully applied to image recog-
nition [29]–[34], semantic segmentation [35]–[38], video
analysis [39]–[43], and many other applications. Its working
principle is similar to that of regular multilayer neural net-
works, but with tied weights wherein only neurons within
each local region are fully connected to individual neurons
in the next layer, taking advantage of the fact that structural
information is contained within local regions of the image,
rather than the whole [44]. This translationally invariant
neural network generally comprises alternating convolution
and pooling layers, optionally followed by fully connected
layers [45], [46].

Convolutional layers convolve the input with a set of
learnable filters that act as feature extractors [47]. The first
convolutional layer detects low-level features such as e.g.
edges, lines, corners, and endpoints (in the case of images);
whereas higher-level convolutional layers detect higher-level
features. The neurons of these filters adjust their weights
according to features present in a region, and keep these same
set of weights to detect similar features in various locations
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FIGURE 1. Architecture of the proposed CNN. Here, N pertains to the number of position channels: 151 or 301.

within the feature map, preventing overfitting by reducing the
computation complexity and the number of parameters to be
adjusted during training [48]. Pooling layers are occasionally
periodically inserted between convolutional layers to reduce
the spatial size of the feature map, and more importantly,
the number of parameters to be adjusted during training.
They coarse-grain the input while providing a limited amount
of rotational and translational invariance, preserving locality
and spatial structure [46]. Max pooling is one of the most
common pooling operations used [48] which reduces the
dimensions of the feature map by replacing a small region
with a node having the maximum value in that region. Fully
connected layers are then occasionally inserted after convo-
lution and pooling layers to receive the outputs and map the
features extracted by the previous layers [49]. In hindsight,
convolutional neural networks are functionally analogous to
fully connected networks, besides the fact that the former
has tied parameters [48]. In this paper, a CNN is used to
directly derive the BFS distribution from the measured BGS
distribution of a BOCDR system when strains of varying
magnitude are applied to different sections along the FUT.

After repeated trials with varied architecture for optimal
performance, the CNN model is eventually designed to be
similar to that shown in Fig. 1. The proposed CNN comprises
four parts. The first part consists of 32 3 × 3 convolution
filters which create 32 feature maps, followed by a max pool-
ing layer of kernel size 2 × 2 which halves the dimensions
of the input, and then succeeded by three 32 convolution
filters (each of size 3× 3). All of the convolutional layers are
activated by a rectified linear unit (ReLU) function, defined
by y = max(0, x), to introduce nonlinearity. ReLU function
is one of the most frequently used activation functions in
regression as it converges fast and is sparsely activated [47].
Batch normalization (BN) is then introduced to adaptively
normalize the input values of the following layer [49], and
help improve the training speed and efficiency by solving the
internal covariate shift (ICS) problem [50] which occurs as a
result of the variation in the distribution of each layer’s inputs
caused by changes in the preceding layers’ parameters during
training [47], [50]. The second part comprises four sets of two
consecutive 64 convolution filters of size 3× 3, followed by
BN. The third part consists of seven alternating convolution
layers and max pooling layers. The convolutional layers in
this part have 128 3 × 3 filters, whereas the max pooling
layers have a kernel size of 2× 2. The last convolutional layer
of this part is then followed by a fully connected network with

three hidden layers having 10-N -N neurons in each layer,
where N is the number of position channels: 151 or 301.
BN is again inserted between the first and second hidden
fully connected layers to improve the training speed and
performance.

III. SIMULATION
A. GENERATING TRAINING INPUT
The conceptual diagrams of the MATLAB program for sim-
ulating the measured BGS distributions (used as inputs) as
well as their corresponding BFS distributions (used as labels
for training) are shown in Fig. 2(a) (setup) and Fig. 2(b)
(algorithm). A time-domain method was used to calculate the
beat spectrum to lower the complexity of the algorithm. First,
an array for storing the frequency values of the modulated
reference light changing with time as the dependent variables,
f0(t), was created, followed by a matrix fB(t,x), which stores
the frequency values of the Stokes light backscattered from
each sampling point. The matrix for beat signal frequency
values was then obtained from the difference between the two
as: fbeat(t,x) = f0(t)–fB(t,x). Subsequently, for each sampling
point, the probability density function of the time-varying
frequency of the beat signal falling within a certain fre-
quency range was calculated by cumulating the number of
sampling points within each frequency interval, converting
the time-domain signal to the power spectrum, i.e., the beat
spectrum. Finally, from an array storing the strain value of
each position, we created the intrinsic BGS distribution (with
no bandwidth) gint(f , x0), defined as

gint (f , x0) = 0 when f 6= fint
= 1 when f = fint , (3)

where fint is the intrinsic BFS at position x = x0, which was
then 2-D convolved with the beat spectrum to produce the
measured BGS distribution. Note that the Brillouin band-
width is 1-D convolved with the beat spectrum in advance.

Uniformly distributed strains between 0.10% and 1.40% at
equal steps of 0.05%were applied to sections between 0.2-m-
and 4.0-m-long, situated at various positions along the FUT,
generating 339,062 data sets which were divided into 20%
testing and 80% training sets—of which 20% was used for
validation. Both the testing and training sets cover strained
lengths varying between 0.2 m to 4.0 m uniformly. The strain
values were chosen for practical reasons, since silica single-
mode fibers (SMFs) are known to be reliable only for strains
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FIGURE 2. Conceptual diagrams of the MATLAB program used to generate
the beat spectrum of the training data: (a) Basic setup of the BOCDR
system assumed in the algorithm. ESA: electrical spectrum analyzer, FG:
function generator, FUT: fiber under test, PD: photo diode. (b) Diagram of
the algorithm and the beat spectrum histograms expected to be obtained.

around 1% [51]. Note that for this study, we only considered
the casewhere the FUT is strained along a single section. Also
note that owing to the lack of public real data sets for training,
this paper covers results for purely simulated clean data as a
proof-of-concept. It is the author’ plan to train the proposed
CNN on both simulated and real clean and noisy data in the
future.

Two separate data sets with varying dimensions were gen-
erated: 301× 90 and 151× 90, to investigate the correlation
between the spatial resolution enhancement and the perfor-
mance of the CNN mode—measured in terms of mean abso-
lute error (MAE) and median symmetric accuracy (MSA).
Here, 90 pertains to the number of frequency channels,
whereas 151 (or 301) pertains to the number of position
channels. The number of position channels was chosen such
that at least one channel is activated for a 0.2 m-long strained
section, as in the case of the 151×90 data set. For the case of
the 301×90 data set, on the other hand, a 0.2 m-long strained
section corresponds to three activated channels. We present
the CNNmodel’s performance for both data sets in Section V
to examine the effect of increasing the number of activated

channels on the mode’s performance. Additionally, we inves-
tigate the variation of the mode’s performance as a function
of the applied strain and strained length for the 301× 90 data
set and present our results in Section V.

B. TRAINING THE CNN
The measured BGS distributions, used as training inputs
(Fig. 3(a)), and their corresponding BFS distributions, used
as labels (Fig. 3(b)) for training, were normalized prior
to feeding into the CNN so that the input values scaled
between 0 and 1. Normalization is known to help improve
the numerical stability and increase the training efficiency of
the network, while maintaining the general distribution of the
data [52]. The two-dimensional measured BGS distributions
and their corresponding BFS distributions were then fed into
the CNN (Fig. 1), and trained for 200 epochs with a batch
size of 64. The weights were initialized using a random
normal initializer restricted to a mean of 0 and a standard
deviation of 0.05, and optimized using Adam algorithm with
the following parameters: learning rate = 0.001, β1 = 0.9,
β2 = 0.999, and ε = 0.1. Adam is a stochastic gradient
descent method based on the adaptive estimation of first- and
second-order moments, whereby each parameter’s learning
rate is maintained and separately adapted as the network
learns [53]. During training, outputs were obtained through
forward propagation, and errors were minimized through
back propagation, whereby the weights were adjusted to min-
imize the log-cosh loss function, given by

L (y, p) =
∑n

i=1
log (cosh (pi − yi)), (4)

where yi is the actual value and pi is the predicted value. This
function is twice differentiable everywhere and is not strongly
affected by incorrect predictions [54], making it popular in
regression problems. Note that the CNN was trained thrice
to ensure the results’ independence from lucky selection of
weights and that the results presented in Section V are from
the same training iteration of the CNN.

FIGURE 3. (a) Measured BGS distribution used as training input, and
(b) its corresponding BFS distribution used as label when a 0.5% applied
strain is applied to a 1.0-m-long section centered at 10 m from the
proximal end of the FUT.

For a Python environment running on an instance fea-
turing 4 virtual CPUs based on 2.7 GHz Intel Xeon E5
2686 v4 processors with an NVIDIA Tesla M60 GPU having
8 GB memory, training of 271, 250 151× 90 input data took
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FIGURE 4. Actual and predicted BFS distributions when (a) 0.10% and (b) 0.95% strains are applied to 0.2-m-long sections centered at 18 m from
the proximal end of the FUT. The BFS distribution, whose dimensions are 301 × 90, is indicated by a red line, whereas the BFS distribution, whose
dimensions are 151 × 1, is indicated by a green line. The actual BFS distribution is indicated by a blue line. (c) MAE and (d) MSA as functions of the
strain applied to a 0.2-m-long section centered at 18 m from the proximal end of the FUT.

approximately 48 hours, while training the same number of
301 × 90 input data took twice as long. Using a GPU with
faster clock speed is expected to render shorter training time.
After training, the model was used to predict the BFS distri-
butions of the simulated measured BGS distribution testing
data set, which were kept independent of the training data to
prevent biases in the neural network’s predictions. The model
took approximately 38.8 seconds to predict the BFS distri-
butions from the simulated measured BGS distributions of
4,844 testing data from the 301×90 data set, an improvement
of about 137 times from the 1.1 second deconvolution time
for each similar-sized simulated measured BGS distribution
using the same machine.

IV. MODEL EVALUATION
To evaluate the performance of the proposed algorithm,
we used mean absolute error (MAE) and median symmet-
ric accuracy (MSA) as evaluation metrics. MAE is one of
the most commonly used measures of error in regression,
which calculates the arithmetic average of the absolute error
between the actual and forecast values, and is given by

MAE =
1
n

∑n

i=1
|pi − yi|, (5)

where pi is the predicted value and yi is the actual value [55].
While related studies [22], [24]–[26], [28], [47] on deep
neural network-assisted signal processing in Brillouin opti-
cal fiber sensors use root mean squared error (RMSE) as
accuracy metric, RMSE is known to penalize larger errors
more heavily [56]; hence our decision to utilize MAE as
performance metric in this study instead. MAE, however,
is scale-dependent, as it follows the scale of the data predicted
or measured. To augment this, we additionally present our
errors in terms of MSA, given by

MSA = exp
[
M ln (Ri)

]
− 1, (6)

where

Ri = ln(pi/yi). (7)

MSA is symmetric (i.e., it gives the same accuracy for over-
and under-forecasts) unlike the more commonly knownmean

absolute percentage error (MAPE) [57], [58], which is known
to penalize overprediction more heavily. Moreover, MSA is
not scale-dependent and is resistant to outliers, allowing us to
interpret the model performance in terms of percentage, with-
out bias [58]. Note that both the MAE and MSA presented
throughout this paper were derived by considering only the
strained section i.e. the peak of the BFS distribution. This is
to better quantify the ability of the CNN to approximate the
peak of the strained section for various strains and strained
lengths.

V. RESULTS AND DISCUSSION
A. CNN PERFORMANCE AS A FUNCTION
OF SPATIAL RESOLUTION
The 25-m-long FUT was divided into 301 position chan-
nels for the 301 × 90 data set, and correspondingly, into
151 position channels for the 151× 90 data set to investigate
the relation between the mode’s performance and the spatial
resolution. The peak of a 0.2-m-long strained section trans-
lates to three activated position channels for the 301 × 90
data set, and to one activated position channel for the 151 ×
90 data set. Comparison between the BFS distributions of the
two data sets shows that for a 0.2-m-long strained section,
the CNNmodel predicts the BFS distributionmore accurately
for the 301 × 90 data set compared to the 151 × 90 data,
regardless of the magnitude of the applied strain. This is
evident in Fig. 4(a) and Fig. 4(b), which show the actual and
predicted BFS distributions when varying strains are applied
to a 0.2-m-long section centered at 18 m from the proximal
end of the FUT. Comparison between the MAE and MSA of
the strained section of the 151 × 90 data set and that of the
301 × 90 data set (Fig. 4(c) and Fig. 4(d), respectively) as
a function of the strain applied at 18 m from the proximal
end of the FUT also shows that both accuracy metrics of the
151× 90 data set can reach as much as five times that of the
301× 90 data set.
The shortest strained length achievable for the 301 ×

90 data set is 0.2 m, corresponding to three activated position
channels, for which the CNN was able to approximate the
main peak of the strained section with an MSA of not more
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FIGURE 5. Actual and predicted BFS distributions when 0.2-m-long (a) 0.15% and (b) 0.85% strains are applied at 0.2 m from the proximal end of
the FUT, and when 2.2-m-long (c) 0.15% and (d) 0.85% strains are applied at 0.2 m from the proximal end of the FUT.

FIGURE 6. Averaged (a) MAE and (b) MSA of the strained section as a function of the applied strain and strained length at various positions for the
301 × 90 data set.

than 27% for an applied strain of 0.20% at 18 m from the
proximal end of the FUT (Fig. 4(d)). Meanwhile, the MSA
of the 151 × 90 data set for the same strained length, corre-
sponding to one activated position channel, rendered as high
as 48% for an applied strain of 1.35% at 18 m from the
proximal end of the FUT, suggesting a correlation between
the regression accuracy and the number of activated position
channels. Note that the same CNN architecture was trained
for both data sets (301× 90 and 151× 90), and although the
parameters were initialized with a random normal initializer
for each training iteration and data set, the distribution of
initialization values was controlled by setting the mean to
zero and the standard deviation to 0.0—to reduce the effect
of weights initialization on the results. To further improve the
spatial resolution, a higher number of position channels may
be considered, at the expense of computation complexity and
cost.

The following discussion will be constrained to the same
training iteration of the 301× 90 data set, which is the focus
of our study.

B. CNN PERFORMANCE AS A FUNCTION
OF STRAINED LENGTH
Figures 5(a)–(d) show the actual and predicted BFS dis-
tributions when 0.15% and 0.85% strains are applied to
0.2-m- and 4.0-m-long sections centered at 0.2 m from the

proximal end of the FUT. In Fig. 5(a), the predicted trend is
noticeably distinct from the actual distribution, with the main
peak obscured by other peaks. Meanwhile, in Figs. 5(b–(d),
the predicted trends are in close agreement with the actual.
Even as the strain applied to Fig. 5(c) is similar to that
in Fig. 5(a), the former’s predicted BFS distribution better
approximates that of the actual, indicating the model’s abil-
ity to better approximate BFS distributions for low strains
applied to longer sections, compared to low strains applied to
shorter sections. This is also evident in Fig. 6(a) and Fig. 6(b)
where both the MAE and MSA decrease with an increase
in strained length for all strains. The boxplots of MAE and
MSA as a function of the strained length for 0.15% and 0.85%
strains, in Figs. 7(a)-(d), also show similar trends, implying
that the CNN performs better for longer strained lengths,
with the MSA reaching values below 10% at strained lengths
above a certain threshold (>1.8 m for 0.15% strain data set,
and >1.7 m for 0.85% strain data set).

As the data used in training the CNN was uniformly
distributed, the 0.2-m-long section data is only made up
of an extremely small proportion of the training data, with
a majority of the data being made up of longer sections
(>0.2-m-long sections). This could be one of the reasons
for the high MSA of the 0.2-m-long section data (Fig. 7(b)
and Fig. 7(d)). Only at relatively small strains (<0.20%) was
the predicted main peak not discernible; for higher strains
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FIGURE 7. Boxplot showing the MAE and MSA as functions of the strained length for a strain of (a)-(b) 0.15% and (c)-(d) 0.85%
applied to various positions along the length of the FUT.

applied to 0.2-m-long sections, the main peak was visible
but with a much lower amplitude, accounting for the high
MSA reported. Nevertheless, the CNN model was shown to
be capable of directly obtaining the BFS distribution from
the measured BGS distribution for strained sections as short
as 0.2 m, with the highest MAE and MSA reported to be
0.225 (arb. unit) and 33.1%, respectively, for the 0.2-m-long
strained section. This translates to a maximum RMSE of
329.8 µε between the peaks of the actual and approximated
BFS distributions. Comparatively, this RMSE is larger than
that reported by Wang et al. [26], whose deep neural network
(DNN)-assisted BOTDA for a 24 km large-effective area
fiber (LEAF) with a spatial resolution of 2 m accrued a
maximum RMSE of 132.2 µε. But do note that the RMSE
we reported herein only covers the strained section, which
inevitably produces a much higher RMSE than what would
have been derived if we calculated the RMSE of the full
FUT for which there are 301 samples instead of 3 to divide
the sum of the squares of the difference between the actual
and predicted values with, corresponding to the activated
position channels of the 0.2-m-long strained section data set.
Chang et al. [28] also proposed a CNN-assisted BOTDA for
BFS extraction, although there was no explicit mention of the
maximum error obtained. They did, however, indicate their
results in terms of normalized RMSE.

Increasing the proportion of the 0.2-m-long sections in the
training data, as well as the training iterations, is expected to
improve our CN’s performance in deriving the BFS distribu-
tion at shorter strained lengths.

C. CNN PERFORMANCE AS A FUNCTION OF STRAIN
Examination of the strain dependency of MAE in Fig. 6(a)
shows an increase in the accuracy metric with an increase
in the applied strain for shorter strained lengths. The MSA

(Fig. 6(b)) for shorter strained lengths, on the contrary, shows
a parabolic trend whereby relative maxima are obtained at the
lower and upper extremes of the applied strain. This is evident
in Fig. 8(b) where theMSA of the 0.2-m-long strained section
presents an initial decrease from a relative maximum at an
applied strain of 0.20% to a minimum at 0.50%, increasing
thereafter. At low strains applied to the 0.2-m-long section,
the peak of the predicted BFS distribution is obscured by
other peaks, as in Fig. 5(a). Meanwhile, a distinct main peak
is observable at higher strains, such as that shown in Fig. 5(c),
with the predicted BFS distribution more closely resembling
that of the actual. At higher strains, however, the difference
between the peaks of the actual and predicted BFS distribu-
tions become more significant, such that a higher MAE and
MSA is derived at strains beyond 0.50%.

Fig. 5(c) and 5(d) show the predicted and actual BFS
distributions when 0.15% and 0.85% strains are applied to
a 2.2-m-long section centered at 0.2 m from the proximal
end of the FUT. As shown, the predicted BFS distribution
for longer strained sections closely approximates that of
the actual, regardless of the magnitude of strain applied.
At longer strained sections, such as that of the 4.0-m-long
strained section, the MSA does not follow a specific trend,
although it is evident from Fig. 8(d) that both the MSA
and its variance are consistently and significantly lower than
that of the 0.2-m-long strained section in Fig. 8(b), and that
lower than 10% MSA can be achieved for strains above a
certain threshold (>0.30%). Do note that the MAE and MSA
presented in this paper only spans the strained section, and
that a lower MAE and MSA is expected if the whole length
of the FUT, e.g. 301 position channels, is considered.

Notably, the variance in both MAE and MSA for the
0.2-m-long strained section (Fig. 8(a) and Fig. 8(b), respec-
tively) is observed to increase with the applied strain; whereas
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FIGURE 8. Boxplot showing the MAE and MSA as functions of the strain applied to a (a)-(b) 0.2-m-long section and a (c)-(d) 4.0 m-long section
situated at various positions along the length of the FUT.

the variance in both MAE and MSA for the 4.0-m-long
strained section (Fig. 8(c) and Fig. 8(d), respectively) is
observed to decrease with the applied strain. A closer inspec-
tion of the MAE and MSA as functions of the applied strain
for both 0.2-m- and 4.0-m-long strained sections shows that
the MAE of the 0.2-m-long strained section can reach as
high as 10 times that of the 4.0 m-long strained section,
while the MSA of the former can reach as high as 5 times
that of the latter. This is indicative of the CN’s ability to
better estimate the actual BFS distribution at longer strained
lengths. Training the CNNwith a larger data set may improve
the model’s performance and reduce errors. We expect the
model can also be applied to real data; but to increase its
performance and reduce errors, the CNN will have to be
trained with a combination of simulated and real data, at the
expense of computation cost and training time.

VI. CONCLUSION
This paper provided some specific results of BOCDR assisted
by a deep learning technique. A CNN was successfully
trained and utilized in obtaining the BFS distribution from
the measured (convolved) BGS distribution in BOCDR.
We showed that the spatial resolution can be potentially
enhanced through this method by at least 5 times compared
to the nominal value calculated using the convolved BGS
distribution. Our method is also applicable to Brillouin opti-
cal correlation-domain analysis (BOCDA) [6], the measured
BGS distribution of which is given in the same manner as
in BOCDR. We expect the network to be useful in deriving
the BFS distributions from real measured BGS distributions,

though it may be necessary to train the CNN with both real
and simulated measured BGS distributions to improve the
mode’s performance and reduce the errors. We anticipate
that this work will motivate future studies focused on the
improvement of signal processing in BOCDR and BOCDA.
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