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ABSTRACT Owing to human labor shortages, the automation of labor-intensive manual waste-sorting
is needed. The goal of automating waste-sorting is to replace the human role of robust detection and
agile manipulation of waste items with robots. To achieve this, we propose three methods. First, we pro-
vide a combined manipulation method using graspless push-and-drop and pick-and-release manipulation.
Second, we provide a robotic system that can automatically collect object images to quickly train a deep
neural–network model. Third, we provide a method to mitigate the differences in the appearance of target
objects from two scenes: one for dataset collection and the other for waste sorting in a recycling factory.
If differences exist, the performance of a trained waste detector may decrease. We address differences in
illumination and background by applying object scaling, histogram matching with histogram equalization,
and background synthesis to the source target-object images. Via experiments in an indoor experimental
workplace for waste-sorting, we confirm that the proposed methods enable quick collection of the training
image sets for three classes of waste items (i.e., aluminum can, glass bottle, and plastic bottle) and detection
with higher performance than the methods that do not consider the differences. We also confirm that the
proposed method enables the robot quickly manipulate the objects.

INDEX TERMS Robotics and automation, robot vision systems, computer vision, recycling, machine
learning, object detection.

I. INTRODUCTION
In the context of long-standing human-labor shortages,
the automation of various tasks by robots is ever more in
demand. The automation of sorting container and packaging
waste is an urgent example, and several related studies have
been conducted worldwide [1]–[4]. Among the general waste
articles produced by society, container and packaging wastes
are dominant. Thus, many companies have been tackling this
issue [5], [6].

Normally, vast amounts of unsorted recyclable waste are
gathered at a collection site and manually sorted into des-
ignated boxes or transport lanes according to categories
(e.g., aluminum can, glass bottle, or plastic bottle). The goal
of automating this process is to replace the human role of
detection and manipulation of the waste items with robots.
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A key difficulty is agility, because conveyor transportation
speeds should be as high as possible, owing to the large vol-
umes of waste to be sorted. Another challenge is to robustly
detect short lifecycle objects that are dirty on the surface or
deformed and/or damaged.

With this in mind, we construct a robotic waste-sorting
system (see Fig. 1) with the robust detection and agile
manipulation needed for recycling factories. In this study,
to achieve agile waste-sorting manipulation, we first pro-
pose a combined manipulation method using graspless push-
and-drop and pick-and-release manipulation. Second, we
propose a robotic training dataset collection system to auto-
matically capture images and annotate them for training
a deep–learning (DL)-based waste detector. We attempt to
improve the robustness by applying a domain adaptation
method to the collected dataset.

DL-based object detectors [7]–[13] can infer the location
and category of objects having a variety of appearances
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FIGURE 1. Configuration of proposed automated waste-sorting system.

in images. However, massive training datasets [14]–[17] are
required, owing to the many parameters to be optimized [18].
With recent decreases in product lifecycles, unknown waste
items frequently appear at the sorting factories. Thus, wemust
quickly update the training dataset with newwaste images for
fine-tuning.

To quickly create an object-image dataset using our sys-
tem, a target object is placed on an automatic rotating stage
and imaged frommultiple viewpoints using a hand–eye robot
arm shown, as in Fig. 2. The robot arm and rotating stage
are automatically controlled while capturing images. Our
previously proposed automatic annotation method [19] using
augmented-reality (AR) marker detection [20] is applied
to captured images. To train the DL-based waste detector,
we place the collection-target object on the rotating table
for image capture. However, we do not have to manually
annotate the images. Using automatic annotation methods of
this nature, prior experiments have achieved a six-class object
detection [21].

FIGURE 2. Robotic training dataset collection system that facilitates
image capturing and automatically annotates labels and bounding boxes.

Although object images in the real-world can be easily
provided, they often appear differently from items found in
the working environment. Thus, detection performance can
decrease when collecting images without consideration for
adaptation methods.

The waste-sorting workplace exists in an indoor environ-
ment for this study. Thus, it can be fixed in terms of illumi-
nation and background. We propose methods to reduce the
differences easily and effectively for such conditions.

This study focuses on two domain differences in terms of
illumination and background between the dataset collection
environment in Fig. 2 and the waste-sorting environment
in Fig. 1. First, we adjust the object size in the image to
be as close as possible to the real one in the waste-sorting
scene. Subsequently, we apply histogram matching (HM)
to images using a red–green–blue (RGB) color space to
reduce illumination differences. Based on our qualitative
observations for RGB histograms of the object images cap-
tured in the waste-sorting environment, we apply histogram
smoothing for the collected images to further make the
RGB histogram resemble the destination images. Further-
more, to reduce the differences of background conditions,
we use background-synthesized and histogram-matched
images as the training images.

The contributions of this study are threefold.
1) In the proposed sorting manipulation method by push-

and-drop, the time required for the manipulation of one
object is about 1.9 s faster than pick-and-release.

2) The proposed robotic training dataset collection system
composed of a hand–eye robot arm, a rotating stage,
and visual markers enables agile object-image captur-
ing frommultiple viewpoints. The time required for the
proposed automatic collection is 12.3 s: 99.1% faster
than prior methods.

3) As a benefit of proposed object-image dataset adap-
tation method, we achieve improved waste-detection
accuracy. We further propose the addition of a
small real-world dataset captured in the waste-
sorting scene to the domain-adapted dataset. Train-
ing with this dataset achieves a detection accuracy
of 79%, which is 39% higher than using the origi-
nal one that lacks domain adaptation and real-world
images.

II. RELATED WORK
A. ROBOTIC WASTE SORTER
To achieve an agile robotic sorter for a huge volume of
waste, previous studies sorted items transported on a con-
veyor using suction grippers for quick grasping and manipu-
lation [6], [22]. Graspless [23], [24], prehensile pushing [25],
and non-prehensile manipulation [26], [27] methods, like
our push-and-drop technique, have not been applied thus
far. Therefore, the feasibility of push-and-drop has remained
untested until now, notwithstanding that such manipula-
tions using robotic hands are reasonable methods of agile
manipulation.

Conventional automatic sorting systems are based on
different types of sensors (e.g., optical [28]–[30] and
thermal techniques [31], [32]). Mao et al. [33] pro-
posed a classifier using a convolutional neural network
to classify an RGB object image that included one waste
item. Furthermore, DL-based algorithms using RGB and
RGB-depth (RGBD) sensors have been used to detect and
segment individual waste items from a densely cluttered
pile [6], [22], [34]–[36].
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B. GENERATING A TRAINING DATASET FOR A DL-BASED
DETECTOR
Deep convolutional neural networks can automatically dis-
cover the needed representations for object detection and
classification from large datasets in a manner similar to
that of the human visual cortex [37]. Although larger
datasets enable robust detection and classification of waste
items having diverse appearances, the construction of such
datasets demands an enormous amount of time and effort.
Binyan et al. [34] used 47,988 images of recyclable waste
on a conveyor for training and testing a deep neural–network
model. 3,999 images were originally collected, and addi-
tional ones were augmented via flipping and scaling the
collected images. Bai et al. [38] achieved garbage recog-
nition with small errors using training datasets comprising
40,000 training and 7,000 testing images grouped into six
classes: five garbage and one non-garbage. Zhihong et al. [39]
used 1,480 images only for the detection of a glass bottle
on a conveyor transporting various waste items. These are
distinguished from automatic collection methods like ours.

DL-based vision systems are fast and can detect vast cate-
gories of objects. However, as mentioned, the cost of manual
image annotation remains very high. To tackle this, twomajor
efforts to easily collect large datasets are under way. One
approach includes (1) data augmentation to enrich image
datasets for improving the generalizability of DLmodels, and
the other deals with (2) the simplification of labor-intensive
annotation processes to increase the number of datasets with
reduced human intervention. This study applies both types.

In the research of (1), Takahashi et al. [40] applied
random-image cropping and patching to improve classifi-
cation accuracy. Zhong et al. [41] applied random eras-
ing to reduce the risk of over-fitting and made the model
robust to occlusion. They randomly changed pixel inten-
sities within the selected region of an arbitrary size.
Cubuk et al. [42] proposed a method of automatically search-
ing for data augmentation policies directly from a dataset
(AutoAugment). Each policy expresses several choices and
orders of possible augmentation operations, wherein each
operation is an image–processing function (e.g., translation,
rotation, or color normalization). Lim et al. [43] proposed
FastAutoAugment, an improved policy extraction method that
is significantly faster than the original AutoAugment, which
requires thousands of graphical-processing-unit hours, even
for small datasets.

In the research of (2), to make human annotation eas-
ier, effective and easy-to-use annotation tools [44], [45]
were proposed. However, with these, humans still spent too
much time on annotation. For example, polygonal annota-
tions for instance segmentation were conducted via inter-
active image-region mouse clicks by human annotators.
Ling et al. [46] proposed a graph-convolutional network,
Curve-GCN, to automatically predict the vertices of instances
in the images. An annotator can choose any wrong control
points and move them onto the correct object boundary.
Only its immediate neighbors will be re-predicted based on

manual annotation. Benenson et al. [47] designed soft-
ware capable of correcting wrong annotations by clicking
on images. Based on the corrective clicks, the segmenta-
tion mask for the annotation was automatically updated.
These human-in-the-loop polygonal annotations take only a
few seconds for each image, but they also require corrective
clicks for the vertices, owing to the need for annotation
quality assurance.

Another interesting approach is the use of an RGBD
sensor [48] and visual markers [49], [50] to automatically
segment objects from the background. These approaches are
like ours. However, in the previous approaches, the automatic
collection of multi-view object images and their domain
adaptations were out-of-scope. Our robotic training dataset
collection system of multi-view images gives the dataset
variety and quantity and is useful when training the garbage
detector to handle various appearances. Image adaptation
methods of reducing the differences of domains are necessary
to enable faster image collection.

C. DOMAIN ADAPTATION FOR DL-BASED VISION SYSTEM
Despite the many ideas explored, the predominant datasets
were built by humans using bounding boxes or polygonal
masks [14]–[17]. Our proposed method can automatically
annotate object images without human intervention. Because
there are differences in object appearance between the dataset
collection environment shown in Fig. 2 and the waste-sorting
environment shown in Fig. 1, the collected dataset using the
robotic collection system could not be directly used to train
the waste detector.

Domain adaptation is a specific scenario in transfer learn-
ing that can be used to effectively remove domain differ-
ences. Domain adaptation has been shown to be effective for
the transfer learning of models in different computer vision
tasks, including image classification [51], object recogni-
tion [52], object detection for indoor kitchen scenes [53],
outdoor scenes [54], water-colors [55], and semantic
segmentation [56].

Georgakis et al. [53] tackled an issue like ours. To auto-
matically generate image datasets that emulate real envi-
ronments, they superimposed two-dimensional images of
textured object models into images of real indoor environ-
ments reflecting a variety of locations and scales. They
verified the efficacy of a seamless cloning (SC) method
to mitigate the effects of changes in illumination and con-
trast. They also verified an object–scaling method that used
the depth of the selected position of a real household
environment.

In this study, we tackle the issue of domain adaptation
for a collected waste-image dataset ourselves so that it can
be adapted to a real waste-sorting problem. For this reason,
we create a waste dataset using images of 33 aluminum cans,
33 glass bottles, and 33 plastic bottles.

We also strongly support the efficacy of domain adaptation
for the waste-sorting environment. In particular, we evaluate
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more methods to mitigate the changes of object-size appear-
ance, image illumination, contrast and background.

III. AUTOMATICALLY GENERATING TRAINING DATASET
This section first describes the proposed robotic training
dataset collection system using a small hand–eye robot
arm and an automatic rotating stage. Next, we explain the
methods for reducing the differences of the illumination
and the background. The object appearances differ between
dataset-collection and waste-sorting environments.

For domain adaptation, we consider how to match the
original domain of the generated training dataset to that of
the target domain of the waste-sorting environment.

A. MULTI-VIEWPOINT OBJECT IMAGE ACQUISITION
Fig. 2 shows our robotic training dataset collection system
that includes a small hand–eye robot arm and a controllable
rotating stage. Using the small hand–eye robot arm equipped
with an RGB camera, we collect images from multiple view-
points by moving the robot arm to capture a target object
placed on the automatic rotating stage.

An RGBD camera is used for both object-image dataset
collection and the robot vision capability of the proposed
robotic waste-sorting system, because we minimize the
effects of the camera in the detection experiments. Depth
information is not used to generate the training dataset, but
the same camera as the waste-sorting environment is. The
white balance and the exposure of the camera are fixed during
image dataset collection and robot experiments.

Fig. 3 shows the proposed dataset collection procedure
with its automatic annotation method [19]. Fig. 4 shows the
process for the object region extraction shown in Fig. 3.
To extract the region in consideration of the outline blur
caused by anti-aliasing, alpha matting is applied to the cap-
tured image. We used large–kernel matting, a fast method
for high quality matting [57]. We used a Python library
PyMatting [58] for alpha matting. Trimap is used for
alpha matting and is automatically generated by apply-
ing dilation processing to the image that the markers are
removed.

The generated approximate object mask is according to
the estimated object pose related to the camera. If coordinate
systems for the hand–eye camera, k-th visual marker, and the
object are 6c, 6vk , and 6o, the transformation,Mc

o, from 6c
to 6o shown in Fig. 2 is calculated as

Mc
o = Mc

vk (r
c
vk , θ

c
vk )M

vk
o , (1)

whereMc
vk ,M

c
o, andM

vk
o are transformations from6c to6vk ,

from 6c to 6o, and from 6vk to6o, respectively. The trans-
lation vector, rcvk , and the rotation vector, θcvk , are estimated
from the detected visual markers.

B. OBJECT IMAGE SCALING FOR CONSISTENCY OF
GEOMETRY
Object image scaling is applied to the collected images
to reduce the differences in appearance caused by the

FIGURE 3. Flow of the image dataset collection by the proposed robotic
training dataset collection system.

FIGURE 4. Extracted object region (bottom center) by applying AND
operation with the image after chromakey (bottom left) and the image
showing the approximated object (top center) in the estimated pose
based on marker detection, automatically generated trimap (top right),
and the generated alpha matte (bottom right) used for alpha matting.

varying distances between the camera and the object.
To accomplish this, the size of the object placed on the
automatic rotating stage is adjusted to be fitted to the size
of the object placed on the conveyor in the waste-sorting
scene.

As shown in Fig. 5, the visual markers on the marker board
in both images are detected. For geometric consistency of
the dataset images, the size of the object region in the image
is adjusted according to the scaling parameter, k , estimated
as (

x ′

y′

)
=

(
k 0
0 k

)(
x
y

)
, (2)

k =
dt
ds

, (3)

where ds and dt are the distances from the camera coordi-
nate system, 6c, to the marker board coordinate systems,
6s and 6t , of the source and target images.
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FIGURE 5. Illustration of calculating the scaling parameter, k , represen-
ting the distances from the camera to the center of the rotating stage
used for dataset collection and one point of the conveyor in the
waste-sorting scene.

C. COLOR MATCHING AND BACKGROUND SYNTHESIS
FOR CONSISTENCY OF ILLUMINATION
For the color matching proposed in this study, histograms of
pixel values in the RGB color space are calculated from an
object-area image captured in the waste-sorting environment,
and HM [59] is performed. The generated image has a distri-
bution similar to the illumination in the waste-sorting envi-
ronment. Thus, the difference in the illumination is reduced.

The cumulative distribution, cdfs(i) (i = 1, 2, .., l), of the
input image’s histogram, hs, is matched to the cumulative
distribution, cdft (i), of target image’s histogram, ht . Each
cumulative distribution function (CDF) is calculated as

cdfs(i) =
i∑

j=1

hs(j)
Ns

, cdft (i) =
i∑

j=1

ht (j)
Nt

, (4)

where l is the number of bins in the histogram, and Nt and
Ns are the number of pixels in each image.

To extract the boundary between the object and the back-
ground, using the automatically generated trimap, we apply
alpha blending [60] to the image at the time of image collec-
tion to combine it with the background image captured in the
waste-sorting environment. Then, we apply HM to the image
of only the area within the bounding box of the object.

Images used for applying HM to the image of the plastic
bottle are shown in Fig. 6. The leftmost image shows the
source image, the image to the right of the source image is
a target image as the destination, the image to the right of
the target image shows a result of the HM, and the right-
most image shows the image after EQ. We use Contrast
Limited Adaptive Histogram Equalization (CLAHE) [61] to
smooth jaggy histogram distributions by the EQ. Finally,
background-synthesized and histogram-matched images are
used to train the waste detector.

IV. AGILE HANDLING OF CONVEYED OBJECTS
A. TWO TYPES OF SORTING MANIPULATION
In this study, one sorting task is designated to move a
waste item from the conveyor to an adjacent recycling box.
Regarding the waste-sorting robot, quickness is required
alongside sorting accuracy. Therefore, two types of sorting

FIGURE 6. HM applied to a plastic bottle image. ‘‘Source’’ and ‘‘Target’’
indicate the input image and the image with the target histogram to
match. ‘‘Matched’’ and ‘‘Equalized’’ are the images after application of
HM and after application of the EQ of Matched, respectively.

manipulation are performed according to the desired waste
detection results.

As shown in Fig. 7, the two types are (1) manipulation by
picking and releasing and (2) manipulation by pushing and
dropping. A gripper with one degree of freedom can perform
these manipulations.

FIGURE 7. Illustration of key scenes in the two proposed types of
manipulation (i.e.,(a) pick-and-release and (b) push-and-drop) to sort the
waste (i.e., aluminum can, glass bottle, and plastic bottle) on a conveyor
belt.

Inmanipulation (1), the object is grasped by the five fingers
of the soft gripper so that the estimated point near the object
center (virtual CoM) becomes to the grasping center. The
gripper pose is adjusted to enable grasping along the straight
line on the estimated object silhouette passing through the
virtual CoM, which is illustrated in Fig. 7(a). Then, the robot
arm trajectory is planned and generated so that it approaches
the target object and departs from it in its fixed grasping pose.

In manipulation (2), the soft gripper pushes the object
around the virtual CoM using a straight-line trajectory and
drops the object into the target recycling bin (Fig. 7(b)). The
trajectory of a robot arm is generated to push the object in a
direction that connects the virtual CoM to the front center of
the recycling bin.

In contrast to pick-and-release, push-and-drop does not
require grasping. The average time in the 10 trials to finish the
push-and-drop operation was 3.3 s, although the time in the
case of the pick-and-release operation took 5.2 s. Thus, using
the push-and-drop operation as much as possible shortens the
combined manipulation time.

B. SELECTIVE EXECUTION AND IMPLEMENTATION
Algorithm 1 describes the entire algorithm used to select
a feasible manipulation from the two available types. The
algorithm is based on the following policy considering the
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time constraints of feasible manipulation to handle the waste
items conveyed.

1) We adapt a first-in-first-out strategy to determine
how to manipulate the frontmost waste item on the
conveyor.

2) Push-and-drop is primary performed if possible
because of its quickness.

3) If both types of manipulation are determined to be
infeasible based on the time constraints, the tar-
get waste item is ignored (shown as ‘‘continue’’ in
Algorithm 1).

The positions indicated by the parameters are drawn in
Fig. 8. We define the width and height of the object silhou-
ette in the image as sx and sy, respectively. We define the
x- and y-axial distances from the center of the target object’s
silhouette to the recycling bin’s center line as lbx and lby,
respectively. These are calculated from the object’s silhouette
mask image and the results of a detected marker attached to
the recycling bins. le is the x-axial distance from the object to
the image right end.
tpd and tpp are the time variables representing the times

required for push-and-drop and pick-and-release manipula-
tion, respectively. These are determined in preliminary exper-
iments to measure the manipulation time in all points on the
conveyor and the premeasured gripper open–close time.
vpd and vc are the speed variables for the push-and-drop

manipulation and transportation of conveyor. These are preset
parameters (i.e., the speed of the push-and-drop manipulation
and the transportation speed of the conveyor are constant for
the waste-sorting).

Here, we consider following three time constraints to select
the manipulation type in Algorithm 1.
1) The inequality, (sx/2)/vc > lby/vpd , holds in the cases

where target waste item is far from bins and too small
to push. This indicates that it is impossible to execute
the push-and-drop operation.

2) The inequality, tpp < le/vc, holds in the state that the
target waste item cannot be manipulated in the pick-
and-release manipulation time. This indicates that it is
too late to start the pick-and-release.

3) The inequality, tpd < lbx/vc, holds in the state that the
target waste item is conveyed to a position where the
robot cannot push it into the target bin. This indicates
that it is too late to start the push-and-drop.

Detected objects are assigned silhouettes extracted using
the input-depth image. Using the known distance from the
RGBD sensor to the conveyor, we create the silhouette mask
as the object regions on the conveyor that are closer to the
camera than the conveyor. The centroids of the silhouette
pixel areas are estimated for each object as the virtual CoM.

All parameters are estimated from RGB and depth images
of one frame to maintain fast computations for the waste
detector. The virtual CoM from the 2.5-dimensional RGBD
image reflect an ill-posed problem. We assume that an
object’s shape can be approximated as a solid revolution with
a uniformly distributed mass. The underlying assumption

FIGURE 8. Parameterization for the sorting manipulation selection
algorithm.

Algorithm 1 Sorting Manipulation Selection
Input: An image of one place on the conveyor
1: procedure SELECT-MANIPULATION-TYPE
2: Recognize waste items and markers in the image
3: Calculate sx and sy from the object silhouette mask
4: Calculate lbx , lby and le from the recognition results
5: if (sx/2)/vc > lby/vpd then
6: if tpp < le/vc then
7: continue
8: Execute pick-and-release on robot
9: continue
10: if tpd < lbx/vc then
11: continue
12: Execute push-and-drop on robot

enables us to estimate the virtual CoM using the object sil-
houette extracted from the RGB and depth image. The virtual
CoM is calculated as the centroid of a grayscale image.

Using the estimated common parameters, the unique
parameters (i.e., grasp position and pushing direction) are
calculated based on the methods mentioned in Section IV-A.
The arm motions for picking, releasing, pushing, and
dropping and their connecting trajectories are planned and
generated usingMoveIt! [62].

V. EXPERIMENTS
A. OUTLINE OF EXPERIMENTS
First, to evaluate the quickness of the proposed robotic train-
ing dataset collection system, we compare the collection time
by the proposed dataset generation with the collection time
by themanual dataset generation (Section V-C). Furthermore,
we show the accuracy of the annotation results (Section V-D).
Second, we show the similarity of the images applied

adaptation methods with those captured from the real scene
(Section V-E). To evaluate the performance of the waste
detector trained with the image dataset that applied the
proposed adaptation method having the highest similarity,
we show the detection results of the sorting-target waste item
by the detector (Section V-F).
Third, to evaluate the feasibility of the proposed manip-

ulation methods, we discuss the success rate of the sorting
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FIGURE 9. The waste samples of (a) aluminum cans; (b) glass bottles; and (c) plastic bottles used in the experiments.

manipulation and the average time required by each manip-
ulation method (i.e., pick-and-release and push-and-drop)
(Section V-G).

B. EXPERIMENTAL SETUP
As shown in Fig. 2, we used COBOTTA (DENSO WAVE
INCORPORATED) with RealSense D435 (Intel Inc.) as the
small hand–eye robot and usedOSMS-60YAW (SIGMAKOKI
CO.,LTD.) as the rotating stage. We used ArUco, an AR
library [63], [64] to detect AR markers for registering the
object pose of each object image collected using the proposed
robotic training dataset collection system. This object poses
were used to generate an approximate object mask. ArUco
was used to specify the positions of the recycling bins in the
waste-sorting experiments.

An evaluation experiment of the waste-sorting was per-
formed using the robotic waste-sorting system shown
in Fig. 1. In this paper, we experimented with the minimum
configuration of one camera and one manipulator.

We used a robot arm, LBR iiwa 14 R820 (KUKA), and
a soft gripper, SOFTmatics (Nitta Corporation), whose five
fingers were covered with a soft material to handle the many

sharp objects present in a recycling facility. We used an
RGBD camera employing active infrared stereo, the same
RealSense camera as the camera used in the dataset collec-
tion. The camera can measure depth information with high
sensitivity, even for translucent objects and those having
complex shapes and opacity, which are common in container
and packaging waste. The target waste samples contained
33 different aluminum cans, 33 glass bottles, and 33 plastic
bottles, as shown in Fig. 9. The target objects were sampled
from the waste samples in a recycling factory for industrial
waste items.

C. IMAGE DATASET COLLECTION TIME
To demonstrate the effectivity of the robotic training dataset
collection system compared with the collection methods pre-
viously proposed in [19], [21], this section describes the
results of the comparison of times needed to collect image
datasets.

Table 1 shows the average time needed to collect
100 images and the method (automatic or manual) for
three processes: object replacement, image acquisition, and
annotation.
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TABLE 1. Average time to collect 100 image datasets. Automatic or manual is shown next to the time measured.

FIGURE 10. Variations of viewpoints taken by the proposed robotic training dataset collection system. 6o shows the object coordinate system shown
in Fig. 2. Viewpoint IDs from 1 to 5 represent the five viewpoint patterns adjusted by changing the joint pose of the small robot arm.

In the first proposed method using a single marker [19],
an object with a marker attached directly was actually used
in a real-work environment. In this method, humans manually
change the object types and the poses of the objects. There-
fore, it took a relatively long time of 900 seconds. In addi-
tion, the annotation was automatically performed by image
processing after all the image capturing was completed.
As the result, it was 444 seconds for 100 images. In the
extended method using multiple markers [21], object replace-
ment and image acquisition were performed manually as in
the single marker method. Combined with the time required
for these manual operations and the time required for auto-
matic annotation that was being processed in parallel, it took
the longest time of 5232 seconds.

The proposed dataset collection was completed in 12.3 s
on average for 100 images. The results indicate that the time
required for collecting the training set was incredibly short-
ened compared with the other methods. The viewpoints taken
by the proposed robotic training dataset collection system are
widely scattered as shown in Fig. 10, suggesting that a dataset
having large variations can be collected in a short period.

The total time required to collect the training set compris-
ing 59,400 (120 object-orientation patterns × 5 viewpoint
patterns × 99 objects) images captured with a green screen
was about 111 min. Such a short collection time enables us
to easily increase the number of training sets when the target
waste increases or changes.

FIGURE 11. Visualization of manual annotations needed to generate
ground truth to evaluate the proposed automatic object region extraction.
Left image shows the window of the annotation tool (labelme) and
several annotated image points. Right image shows the parameterization
of the evaluation results of the automatic object region extraction.

D. QUANTITATIVE EVALUATION OF ANNOTATIONS
To evaluate the annotation results, the automatically
object-extracted image is compared with the manually anno-
tated image, as shown in Fig. 11. Using a manual annotation
tool named labelme1 and by clicking several points on the
object contour in images, the images are annotated by humans
for evaluation.

Based on true-positive (TP), false-positive (FP), and
false-negative (FN) results, as shown in Fig. 11, we calcu-
lated the intersection over union (IoU), precision, recall, and

1https://github.com/wkentaro/labelme
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F-score [65] as

IoU =
TP

TP+ FP+ FN
, (5)

F-score =
2× Precision× Recall
Precision+ Recall

, (6)

Precision =
TP

TP+ FP
, (7)

Recall =
TP

TP+ FN
. (8)

Table 2 shows the results of the object region extraction in
the training set.

TABLE 2. Results of our object region extraction in our automatic dataset
generation. Each element shows mean±standard deviation of IoU [%],
Precision [%], Recall [%], and F-score [%]. The mean values are
calculated from randomly selected 33 images of each object
category in the three categories.

In all trials and categories, the mean values of precision
rated around 70%. The mean values of recall were rated
higher than 95% and with smaller standard deviations than
those of precision. These results suggest that there were some
false predictions. However, there were few missed pixels in
the ground truth. As a result, the calculation provides a low
IoU with a mean of F-score of 80%.

E. EFFECT OF REDUCING DIFFERENCES FROM
WASTE-SORTING SCENE
In this section, we discuss the effect of the proposed method
of reducing the differences from the waste-sorting scene.
To evaluate the performance of the proposed color adjust-
ment, we compare it with two other methods.

The first unifies color reproducibility by applying
color correction (CC) using ColorChecker Passport Photo
(X-Rite, Inc.), which has a panel of 24 industry-standard
color-reference chips. The CC in this study is based on a
color-transfer method that can adjust the colors in an image to
match a target-image color profile [66]. The goal is to create
a transform so that, when it is applied to the values of every
pixel in a source image (the left of Fig. 14), it returns values
mapped to a target image (the right of Fig. 14) profile [67].
The other is an easy-to-use image-rendering SC

method [68] used in the fields of computer graphics [69]
and computer vision [70]–[72]. SC was once used to create
a photomontage by pasting an image region onto a new
background using Poisson image editing [68]. Fig. 12 shows
the results of CC, SC, and HM. The parameters needed in the
methods described in this section are organized in the Table 3.

Fig. 13 shows histograms in the RGB color space of
the images in Fig. 6. The histogram distributions in the

FIGURE 12. Comparison of appearances of synthesized images:
(a) synthesized images with CC applied; (b) SC applied;
and (c) HM applied.

TABLE 3. Necessary images for adaptation methods.

RGB color space of the target image (Target) and the
converted image (Matched) are visually similar after
applying HM.

To conduct a quantitative evaluation, the distance between
two histogram distributions were evaluated using earth–
mover’s distance (EMD) [73] and Bhattacharyya distance
(BD) [74].

To evaluate the image similarity with the object image
captured in the real scene, we calculated the histogram dis-
tributions of the four types, which include the original, BS,
BS+CC, SC, and BS+HM.

The effects of the proposed method, BS+HM+EQ, were
compared to those of BS+HM, HM, and BS, which are
derivatives of the proposed method. We also compared the
comparative methods BS+CC and SC as other color adjust-
ment methods.

The calculated values of the EMD and BD in the
RGB color space are shown in Table 4 and Table 5.
To compare the images to the object images captured in the
real scene, we used those cropped by the bounding boxes as
shown in Fig. 12 in red boxes.

The result of the CC shows that the EMD and BD are
larger compared with the result of HM. In the case of the CC,
the homography transformation matrix in the RGB color
space must be calculated using source and target images,
including the color checker shown in Fig. 14. On the other
hand, because the source shown in Fig. 6 is converted to
become similar to the target shown in Fig. 6, for HM, a higher
similarity was achieved.

The calculated values of the EMD and BD suggests that
the similarity of the image was largely improved by applying
HM, including the area translucent to the back of the object
or the plastic bottle’s cap. This is because the appearance as
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FIGURE 13. RGB histograms and CDFs of the image applied with HM. The graphs are histograms of the RGB color space of the four images
on Fig. 6. The title names correspond to the names displayed in each image shown in Fig. 6.

TABLE 4. Calculated values of EMD between the reference image
(captured in the real scene) and processed images in the training sets.
The histogram comparison was conducted in the RGB color space. The
values that indicate the highest similarity are shown in bold.

improved to approximate the target image. It also suggests
that the BS+HM+EQ provided the highest similarity.

F. DETECTION ACCURACY
Table 6 shows mean values of detection accuracy for the three
target-object categories. As an accuracymetric, we calculated
the mean F-score when the IoU threshold was set to 0.5.
We also calculated the F-score using detection results with
a confidence value higher than 0.5. Using a training dataset
automatically generated by the proposed method, detection
was performed using a waste detector with a trained model

TABLE 5. Calculated values of BD between the reference image (captured
in the real scene) and processed images in the training sets. The
histogram comparison was conducted in the RGB color space.
The values that indicate the highest similarity are shown in bold.

FIGURE 14. Images used for estimating the color homography
transformation matrix for CC.

of the single shot multibox detector (SSD) [9]. SSD is a
general object detector with a convolutional neural–network
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FIGURE 15. (a) image captured in the waste-sorting scene and (b) the image drawn from the detection results of the waste detector.

TABLE 6. F-scores of waste category detection using DL-based waste
detector trained using each training set [%]. Mean indicates the mean
values of F-score in the three object categories.

architecture that learns different anchor boxes. Fig. 15 shows
the detection results.

The original shows the result of using 59,400 (120 object-
orientation patterns × 5 viewpoint patterns × 99 objects)
images captured with a green screen shown in Fig. 2. BS,
BS+CC, SC, BS+HM, and BS+HM+EQ show image train-
ing sets subjected to BS only, BS and CC, SC, BS and HM;
and BS+HMwith EQ, respectively. Mixed show the training
set that we randomly collected images from the three sets of
Original, BS, and BS+HM+EQ. All the training sets include
59,400 images.

The last set (Real with 7) is a mixed training set that
includes the Mixed and 80 images recorded in the real scene,
as shown in Fig. 16. The conveyor moves at a constant speed
in one direction. Thus, if the image acquisition frequencies
of the camera are aligned, the object positions in the images

can be shifted at a constant interval. Therefore, if we apply
manual annotation to only the images of the first frames
appearing in the video, we can obtain the image sequence
annotated by moving the bounding boxes. We collected the
80 images from two videos in the waste-sorting scene in
this manner. To improve the quickness of video annotation,
in a future work, we plan to use automatic video annotation
methods [75], [76].

The detection results shown in Table 6 suggest that Mixed
provided the highest accuracy of training without images
recorded in the waste-sorting environment in the training
sets except Real with 7. Therefore, our experimental results
demonstrate that the accuracy of the waste detector can be
improved by applying the aforementioned object scaling,
HM with EQ and BS to reduce the differences from the
waste-sorting environment. Surprisingly, the detector with
the BS-only dataset showed the almost same accuracy as
did Mixed. The comparison for these detection accuracies
should be done in the future using the backgrounds of various
waste-sorting environments.

By adding the small real-world image dataset including the
80 images, we achieved the highest accuracies of detection,
even when the number of items in the dataset was small.
The small real-world image dataset not only significantly
outperformed the other in terms of accuracy, but the images
were also quickly collected. The time needed to capture a
video was about 1 min, and the time needed to annotate only
six objects in the six images was about 2 min. This was about
3 min total.

G. FEASIBILITY OF ROBOTIC WASTE SORTER
Fig. 17 shows the process by the sorting robot. In this
study, the virtual CoM was calculated as the centroid of the
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FIGURE 16. Real-world image sequences annotated by humans. *Manual indicates manually annotated bounding boxes. We conducted manual
annotation to the video frame in which a new object first appeared. The other images were automatically annotated based on the constant speed of the
conveyor and the camera framerate.

FIGURE 17. Two types of manipulation implemented to a waste-sorting robot.

object silhouette extracted from the depth image when the
object was viewed from directly above (red dots shown in
Fig. 15(b)). The grasp positions during pick-and-release were
determined as a straight line on the object silhouette passing
through the center of mass perpendicular to the principal axis,
as drawn by the red arrows in Fig. 15(b).
While sorting manipulation of the waste items by a robot,

we evaluatedwhether the robot succeeded in sorting thewaste
detected on the conveyor. The success rates of 10 trials of
each sorting manipulation for each object category are shown
in Table 7. The results indicate that the pick-and-release
operation provided a highly accurate sorting manipulation
compared with push-and-drop. The average time taken in the
10 trials to finish the push-and-drop operation was 3.3 s,
although the time in the case of the pick-and-release

TABLE 7. Results of the sorting manipulation. Each element shows
success rate [%] in each 10 trials.

operation took 5.2 s. Our algorithm reduced the time
required for manipulation by simplifying the manipulation
process.

VOLUME 9, 2021 124627



T. Kiyokawa et al.: Robotic Waste Sorter With Agile Manipulation and Quickly Trainable Detector

As examples of failures in the pick-and-release, we con-
firmed cases where a large object did not fit in the grasping
area, cases where the grasping failed due to an error of the
estimated virtual CoM, and cases where the released object
by placing motion did reach the target bin.

First, we must consider another grasping method based
on the gripper’s grasping area and target object size. In the
case of container and packaging waste, there are many large
slender objects. Thus, we need another grasping method in
which the thinnest part can be sandwiched between two of
the five fingers. Second, we require object segmentation [77],
[78] or foreground extraction [79]–[81] methods that use
color information, because the silhouette sometimes cannot
be generated, owing object–region extraction errors by the
depth image. Third, the target garbage item was not put into
the target bin, because the acceleration of the robot arm sent
it flying over top. We should not slow the robot arm motion
even for this case, owing to the low agility of manipula-
tion. We instead require a particular a release motion by a
robot arm that accounts for acceleration. The pick-and-place
for dynamic objects [82] could also achieve highly accurate
sorting.

As an example of failures in the push-and-drop, we first
confirmed cases where the gripper’s fingers could not make
good contact with the sides of the target objects. To ensure
reliable contact for pushing, we must consider the waste-item
shape and the orientation of the gripper.

Second, we confirmed a case in which the target object
overshot the bin and another where the target object was too
heavy to exit the conveyor. There was also a case in which the
target object only rotated after pushing. Therefore, we need to
generate a pushing motion based on the target object weight
and shape [83].

VI. DISCUSSION ON FUTURE ISSUES
A. ENSURING HIGH CONSISTENCIES OF ILLUMINATION
AND GEOMETRY
The purpose of this study, apart from reducing the time
required for dataset collection, was to achieve a highly accu-
rate detector. Within this context, for the consistency of
illumination, we proposed a method that matches only the
luminance distribution information of the image without con-
sidering a camera-response function [84] and the distribution
of the light source [85], [86] in the different environments.
In reality, these optical models must be considered when
obtaining more realistic images that are similar to real-world
ones. However, estimation methods requiring less labor are
needed.

In terms of geometric consistency, in this study, only
the distance from the camera to the object was considered.
However, a 3D model is needed to transform the geometry
more precisely. One idea for generating realistic images via
a 3D model requires free viewpoint image synthesis
based on 3D shape reconstruction methods, such as Space
carving [87], and a geometric registration and an alignment
using an RGBD video [88].

B. PRECISE ANNOTATION
Fig. 18 shows the four cases that had difficulty annotating col-
lected images, especially for cases of difficult object-region
extraction. The problematic images shown in Fig. 18 include
an object adhered to foreign substances, a semi-transparent
object, a shadow under the object, and a green object.

FIGURE 18. Problematic images difficult to annotate. The coloring in each
left image is the same as that of Fig. 11.

The foreign substances shown in Fig. 18(a) needs to be
removed from the target object, because the waste detec-
tor is not designed to recognize this part. Consequently,
the waste-sorting robot cannot grasp and push the part.
Fig. 18(b) shows a misannotated semi-transparent object.
For the automatic annotation, we could in the future use
another method that does not rely exclusively on optical
information. As shown in Fig. 18(c), because it may be dif-
ficult to distinguish a boundary from a shadow, object region
extraction may fail. In a future work, it will be necessary
to improve the algorithm so that it is robust to shading by
referring to illumination estimation methods [89], [90] and
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DL-based shadow detection and removal methods [91], [92].
To avoid difficulty of region extraction caused by similar
colors, as shown in Fig. 18(d), background coloring should
be considered.

VII. CONCLUSION
In this study, to achieve an agile waste-sorting method,
we first proposed two types of manipulation and a selection
algorithm based on time constraints of the conveyed waste.

Second, to reduce the time required for capturing object
images and annotations, we developed a robotic training
dataset collection system using a small hand–eye robot and
a rotating stage.

Third, to fill the gap between the generated image set and
the one captured from a waste-sorting scene, we provided an
image adaptation method.

In our experiment, we successfully automatically
generated a training set using the proposed robotic
training dataset collection system. To train the waste detec-
tor, we applied the proposed adaptation method, including
histogrammatchingwith histogram equalization, background
synthesis, and object scaling of the collected dataset. Finally,
the waste detector performed waste detection, and the
robotic waste-sorting system successfully performed pick-
and-release and push-and-drop in a real work environment.

The dataset collection time was reduced to at least 1% or
less of the previously proposed automatic dataset collection
method. We verified that the waste detector could detect
target waste items (i.e., aluminum cans, glass bottles, and
plastic bottles) in a waste-sorting environment. As a result,
the mean F-score for all objects was about 46%, and the
accuracy was higher than the method lacking adaptation
methods. We achieved a highly accurate detector trained with
the training set, including the proposed dataset and a small
dataset captured in a real scene. Themean value of the F-score
in the three object categories was about 79%.

The robot successfully demonstrated the two types of
manipulation at a success rate greater than 61%. The push-
and-drop of the graspless manipulation more quickly per-
formed the sorting manipulation for one object than did the
pick-and-release method by 1.9 s. The average time taken in
the 10 trials to finish the push-and-drop operation was 3.3 s,
although the time in the case of the pick-and-release operation
took 5.2 s.

As our future works, we consider other system config-
urations: the one system using multiple cameras to more
accurately detect the waste items and the one system using
other flexible endeffectors like brush-shaped gripper to more
robustly manipulate the irregular-shaped waste items.
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