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ABSTRACT Parameter estimation of photovoltaic modules is an essential step to observe, analyze, and
optimize the performance of solar power systems. An efficient optimization approach is needed to obtain
the finest value of unknown parameters. Herewith, this article proposes a novel opposition-based tunicate
swarm algorithm for parameter estimation. The proposed algorithm is developed based on the exploration
and exploitation components of the tunicate swarm algorithm. The opposition-based learning mechanism is
employed to improve the diversification of the search space to provide a precise solution. The parameters
of three types of photovoltaic modules (two polycrystalline and one monocrystalline) are estimated using
the proposed algorithm. The estimated parameters show good agreement with the measured data for three
modules at different irradiance levels. Performance of the developed opposition-based tunicate swarm
algorithm is compared with other predefined algorithms in terms of robustness, statistical, and convergence
analysis. The root mean square error values are minimum (6.83 × 10−4, 2.06 × 10−4, and 4.48 × 10−6)
compared to the tunicate swarm algorithm and other predefined algorithms. Proposed algorithm decreases
the function cost by 30.11%, 97.65%, and 99.80% for the SS2018 module, SolarexMSX-60 module, and
Leibold solar module, respectively, as compared to the basic tunicate swarm algorithm. The statistical
results and convergence speed depicts the outstanding performance of the anticipated approach. Furthermore,
the Friedman ranking tests confirm the competence and reliability of the developed approach.

INDEX TERMS Machine learning, parameter extraction, photovoltaic cells, metaheuristics, tunicate swarm
algorithm, opposition-based learning.

I. INTRODUCTION
In recent days, the availability of clean and sustainable
energy is an important technical and scientific challenge for
human society. These challenges spark the interest to develop
renewable energy sources, e.g., solar, wind, geothermal, tidal,
hydro energy, etc. [1]. Solar energy is an increasingly trendy
way to supplement energy usage as it is the clean, amplest,
and freely accessible energy source [2]. Thus, the global
solar electricity market is rapidly growing and is projected
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to reach $194 billion by 2027 [3]. The photovoltaic (PV)
systems are employed to convert solar energy into electric
energy. The importance of PV systems is estimated as a major
stimulating topic by scientists/researchers and companies
to progress their energy adaption and reduce the price [4].
Furthermore, the production firms require assurance of the
maximum power production from PV power plants.

It is well known fact that the energy generation from
PV power systems strongly depends on weather conditions,
solar irradiance, and temperature [5]–[7]. Besides, these
systems unavoidably undergo degradation along with the
possible occurrence of electrical faults [8]. The effective
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modeling of the PV cells is needed to control and predict
the performance of the solar systems at different working
conditions. However, the modeling and parameter assessment
of PV cells is a crucial task. The nonlinear dimensions
and sporadic of meteorologic static make cell constraints
difficult to identify [9]. Several models were developed
based on the physical process and associated variables of
PV cells. For example, single-diode, double-diode, and
triple-diode models have successfully represented the PV
systems’ behavior single diode model (SDM) is majorly
used to approximate equivalent circuit parameters because
of ease and acceptance. The double diode model (DDM) is
highly accurate for lower solar irradiance than SDM, but
it consumes a longer time. The assessment of equivalent
circuit parameters helps to determine the accuracy and
dependability of the models. However, the model parameters
are not accessible due to unbalanced operational cases
like faults and aging. Therefore, the development of an
active methodology to accurately extract these parameters
turn out to be critical. The evolutionary algorithms were
proposed to achieve more accurate and precise parameters
from nonlinear implicit equations [10]. The bio-related
algorithms are more accurate and powerful optimization
algorithms to simplify nonlinear transcendental equations,
as it does not include complex mathematics [12], [26], [27].
Previously, several algorithms have been utilized to enhance
the parameter estimation accuracy for PV systems. These
algorithms can be divided into two groups, deterministic and
heuristic [11]. Both groups of algorithms have merits and
demerits depending on the function. Deterministic algorithms
include least squares [12], Lambert W-functions [13], and
the iterative curve fitting methods. These algorithms impose
several model restrictions as they are sensitive to the initial
solution and generally converge at local optima. Heuristic
methods are represented by particle swarm optimization
(PSO) [14], chaos particle swarm optimization (CPSO)
[15], harmony search (HS) [16], cuckoo search algorithm
(CSA) [17], artificial bee colony (ABC) [18], cat swarm
optimization (CSO) [19], modified generalized opposition
based teaching learning based optimization (GOTLBO) [20],
differential evolution (DE) [21], improved adaptive differen-
tial evolution (IADE) [22], genetic algorithms (GA) [23],
simulated annealing (SA) [24], biogeography based opti-
mization algorithm with mutation strategies (BBO-M) [25],
Nelder-mead modified particle swarm optimization
(NM-MPSO) [26], and pattern search (PS) [27]. Enhanced
leader particle swarm optimization (ELPSO) is proposed [28]
to avoid the premature convergence problem existing in basic
version of PSO. Where five-staged mutation techniques are
employed for generating the best leader in solution space.
Simulation results depict that ELPPSO performed very well
for solar cell, monocrystalline and thin film PV modules.
Although the same author proposed another enhanced
version of PSO as time varying acceleration coefficients
particle swarm optimization (TVACPSO) [29] to solve the
problem of local minimum occurring in standard version

of PSO. Table 6 shows the comprehensive review of meta-
heuristic algorithms for parameter extraction of PV models
(Appendix A). Comprehensive learning PSO algorithms
were developed to identify the parameters of the dynamic
models based on different experimental datasets [30], [31].
In the proposed marine predators algorithm (EMPA),
the differential evolution operator (DE) is incorporated
into the original marine predators algorithm (MPA) to
achieve stable, and reliable performance while handling
that nonlinear optimization problem of PV modeling [31].
The guaranteed convergence PSO (GCPSO) algorithm are
proposed to estimate PV parameters of single and double-
diode models on experimental data measured at different
irradiance levels [32]. Kiani et al. proposed an exponential
function-based dynamic inertia weight (DEDIW) strategy
for the optimal parameter estimation of the PV cell and
module that ensures a proper balance between exploitation
and exploration stage to solve the premature convergence
issue of conventional particle swarm optimization (PSO)
algorithm [33]. A combination of Newton-Raphson method
and heuristics algorithms for parameter estimation in
photovoltaic modules was studied in detail [34], [35].

In a very recent work, Kaur et al. proposed a bio-inspired
metaheuristic optimization algorithm named tunicate swarm
algorithm (TSA) [36]. It is demonstrated that the TSA can
solve real case studies having unknown search spaces. It is
also proposed that the TSA generates better optimal solutions
than that of other competitive algorithms. However, the TSA
endures some limitations, such as being slow to converge,
being trapped at local optima, and longer computational
time. The TSA consists these limitations because certain
solutions are modified toward the best solution, while some
solutions are not updated toward the best solution. It is
possible to overcome these limitations by considering the
opposite direction. The opposition-based learning (OBL)
mechanism has received the most attention recently and is
used to increase the efficiency of metaheuristic algorithms.
It is interesting to note here that the OBL mechanism can
search in the reverse direction to the current solution, which
led to metaheuristic algorithms being searched throughout
the search space. Therefore, the OBL-based technique can be
integrated with the basic TSA for managing a good trade-off
between exploration and exploitation.

To the best of our knowledge, the opposition based tunicate
swarm algorithm (OTSA) has not been implemented yet
for the parameter extraction of the solar cell. The no-free-
lunch (NFL) theoremmotivates us to design new optimization
algorithms or to improve previously studied algorithms. It is
widely known fact that the optimization algorithms cannot
solve every problem because of diverse complexity and
nature of different problems. Hence, it is needed to maintain
good balance between exploration and exploitation of a
search space.

This manuscript proposes an enhanced opposition based
tunicate swarm algorithm (OTSA) for parameter estimation
of PV panels. The exploration behavior of elementary TSA is
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FIGURE 1. Equivalent circuit model of the photovoltaic panel.

enhanced to provide a good trade-off between exploration and
exploitation capabilities. Section 2 represents the problem
formulation followed by a mathematical model for solar PV
cell/module. Section 3 represents the OTSA implementation
to estimate the unknown optimized parameters. In section 4,
theOTSA simulation results are discussed and comparedwith
pre-existing metaheuristic algorithms. Finally, section 5 pro-
vides a conclusive remark to summarize the paper.

II. PROBLEM FORMULATION
The parallel circuits are formulated using single-diode and
double-diode models in a photovoltaic solar cell. Therefore,
the correlation between current and voltage is represented
using equivalent circuit models.

A. EQUIVALENT CIRCUIT MODEL
Figure 1 illustrates the equivalent circuit model of the PV
panel. The relation between current and voltage at the output
terminal are expressed as:

Il
/
Np = Ip − ISD

[
exp

(
q
(
Vl/Ns + RsIl/Np

)
a1kBT

)
− 1

]
−
Vl/Ns + RsIl/Np

Rsh
(1)

where Ns and Np represent the number of solar cells
connected in series and parallel, respectively. Only five
parameters (Ip, ISD, a,Rs and Rsh) are needed to evaluate
the minimum value of root mean square error (RMSE), the
summation of absolute error (SAE), and mean absolute error
(MAE).

B. OBJECTIVE FUNCTION
In this work, the key deliverables are to optimize unknown
specifications for a single-diode model (SDM) to reduce

the error between experimental and estimated data. During
optimization, unknown parameters (Ip, ISD, a,Rs,Rsh) are
used as a decision variable, while the cumulative squared
error between simulated and measured data is used as an
objective function. Furthermore, the proposed algorithm is
validated by calculating the SAE and MAE. The objective
function for error is expressed as [3], [4]:

RMSE =

√√√√1
k

k∑
N=1

f (Vl, Il,X )2 (2)

SAE =
k∑

N=1

|Imeasured − Iestimated | (3)

MAE =
1
k

k∑
N=1

|Imeasured − Iestimated | (4)

where Vl and Il are the measured voltage and current of the
PV module, respectively. The parameter ‘k’ is the number
of experimental datasets. The best solution found by TSA
is represented by a vector X . For the PV panel module
model (5), as shown at the bottom of the page.

III. PROPOSED ALGORITHM
A. TUNICATE SWARM ALGORITHM
The TSA is a bio-inspired based metaheuristic algorithm
for global optimization [36]. Tunicates can be noticed over
many meters away as bright bio-luminescent and produce a
pale blue-green light. Tunicates are shaped in one end closed
cylinder and have a size of few millimeters. The presence
of gelatinous tunic in each tunicate helps to combine all
individual tunicates. Nevertheless, every individual tunicate
takes water from the surrounding and thrusts as jet propulsion
through open end atrial siphons. The jet propulsion actions of
tunicates can be understood using the mathematical model
and the following conditions: prevent collisions between
candidate solutions, step more toward the location of the best
solution, and stick close to the best solution.

1) REVENT COLLISIONS BETWEEN CANDIDATE SOLUTIONS
Initialize the parameters EA (constant), gravity force ( EG), water
flow advection in the deep ocean (EF), social force ( EM ) and the
maximum number of iterations:

EA =
EG
EM

(6)

EG = c2 + c3 − EF (7)
EF = 2× c1 (8)

M = bPmin + c1 × Pmax − Pminc (9)

 fmodule (Vl, Il,X) = NpIp − NpISD

exp
q

(
Vl
Ns
+

RsIl
Np

)
akBT

− 1

− VlNp
Ns
+ RsIl

Rsh
− Il(

X = Ip, ISD, a,Rs,Rsh
)

 (5)
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where, c1, c2, c3 are random number in the range [0, 1], Pmin
and Pmax are considered as 1 and 4.

2) STEP MORE TOWARD THE LOCATION OF THE BEST
SOLUTION
The search agents are moved in the direction of the
finest neighbors after successfully preventing a conflict with
neighbors:

EPD =
∣∣∣ EFS − rand ∗ EPp(x)∣∣∣ (10)

where, EPD is the total distance between the search agent and
food source, rand is the random number in the range [0, 1],
x indicates the current iteration, EFS indicates the position of
the food source, EPp(x) is the position of tunicates.

3) STICK CLOSE TO THE BEST SOLUTION
The search agent could even establish its position as the
leading search agent.

EPp (x) =

{
EFS + EA ∗ EPD, if rand ≥ 0.5
EFS − EA ∗ EPD, if rand< 0.5

(11)

The position of all the tunicates is updated with respect to
the position of the first two tunicates as follows:

EPp (x + 1) =
EPp (x)+ EPp(x+1)

2+ c1
(12)

where, EPp (x + 1) represents the updated position of
tunicates.

B. OPPOSITION BASED LEARNING METHOD
The OBL method was first developed in 2005 [37]. This
approach has been further introduced in [38] and shown
to be a successful method of making the search patterns
of meta-heuristics more real. This approach stems from the
simultaneous estimate of the opposite pairs of the base agents
to improve the likelihood of meeting a matching agent. The
contrary of a real number N ∈ [jL , jU ] can be provided by EN
as follows:

EN = jL + jU − N (13)

where jL and jU are known as the lower and upper bound
of a real number. While in multi-dimensional space, N can
be expressed as Nk = {Nk1,Nk2,Nk3, . . . . . . .,Nkt } and
Nkt ∈ [jLt , jUt ], where t = 1, 2, 3, 4, . . . . . . ,n and the
corresponding opposite points are as follows:

N̄ =
{
N̄k1,, N̄k2, N̄k3, . . .N̄kt

}
N̄kt = jLt + jUt − Nkt (14)

During the optimization process, opposite points N̄ are
replaced by the corresponding solution N based on the
best fitness value. In other words, the position of the
population is updated based on the finest values of N̄ and N .
Figure 2 illustrates the complete process of the opposition-
based learning mechanism.

FIGURE 2. Illustration of opposition-based learning mechanism.

C. PROPOSED OPPOSITION-BASED TSA ALGORITHM
This section describes the proposed opposition-based TSA
(OTSA) algorithm. The OBL mechanism is employed to
enhance the performance of traditional TSA. The OTSA can
also integrate the search capabilities of the classic TSA with
OBL to maximize the exploration of solution space. The
integration of OBL does not influence the basic functionality
of TSA, and the precision of the optimal solution is enhanced.
In this manner, OTSA can limit the number of the initial
population, which improves the convergence to the optimal
solution since it’s exploring the solution space for an
optimization problem.

Let us consider that a problem requires a population
of 200 initial solutions. The OTSA can initialize 100 solu-
tions in the specified order and compute their respective
opposite solutions by utilizing the OBL principle. Only
the top 100 solutions are identified in an iterative process
before ranking them. However, the population setting in
OTSA may also influence the occurrence of call functions
needed throughout the optimization procedure. The compu-
tational effort generally depends on the implementation and
evaluation of an optimization problem. This fact directly
corresponds to the no-free-lunch (NFL) theorem [40], which
specifies that the algorithms cannot be enhanced without any
cost. However, the NFL has also noted that some algorithms
are not suitable for solving all types of optimization problems.
This is the primary motivation for the development of the
proposed OTSA.

The proposed methodology enhances the basic version of
TSA via two phases. In the first phase, the OBL mechanism
is implemented to initialize the population to reduce the
convergence rate and avoids the optimal local solution
by searching for solutions in the entire search domain.
In the second step, the population solution is updated, and
the OBL mechanism is also used to check whether the
opposite direction update is better than the existing update.
The complete process flow of the proposed OTSA is shown
in Figure 3.
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FIGURE 3. Process flow diagram of proposed OTSA.

FIGURE 4. Experimental setup for measurements of SS2018 and Solarex
MSX-60 PV modules.

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETUP
The proposed OTSA algorithm is validated by estimating the
unknown parameters of SDM for three different PV modules
under variable weather conditions. Figure 4 demonstrates
the experimental setup for the measurement of PV modules’
characteristics. First PV module consists of 36 serially
connected solar cells (Solarex MSX 60 polycrystalline solar
panel). This module is irradiated at different irradiance
levels (500 W/m2, 750 W/m2 and 1000 W/m2) at a
constant temperature of 25◦C. Second PV module comprises
36 serially connected polycrystalline cells (SS2018P PV
module). The I-V characteristics are measured at different
irradiance levels (720W/m2, 870W/m2, and 1000W/m2) at
a constant temperature of 25◦C. The data collection involves
a total of 20 I-V measurements for solar cells and 27 for
PV modules. The current and voltage for the solar PV
module (SS2018P) are determined at variable resistive load

(0.1–250 �, 2 A). Another PV module consists of 20 serially
connected monocrystalline cells (Leibold Solar Module
LSM 20). This module is irradiated at the temperature of
24◦C under an irradiance level of 360 W/m2 [5]. The
measured values of current and voltage for all three PV
modules are shown in Tables S2-S4 (supplementary file).

B. PARAMETER EXTRACTION BY OTSA ALGORITHM
The proposed OTSA algorithm is implemented on the
MATLAB 2018a platform with Intel R© core TMi7-HQ CPU,
2.4 GHz, 16 GB RAM Laptop. To organize the experiment,
the number of populations and the anticipated number of
objective function evaluations are set at 30 and 50,000,
respectively. Furthermore, a minimum of 30 distinct runs is
conducted out to avert the contingency. The upper and lower
bound limits of each parameter are tabulated in Table S1 for
a rational evaluation.

1) PARAMETER EXTRACTION OF SOLAREX MSX 60 MODULE
For Solarex MSX 60 PV Module, the proposed algorithm
is employed to extract parameters (Ip, Isd , a, Rs, Rsh) of
single diode model. The parameters are also extracted using
different algorithms for comparison. Table 1 displays the
optimized parameters, RMSE, SAE, and MAE values for
irradiance level of 1000 W/m2. The parameters and error
magnitudes for other irradiance levels (500 W/m2, and
750 W/m2) are shown in Tables S5 and S6. It is found
that the proposed OTSA algorithm generates the lowest
RMSE, SAE, and MAE values of 2.057 × 10−4, 5.77 ×
10−8, and 2.52 × 10−9, respectively. The RMSE, SAE,
and MAE values of the OTSA algorithm are smaller than
the performance of the WOA [33], GWO [34], SCA [35],
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FIGURE 5. The I-V and P-V curves for the single-diode model of
SolarexMSX 60 PV module at different irradiance levels. Measured data is
represented by symbols, and optimized data is represented by solid lines.

FIGURE 6. Internal absolute error between measured and simulated
current for a single-diode model of SolarexMSX 60 PV module at different
irradiance levels.

ALO [36], PSOGSA [37], TSA algorithms as well pre-
existing algorithms. Here RMSE, SAE, and MAE values
are acquired as the index for assessing the performance
of algorithms. Figures 5(a&b) represent the simulated and
measured current-voltage (I-V) and power-voltage (P-V)
curves for different irradiance levels. The simulated data
consists of the best-optimized parameters obtained by the
OTSA algorithm. The measured data shows good agreement
with the calculated one. The curves of internal absolute
error (IAE) between experimental and simulated current for
a single-diode model at different irradiance levels are shown
in Figure 6.

2) PARAMETER EXTRACTION OF SS2018P MODULE
The efficiency of the proposed OTSA algorithm is fur-
ther evaluated by another PV module (SS2018P PV).

FIGURE 7. Characteristics I-V and P-V curves of simulated and
experimental values at different irradiances for the single-diode model of
SS2018P PV module. Symbols represent the measured data, while the
solid lines represent the simulated data.

The parameters were estimated at different levels of
irradiance by utilizing the SDM model. The optimized
parameters, RMSE, SAE, and MAE values for irradiance
level of 1000 W/m2 are charted in Table 2. The parameters
and error magnitudes for other irradiance levels (720 W/m2,
and 870 W/m2) are shown in Tables S7 and S8. It is noticed
that the proposed OTSA algorithm generates the lowest
RMSE, SAE, and MAE values as compared to pre-existing
algorithms. The characteristics curve of current-voltage and
power-voltage for solar PV module is redrawn based on
best-optimized parameters obtained by implementing the
OTSA algorithm at different irradiance levels (1000 W/m2,
870 W/m2, and 720 W/m2) is depicted in Figure 7. It is
found that the calculated data obtained by the OTSA is
very effective in keeping with the experimental data set. The
curves of IAE between experimental and simulated current
for a single-diode model at different irradiance levels are
shown in Figure 8.

3) PARAMETER EXTRACTION OF LSM 20 MODULE
The proposed OTSA algorithm is also employed to analyze
the monocrystalline LSM20 PV module. The parameters
of the single diode model were estimated at an irradiance
level of 360 W/m2. Table 3 summarizes the optimized
parameters, RMSE, SAE, and MAE values. Interestingly,
the OTSA algorithm shows good performance for the
monocrystalline PV module. These findings validate the
applicability of OTSA for different types of PV cells.
The error values (RMSE, SAE, and MAE) of the OTSA
algorithm are smaller than that of WOA, GWO, SCA, ALO,
PSOGSA, TSA, and pre-existing algorithms. The lowest
RMSE, SAE, and MAE values are 4.48×10−6, 1.69×10−4,
and 8.25 × 10−6, respectively. The IAE values for cur-
rent and power are calculated and shown in Table S4.
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TABLE 1. Comparison of proposed OTSA with different parameter estimation methods for Solarex MSX-60 PV module (1000 W /m2, 25 ◦C).

TABLE 2. Comparison of proposed OTSA with different parameter estimation methods for SS2018 PV module (1000 W /m2).

TABLE 3. Estimated parameters of Leibold solar module (LSM 20) using different algorithm.

FIGURE 8. Internal absolute error between measured and simulated
current for single diode model of SS2018P PV module at different
irradiance levels.

A smaller magnitude of the IAE demonstrates the accuracy
of optimized parameters produced by the OTSA algorithm.
Figure 9 displays the measured and simulated I-V and P-V
characteristic curves. The simulated curves are based on the
best-optimized parameters obtained by the OTSA algorithm.
It can be observed that estimated parameters show good

agreement with the measured one, which proves the efficient
performance of the OTSA.

C. CONVERGENCE ANALYSIS
The computational competence of OTSA is investigated
through convergence analysis. The convergence curves of the
single diode model for all three PV modules are presented
in Figure 10. It is depicted in Figure 10 that the proposed
OTSA algorithm outperforms the WOA, GWO, SCA, ALO,
PSOGSA, and TSA algorithms in terms of convergence
speed. The OTSA algorithm generates a precise solution for
the exact number of function evaluations (i.e., 50000).

For the SS2018PV module, the RMSE values are 1.15 ×
10−3, 1.89× 10−3, 2.18× 10−3, 1.45× 10−3, 1.92× 10−2,
9.73× 10−4, and 6.83× 10−4 for WOA, GWO, SCA, ALO,
PSOGSA, TSA, OTSA respectively. The RMSE value is
minimum for OTSA than that of others. It means that the
OTSA decreases the function cost by 30.11 % compared to
the basic version of TSA. Similarly, for the SolarexMSX-
60 PV module, the RMSE values are 1.23 × 10−3, 8.13 ×
10−2, 6.14× 10−3, 9.70× 10−2, 1.60× 10−3, 8.77× 10−3,
and 2.06 × 10−4 for WOA, GWO, SCA, ALO, PSOGSA,
TSA, OTSA, respectively. The OTSA algorithm generates a
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TABLE 4. Statistical results of RMSE of different algorithms for all three models.

TABLE 5. Ranking of the proposed OTSA and other compared algorithms
on three PV modules according to the Friedman test.

minimum RMSE value than that of others. It indicates that
the OTSA decreases the function cost by 97.65% compared
to the basic version of TSA. The proposed OTSAmethod also
proves to be competent for the monocrystalline Leibold solar
module. The RMSE values are 9.28 × 10−4, 8.38 × 10−4,
7.80× 10−4, 2.93× 10−3, 2.92× 10−3, 2.05× 10−3, 3.49×
10−2, 1.72× 10−2, 2.32× 10−3 and 4.48× 10−6 for WOA,
GWO, SCA, ALO, PSOGSA, TSA, OTSA respectively.
It implies that the OTSA reduced the cost function by 99.80%
relative to the standard version of TSA.

D. ROBUSTNESS AND STATISTICAL ANALYSIS
This sub-section describes the statistical evaluations based on
mean, minimum, maximum, and standard RMSE deviations

FIGURE 9. I-V and P-V curves for monocrystalline Leibold solar module
(LSM 20). Open symbols represent the measured data, and solid lines
show estimated data.

for OTSA and previously proposed methods. The com-
parative analysis with the accuracy and reliability of the
different algorithms is performed in thirty tests and shown
in Table 4. The mean of the RMSE is analyzed to assess
the accuracy of the algorithms, and the standard deviation
is determined to analyze the reliability of the proposed
parameter estimation technique. The statistical analysis
results depict that the proposed OTSA is the most precise
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FIGURE 10. Convergence curve of WOAPSO and other six algorithms for
single-diode model of (a) SS2018P PV module (b) SolarexMSX 60 PV
module (c) monocrystalline LSM 20 PV module.

and effective parameter estimation technique as it has a very
low standard deviation. A non-parametric test i.e., Friedman
ranking test is performed to show the significant difference

FIGURE 11. Comparison of the execution time of different algorithms.

between existing algorithms and proposed algorithm. The
Friedman ranking test results are shown in Table 5. The best
ranking is obtained by the OTSA, followed by TSA, ALO,
SCA, WOA, PSOGSA, and GWO.

E. CPU TIME
The OTSA algorithm is successfully developed and imple-
mented for parameter extraction of three PV modules (two
polycrystalline and one monocrystalline). The I-V and P-V
curves obtained by the optimization process show good
agreement with the measured data. The IAE values (both
current and power) verify the accuracy of optimized parame-
ters. The statistical analysis shows that the standard deviation
is very low for all three PV modules, which confirms that
the OTSA is the precise and effective parameter estimation
technique. The average execution time of each algorithm on
the three PVmodels is determined and presented in Figure 11.
Compared to WOA, GWO, SCA, PSOGSA, TSA, OTSA
requires a much lower time of about 10 s, while ALO has the
worst execution time of about 36 s. This study proves that the
OBLmechanism increases the efficiency of the metaheuristic
TSA algorithm. Furthermore, additional modifications can be
done for solving the multi-objective problems.

V. CONCLUSION
In this study, a novel opposition-based tunicate swarm
algorithm is successfully developed and analyzed. The
proposed algorithm is anticipated to identify the unknown
parameters of photovoltaic modules precisely and effectively.
The proposed OTSA performed adequately and is reliable
in terms of RMSE, SAE, and MAE compared to other
methodologies such as WOA, GWO, SCA, ALO, PSOGSA,
TSA, and similar approaches available in the literature. The
implementation of OTSA leads to a reduction in cost function
by 30.11%, 97.65%, and 99.80 % for SS2018, SolarexMSX
60, and LSM 20 PV module, respectively, as compared
with the basic TSA. Based on the performance at different
irradiation levels, the OTSA also establishes a more reliable
efficacy. The OTSA algorithm produces the least value of
RMSE even at 360 W/m2. The convergence curves reveal
that theOTSA algorithm obtains the finest values of estimated
parameters for all three PV modules.
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TABLE 6. Comprehensive review of application of meta-heuristic algorithms for parameter extraction of PV models.

Although the effectiveness of the proposed approach
for estimating PV parameters has been demonstrated by
statistical analysis, there are still a few constrained factors
that could be further considered for future works. First,
the proposed OTSA can be implemented for various other
solar cell models to prove its capability. In particular, it
can be used to observe the effect of unpredictable external
factors like wind, rain, etc. Second, the feasibility of the
proposed OTSA can be further enhanced based on other

optimization techniques and concepts. The authors would like
to mention that OTSA cannot be recognized as a ubiquitous
method because no such approach exists that can solve
all optimization problems as per the statement of the NFL
theorem. The results confirm the OTSA efficiency comparing
with state-of-the-art algorithms.

APPENDIX
See Table 6.
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