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ABSTRACT Protein complexes are groups of two or more polypeptide chains that bind to form noncovalent
networks of protein interactions. Over the past decade, researchers have created a number of means
of computing the ways in which protein complexes and their members can be identified through these
interaction networks. Although most of the existing methods identify protein functional complexes from
the protein-protein interaction networks (PPIs) at a fairly decent level, the applicability of advanced graph
network methods has not yet been adequately investigated. This paper proposes various graph convolutional
network (GCN) methods to improve the detection of protein complexes. We first formulate the protein
complex detection problem as a node classification problem. Then, we developed a Neural Overlapping
Community Detection (NOCD) model to cluster the nodes (proteins) using a complex affiliation matrix.
A representation learning approach, that combines a multi-class GCN feature extractor (to obtain the nodes’
features) and a mean shift clustering algorithm (to perform the clustering), is also utilized. We convert
the dense-dense matrix operations into dense-sparse or sparse-sparse matrix operations to improve the
efficiency of the multi-class GCN network by reducing space and time complexities. The proposed solution
significantly improves the scalability of the existing GCN. Finally, we apply clustering aggregation to find
the best protein complexes. A grid search is then performed on various detected complexes obtained via
three well-known protein detection methods, namely ClusterONE, CMC, and PEWCC, with the help of
the Meta-Clustering Algorithm (MCLA) and the Hybrid Bipartite Graph Formulation (HBGF). We test
the proposed GCN-based methods on various publicly available datasets and find that they perform
significantly better than previous state-of-the-art methods. The code/data are available for free download
from https://github.com/Analystharsh/GCN_complex_detection.

INDEX TERMS Protein complex detection, graph convolutional network (GCN), protein-protein interac-
tion (PPI), neural overlapping community detection (NOCD), meta-clustering algorithm (MCLA), hybrid
bipartite graph formulation (HBGF).

I. INTRODUCTION
Proteins are key drivers of growth and development in all
organisms, yet most of the cellular functions of living sys-
tems are not driven by individual proteins. Instead, many
protein nodes, also known as protein complexes or protein
communities, contribute to cellular function; as these proteins
control the overwhelming majority of biological processes
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within cells, they also control appropriate cell functionality.
Cells necessarily respond to several stimuli, and the cellular
response is a complex procedure involving the assignation of
particular tasks to specific proteins, meaning a certain type
and number of proteins are needed for any given function.
Therefore, biologists have recently shifted their attention
away from the relationships between the structures and func-
tions of individual protein families towards the consideration
of cellular networks as a whole [1]. For a complete compre-
hension of the functions of a protein, it must be examined in
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light of its interaction partners and the complex to which it
belongs.

It is generally acknowledged that protein complexes
comprise groups of two or more interacting polypeptide
chains [1]. The ability to detect such complexes is crucial
as they are central to biological processes and create the
framework for the network of protein-protein interactions
(PPIs). For example, protein complex formation is responsi-
ble for antigen-antibody interaction and transportation, gene
expression control, cell cycle control, signaling, differentia-
tion, protein folding, transcription, translation, and enzyme
inhibition [1]. Thus, building or destroying various protein
complexes triggers the initialization, modulation, or termi-
nation of several biological processes [2]. Meanwhile, gene
mutations can lead to substantial protein complex abnormal-
ities [3], [4], which may, in turn, influence how proteins
interact with other partners. In particular, they also may
modify the interactions among different proteins, and in cer-
tain instances, may also initiate self-interaction [3]. These
modifications are small, yet they are nonetheless important
as they are linked to significant numbers of alterations in
self-functionality; thus, in-depth knowledge of these inter-
actions can assist in the development of medical treatments.
Additionally, knowledge of protein complexes can provide a
greater understanding of various forms of certain diseases.
For example, studies have demonstrated that some genetic
diseases are caused by proteins with similar functional inter-
actions [1], [5]. Using data extracted from PPI can thus
aid researchers in the discovery of inter-gene evolutionary
relationships that can guide them to unique protein com-
plexes, leading to the identification of unique genes related
to specific diseases [3]. Additionally, as they play a sig-
nificant role in physiological function, which makes them
superior to standard in vitro methods for therapeutic agent
analysis, knowledge of protein complexes is making signifi-
cant contributions to the creation of new drug therapies [6].
Finally, the investigation into protein complexes may reveal
previously undiscovered pathways and proteins, new meth-
ods for disease control, and new ways to classify genes.
All of these elements will enable the development of novel
methods for targeting, identifying, and retarding disease
progression.

Many previous successful methods have been put for-
ward for the detection of protein complexes from PPI
networks which can be divided into the following seven
categories:

1) A local neighborhood density search approach, focus-
ing on the discovery of dense subgraphs inside the
input network, including MCODE [7], DPClus [6],
ProRank [8], [9], ProRank+ [10], CMC [11], PRO-
COMOSS [12] and PEWCC [13], NCMine [14],
Core&Peel [15], SPICi [16] and non-cooperative
sequential game [17].

2) Local search approaches based on cost, focusing on the
extraction of modules from interaction graphs through
the partition of the graphs into linked subgraphs

employing cost functions for the guidance of searches
towards the optimal partition, including RNSC [18],
ModuLand [19], and STM [20].

3) Approaches employing Flow Simulation, focusing on
the imitation of ways in which information spreads
through a network, including MCL [21] and RW [5].

4) Approaches based on statistics, relying on the employ-
ment of statistical concepts for clustering proteins, e.g.
how many shared neighbors pair of proteins have,
and on notions of referential attachments for module
members with other elements within the module; this
includes SL [22], idenPC-MIIP [23], idenPC-CAP [24]
and Farutin [1].

5) Stochastic search methods based on population
employed to develop algorithms used to detect com-
munities and networks including CGA [2], IGA [6],
and EHO-MCL [25].

6) Approaches based on modularity, topological struc-
ture, overlapping information, and GO annotations,
including CFinder [26] and [27], ClusterONE [28], and
SE-DMTG [29].

7) Graph-based clustering methods, which includes
statistical-based measures methods such as [1] which
uses the concept of statistical significance to mea-
sure the strength of the relationship between two
nodes (proteins), which requires prior estimation
of the p-value. Cost-based Local search (CL) [30],
Population-based Stochastic search (PS) [2] and [6],
Local neighborhood Density search (LD), [7] and [28].

While the methods mentioned above can identify protein
complexes with a fair level of accuracy, in this paper, wemake
the following three major contributions to further improve the
detection of protein complexes in a PPI network.
• Contribution 1: We employ node classification
approaches [31] to classify nodes (proteins) into classes
(complexes). First, the interaction matrix (adjacency
matrix) and degree matrix are prepared from a given PPI
network. Second, an identity matrix is used as a feature
representation of the nodes. Using these inputs, three
GCN models [32] are employed. (1) a multi-class GCN
classification with a 2N label size (where N is the num-
ber of complexes), (2) a multi-class GCN classification
with label size K (where K is the number of possible
combinations of the labels in the respective datasets),
and (3) a multi-label GCN classification. These classi-
fication methods provide the protein complex labels for
all the nodes (proteins) in the network. These models not
only detect non-overlapping communities but are also
self-sufficient in the definition itself to detect overlap-
ping complexes [33].

• Contribution 2: Two representations learning based
approaches are proposed for complex detection. The
first approach, the ‘‘NOCD GCN method [34]’’ uses
a generative model to learn the community affiliation
matrix from the node features and adjacency matrix.
This requires modeling the loss function in terms of
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negative likelihood involving the Bernoulli Poisson (BP)
method. The second approach extracts feature from
the existing pre-trained GCN model and uses feature
embedding to form clusters using the mean shift algo-
rithm [35]. GCN approaches are further advanced by
proposing efficient matrix operations inside the GCN
layers. The dense matrices involved in the GCN model,
such as the feature, adjacency, and degree matrices are
converted to the compressed sparse row (CSR) matrix
format [36]. This removes the redundant operations from
the existing GCN architectures.

• Contribution 3: A clustering aggregation process [37]
is proposed, which takes all the resulting clusters yielded
by applying well-known protein complex detection
methods without knowing which is the best performer
and produces the optimal clusters. In this case, a grid
search is performed in conjunction with the Meta-
Clustering Algorithm [38] (MCLA) and the Hybrid
Bipartite Graph Formulation (HBGF) [37].

II. METHODS
A. DATASETS
The PPI interaction networks of the datasets were extracted
from the BioGrid interaction database [39]. These datasets
provide PPI networks for two species namely ‘‘Homo sapi-
ens’’ and ‘‘Mus musculus’’ and are termed the ‘‘Human’’ and
‘‘Mouse’’ datasets, respectively. These raw datasets were pre-
processed by removing duplicate nodes/interaction edges and
merging all available PPIs networks for particular species.

The CORUM reference complexes dataset [40] which
includes 623 ‘‘Mouse’’ related reference complexes and
2,645 ‘‘Human’’ related complexes were used to evaluate the
performance of the proposed methods.

In addition, two popular datasets were also considered in
this study, namely the Collins and Gavin datasets [41]. The
Gavin dataset was extracted by computing the socio-affinity
index in all yeast PPI networks, as proposed by the original
authors. If this term is greater than 5, then that PPI is consid-
ered; otherwise, it is excluded. Meanwhile a different metric
(purification enrichment test) was used to retain the Collins
dataset. The details of the two PPI datasets are summarised
in Table 1.

B. DEVELOPING THE MULTI-CLASS GCN
CLASSIFICATION MODEL
Inspired by the recent promising results achieved by applying
graph-based learning techniques for detecting communities
in graphs [34], we employed the GCN [32] method to classify
proteins into classes (complexes). The method is initiated by
creating an adjacency matrix A of a shape N ×N (where N is
the number of nodes). In this case, if two nodes (proteins)
are connected (interact), then the corresponding entry in the
adjacency matrix is represented as 1 or 0 otherwise. There-
fore, the input feature matrix F1 is considered as an identity
matrix of shape N × N , which presents the features for each

node in the absence of the explicit node features. The input
adjacency matrix is formed by adding the feature matrix F1
and Â to add self-connection of each node in the adjacency
matrix (Â = A + F1). This input feature matrix is then
normalized [32] as Z = D−1/2ÂD−1/2 (D is degree matrix).
In this case, each graph neural network layer will consist of its
weight matricesWi. TheW1 for example is the weight matrix
of the shape N × 512 for the first GCN layer [32]. We can
then obtain the matrix K by multiplying the feature matrix
F1 by weight matrixW1 (K = F1 W1). Further, the matrix K
is multiplied by Z to obtain P (P = ZK ), which is then passed
to the ReLU activation function F2 = ReLU (P). This output
is again passed to another GCN layer with weight matrixW2
of shape 512×L as a feature matrix for the next layer, where
L is the length of each node label. This process is repeated
using F2, W2, Â, and D.
Finally, the output F3 obtained from the second GCN layer

is passed to the row-wise softmax function Y = σ (F3) where
σ is row-wise Softmax function. With the help of Y and Ŷ ,
the presented GCN is trained with the loss function defined
as categorical cross-entropy L = H (Y , Ŷ ), where H (; , ; )
represents categorical cross-entropy. The weighted matrices
W1 and W2 are updated during the training. Overview of
this approach has been illustrated in Figure 1. Based on the
type of label matrices, there are two versions of multi-class
GCN approach. In first version, each label has size 2Nc where
Nc is selected number of complexes. Hence, each label is
unique whether node is belonging to one or more complexes.
In the second version, the label matrix Y for all the nodes
in the input graph is prepared by inspecting the possible
number of combinations K for nodes belonging to one or
more complexes. In this way, each label is formed as one hot
encoder of the length equal to the number of such possible
combinations for the particular dataset.

To extend the method to handle multi-label classification,
instead of the softmax function, we used the sigmoid function
after the second GCN layer, and the loss function was also
changed into a class-wise summation of binary cross-entropy.
Therefore, the loss function is L =

∑
ci∈C (BC(Yci , Ŷci ))

whereC is the set of all classes, ci is class i of setC , and BC is
the binary cross-entropy. Finally, the output values >0.5 are
converted into 1, otherwise, they are converted into 0.

1) EXPLICIT NODE FEATURES
In our experiments, we primarily used an identity matrix as
feature embedding. Moreover, we also tried a custom feature
matrix, which was built using the RNA-RNA interaction
networks and RNA-protein interaction networks [24]. For
the node classification task, the adjacency matrix and feature
matrix were required as input. The following process was
used to obtain the feature matrix (feature embedding) from
the above mentioned two extra networks:
• The RNA-RNA interaction networks are clustered using
greedy modularity [42]. In this case, almost all the RNA
nodes can be clustered into three big groups. There-
fore, the feature length for each node is assigned to 3,
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TABLE 1. Details of the PPIs networks used in the study.

FIGURE 1. Overview of the multi-class GCN node classification.

which is one hot encoder with a length of 3. Entry 1
in this feature embedding represents the inclusion of
the relationship with corresponding RNA clusters, while
entry 0 represents the non-inclusion of that RNA-RNA
cluster. The Girvan-Newman [43] yields one big cluster
(55600 nodes out of 56000 nodes in total)

• The RNA-RNA clusters are labeled with unique IDs.
• Each protein is labeled as per the RNA clusters to which
it is connected in the RNA-protein network. Generally,
it is in the sparse matrix form as most of the entries of
this feature matrix are zeros.

• These node feature embedding is used as a feature
matrix.

C. REPRESENTATION LEARNING APPROACHES
One of the limitations of GCN approaches is the computa-
tional cost. As the process includes large and sparse matrix
addition, matrix inversion, matrix multiplication, etc., the use
of dense matrices incurs high computational costs. To address
this issue, we have converted the input sparse matrices into
the compressed sparse row (CSR) matrix format [36].

1) THE NEURAL OVERLAPPING COMMUNITY
DETECTION - GCN METHOD
This section, describes the probabilistic generative GCN
model, which does not require any label for the

training purpose. Rather, it simply takes the graph adjacency
matrix and node feature matrix as inputs. It subsequently
uses the Neural Overlapping Community Detection (NOCD)
model [34] to learn the connectivity among the nodes
(protein) and optimize the weights accordingly. It is a com-
pletely unsupervised method that relies on the probabilistic
modeling of the output. This output is termed the complex
affiliation matrix F . Thus, the problem boils down to the
p (A|F) estimation, where A is the adjacency matrix. If the
complex affiliationmatrix is prior, the entries in the adjacency
matrix can be sampled as, Auv ∼ Bernoulli(1−eFuF

T
v ), where

u and v are two nodes. In this case, the higher value of FuFTv
indicates a higher chances that u and v are connected and in
the same community. All the settings are kept the same as
for the multi-class GCN classification method, but the row-
wise softmax function is changed to the element-wise ReLU
activation after the second GCN layer. The other differences
in the GCN architectures are as follows:
• The dropout layer is used in the last GCN layer
• L2 regularization is applied to both weight matrices in
the network

• The batch normalization layer is also added to the first
GCN layer

In this case, the output is the complex affiliation matrix F ,
not Ŷ , which uses labels to perform the training. Therefore,
the negative likelihood of the proposed model can be
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written as:

− log p (A|F) = −
∑

(u,v)∈E

log(1− e−FuF
T
v )+

∑
(u,v)/∈E

FuFTv

(1)

To reduce the effect of non-edges (sparse effect), we select
only a certain number of non-edges to balance the estimation.
This new term is written as follows:

L = −E(u,v)∼PE
[
log(1− e−FuF

T
v )
]
+ E(u,v)∼PN

[
FuFTv

]
(2)

wherePE andPN indicate the uniform distribution over edges
and non-edges. By minimizing this loss function, we can
optimize the weights of the hidden layer of the GCN. This
hidden layer has a size of 512 (Figure 2).

2) GCN FEATURE EXTRACTION AND UNSUPERVISED
FEATURE LEARNING
In this step, we extracted features for all the nodes in the
datasets from the last layer of the second version of multi-
class GCN classification model (before applying the row-
wise softmax function) pre-trained on the Human/Mouse
dataset.

Once these features are retrieved, we have applied mean
shift algorithm, which does not require prior information
about the number of clusters.

This algorithm accepts the node features, estimates the
number of clusters, and assigns nodes to clusters. The kernel
that used in this experimental work was a flat/uniform kernel.

In this case, the kernel K (u) = 1
2h

{
1, ||u|| ≤ 1
0, otherwise

, where

u is the data point and h is the bandwidth of the kernel.
This algorithm identifies dense regions by using the following
kernel density estimation (KDE) function:

fk (u) =
1
nhd

n∑
i=1

K
(
u− ui
h

)
(3)

where n is the total number of data points, and ui is an ith
data point. First, this algorithm finds dense regions with a
predefined bandwidth. Second, it determines the mean of the
data points in that region, and then shifts its centroid toward
the mean point. The second step is repeated until the shifting
of centroids cases. This is also called the convergence of the
mean shift algorithm. In this way, it computes the optimal
number of clusters.

D. CLUSTERING AGGREGATION
1) META-CLUSTERING ALGORITHM (MCLA)
The objective of the MCLA is to combine clusters obtained
from different clustering techniques. It also provides the asso-
ciation confidence estimation of all the instances (or data
points). The MCLA uses hyperedges [44] as the starting
vertices. In this case, the hyperedges are the members of
the indicator matrix (consider indicator matrix as a set of

column vectors) H l . It maps the labels of all the clustering
into corresponding binarized column vectors. The number of
hyperedges, in this case, depends on the number of clusters.
If the number of clusters is k1, k2, . . . .., kp then

∑p
l=1 k

l

presents the total number of hyperedges. Here, k l denotes the
number of clusters in lth clustering, and p denotes the number
of clusterings. These indicator matrices can be collectively
written, as H = (H1,H2, . . . .,Hp). It is also called the
adjacency matrix of the hypergraph. Each of the column
vectors of the hypergraph adjacency matrix is a specific
hyperedge. Each row of the indicator matrix H l represents
the corresponding labels of clustering l. The key concept
of the MCLA is to combine similar hyperedges and form
meta-hyperedges. Later the instances (objects) are assigned
to each of these meta-hyperedges based on the associa-
tion membership values. The steps for the MCLA are as
follow:

1) Forming meta-graphs from hyperedges
2) Transforming the meta-graph into meta-clusters
3) Creating meta-hyperedges
4) Object association contest among the meta-hyperedges

2) HYBRID BIPARTITE GRAPH FORMULATION (HBGF)
HBGF method [37] treats clusters and data points as its
basic entities. The first step in this algorithm is creating
a bipartite graph and then partitioning the graph to obtain
optimized clustering with optimal clusters. Each part of the
partitioned bipartite graph represents the consensus cluster.
For clustering (C1,C2, . . . ,Cn), a bipartite graph can be rep-
resented by G (V ,E). Here, V represents the set of instances
(v1, v2, . . . , vn), clustering (C1,C2, . . . ,Cn), and E repre-
sents the edges between the nodes. The edges are undirected,
and every node in the graph has an edge with the other nodes.
Each edge has a weightW (i, j) associated with it. Here, i and
j represent the nodes. The edge weight between nodes i and j
is defined as in Equation 4.

W (i, j)

=

{
0, if i and j both are clusters or instances
1, if i is cluster and j is instance or vice versa

(4)

E. EVALUATION MEASURES
1) TEST ACCURACY AND SUBSET ACCURACY
To measure the node classification accuracy, one hot encoder
is used as the label for all the nodes. A value of 1 denotes
the activation of the corresponding class, while a value of
0 depicts the deactivation of the corresponding class. The
predicted outcome for a sample is called predicted matched
only if both the outcome and label have 1 in the same place.
If the total number of labels in the test set isU , and the number
of total predicted matched sample outcomes is V , then the
test accuracy (TA) is defined as TA = V

U . However, in the
case of multi-label classification, a method such as a subset
accuracy [45] can also be used.
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FIGURE 2. Overview of the NOCD GCN model.

2) HAMMING LOSS AND HAMMING SCORE
Hamming loss (HL) and Hamming score (HS) [46] were also
used and they are calculated as follows:

HL =
1
nL

n∑
i=1

L∑
j=1

(
S
(
yij, ŷ

i
j

))
(5)

S
(
yij, ŷ

i
j

)
=

 1, if yij 6= ŷij

0, if yij = ŷij
(6)

HS = 1− HL (7)

where yij denotes the value of class j of label i, while ŷ
i
j denotes

the class j of predicted outcome of sample i. L is the label size
and n is the number of labels.

3) PRECISION, RECALL, AND F-MEASURE
The overlapping score (OS) between the ground truth com-
plex P and the predicted complex Q is defined as:

OS(P,Q) =
|P ∩ Q|2

|P||Q|
(8)

In this case the threshold for OS(P,Q) is set as 0.2 [47].
This denotes that if the value of the overlapping score
between P and Q is 0.2, then both match each other. The
Precision and Recall [48], [49] are defined as:

Precision =
|KMC|
|TPC|

(9)

Recall =
|PMC|
|TKC|

(10)

where TKC is the Total Known Complexes, TPC is the
Total Predicted Complexes, PMC is the number of Pre-
dicted Matched Complexes, and KMC is the number of

Known Matched Complexes. The F -Measure is calculated
as follows:

F − measure =
2× Precision× Recall
(Precision+ Recall)

(11)

4) NORMALIZED MUTUAL INFORMATION (NMI)
NMI [50] is another powerful performance metric to eval-
uate clustering methods given ground truth complexes.
Assume Y is the ground truth label matrix for all the
nodes, and Ŷ is the clustering label matrix for all the
nodes obtained using the applied method. NMI is defined as
follows.

NMI (Y , Ŷ ) =
2× I

(
Y ; Ŷ

)
[
H (Y )+ H

(
Ŷ
)] (12)

where H (Ŷ ) is entropy for the clustering labels and H (Y ) is
entropy for the ground truth labels. I (:, :) is termed as mutual
information [50].

III. EXPERIMENTAL WORK AND RESULTS
A. PROTEIN CLASSIFICATION APPROACHES
This experimental work used the Collins, Human, andMouse
datasets. The loss function was minimized through the Adam
optimizer, with an initial learning rate of 0.01. The number of
epochs was 200. The first version of multi-class GCN classi-
fication model had each label of length 2N , providing a test
accuracy of 84.26% with a train-to-test data ratio of 80:20 for
the Collins dataset, where N is the total number of complexes
(N = 10 in our experiment). The multi-label classification
model with top 100 complexes (complexes having maxi-
mum number of protein nodes) provided Hamming Loss,
Hamming score, and Subset accuracy of 0.0136, 0.9864, and
0.1554, respectively Table 2. To improve the performance,
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TABLE 2. Overall performance comparison of (GCN + mean-shift) model with other states-of-the-arts algorithms on human and mouse datasets.

a modified version of the multi-class GCN method was used,
as it offers both greater flexibility in terms of the number
of communities and reduced space and time complexities
(please refer to section II). In this case, the model was
able to achieve 0.676 precision, 0.837 recall, and 0.748 F-
score for the Human dataset. These approaches have pro-
vided good results, but all of them are using labels while
training.

B. REPRESENTATION LEARNING APPROACHES
The NOCD GCNmodel is implemented on top 50 communi-
ties with the hidden size of 512, and, a weight decay of 1e-3,
the learning rate was kept at 1e-4, the dropout rate was 0.05,
and the batch size was selected as 20,000, andAdamwas used
as optimizer. The number of epochs, in this case, was 200.
The results of the NOCD GCN model for the Mouse dataset
are presented in Table 3. Performance starts decreasing as we
increase the number of complexes.

As described in section II, customized feature matrix was
constructed anNOCDGCNmodel was applied using this fea-
ture matrix. For the top 10 complexes of the Human dataset,
the NMI score was recorded as 0.5. the NMI score started
decreasing as we increase the number of complexes. For
top 100 complexes, NOCD GCN method with a customized
feature matrix achieved an NMI score of 0.105 for the Human
dataset.

Representation learning with the feature extracted through
the pre-trained GCN from the Mouse and Human datasets
has been performed with the clustering algorithm mean
shift. The results of this feature learning algorithm are pro-
vided in Table 2. Results for other methods are obtained
from [24].

TABLE 3. Performance metrics of the NOCD GCN model for the mouse
dataset.

The number of epochs was 400, in this case, and a hidden
layer sizes 512 were selected for this process with Adam as
optimizer. The remaining settings were kept as for the second
version of multi-class GCN classification experimental work.
It became clear that the proposed approach for clustering
proteins (nodes) outperforms all state-of-the-art clustering
algorithms, thereby proving the effectiveness of the proposed
approach.

C. CLUSTERING AGGREGATION
Both MCLA and HBGF algorithms require a prior estima-
tion of the number of clusters. Thus, we performed a grid
search using the HBGF andMCLA to get the optimal number
of clusters. Gavin dataset is used in this case to test this
approach. First, three classical protein complex detection
techniques (CMC [11], ClusterONE [28], and PEWCC [13])
were used to detect clusters in Gavin PPI dataset. The num-
ber of clusters yielded using the three techniques are 124,
243, and 206, respectively. After applying the MCLA and
HBGF algorithms on the detected clusters using grid search
from 60 complexes to 250 complexes. The best performances
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TABLE 4. Performance metrics using the MCLA and HBGF models.

FIGURE 3. Samples of small human complexes detected 100% accurately by the proposed approaches which are hard to be detected by
other methods. In the figure, the protein whose genes are observed to be correlated with expression in numerous experiments are also
shown to highlight the correlation between the proteins in the functional complex. The co-expression scores based on RNA expression
patterns and protein co-regulation were calculated using String [53].

(MCLAmethod with 237 complexes and HBGFmethod with
66 complexes) are shown in Table 4.

IV. DISCUSSION AND CONCLUSION
In this paper, we introduced two GCN-based approaches
to detect protein complexes in several benchmarked PPI
datasets. The first approach is a multi-class GCN classi-
fication method, while the second is a multi-label GCN
classification method. We also incrementally demonstrated
improvements by changing the GCN method from a simple
multi-class to a multi-label classification problem and then
improvised the multi-class GCN method.

Following the incremental improvement, we proposed a
sparse matrix operations-based GCN methodology. The effi-
ciency in terms of the time complexity in the operations
between the sparse and dense matrices was also compared.
Then, we solved the problem of complex detection in an
unsupervised condition. The NOCDmodel and the GCN fea-
ture extractor+mean shift clustering method were proposed,
and the performances of both approaches were evaluated.
The effectiveness of the proposed representation learning
approach was demonstrated on Human and Mouse datasets,

which showed that both outperform state-of-the-art methods
in the detection of protein complexes. We also showed the
effect of including explicit node features in the NOCD GCN
method. Furthermore, we found that assembling yielded clus-
ters (complexes) using theMCLA andHBGF has great poten-
tial. In the future, more complex detection methods should
be added to the three explored in this experimental work to
further improve the precision and recall scores.

Besides leveraging the advantages of the GCN, the pro-
posed approaches were able to detect small complexes, which
most state-of-the-art methods struggle to detect (as shown
in Figure 3). For example, the proposed approaches accu-
rately detected human complexes such as EXT1/EXT2 com-
plex [51], [52], SUFU/GLIS3 complex, and NELF complex.

A. LIMITATIONS AND FUTURE DIRECTIONS
This work did not conduct a thorough investigation of the
feature clustering algorithm. The mean shift algorithm was
selected from a pool of algorithms that includes the OPTICS
and Affinity Propagation algorithms [54], [55]. Other tech-
niques may perform even better than the mean-shift algo-
rithm, and thus deserve further investigation.
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Moreover, this study used an identity matrix and a small
length of customized feature vectors to provide the node
features. The length of the feature embeddings can be further
increased with the help of the topological features present
in the neighborhood of the protein nodes. This would form
a robust feature matrix for the GCN operation, which might
yield even better performance metrics.

Finally, since protein complexes are structured in many
graph types, studying the characterization of a bipolar fuzzy
detour g- eccentric node (protein) [56], [57], [58] represents
one of our future research directions. Furthermore, we also
plan to investigate the notion of bipolar fuzzy detour g-
boundary nodes and bipolar fuzzy detour g-interior nodes in
a bipolar fuzzy graph (PPI).
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