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ABSTRACT Along with the development of big data, knowledge updating occurs in various situations,
some scholars had studied the dynamic method of updating knowledge in multigranulation decision-theoretic
rough sets when adding or deleting granular structures. However, there is no study about the case of adding or
deleting objects, which limits the development of multigranulation decision-theoretic rough sets. Based on
the matrix method, the dynamic knowledge updating of optimistic multigranulation decision-theoretic rough
set and pessimistic multigranulation decision-theoretic rough set were studied in this paper, then given the
static algorithm and dynamic algorithms, and the time complexity of three algorithms was analyzed. The
theory and experimental results show that two dynamic algorithms are both more effective than the static
algorithm.

INDEX TERMS Incremental updating, knowledge discovery, multigranulation decision-theoretic rough sets.

I. INTRODUCTION
As a data analysing and processing theory, rough set theory
was put forward by Z. Pawlak from Poland [1], it has made
great progress in both theory and application, and has been
applied to data mining [2], machine learning [3]—[5], knowl-
edge discovery [6] and other fields. As the basic calculation of
rough set, the calculation of lower and upper approximations
are necessary steps to obtain other significant achievements,
many scholars have popularized rough set in various aspects.

To overcome the influence of noise data, Yu et al. [7]
proposed the decision-theoretic rough set, which simulates
the process of human decision-making under uncertainty and
risk, we can obtain the calculation of thresholds through deci-
sion risk minimization based on bayesian decision theory [8],
conditional probability was estimated by naive bayesian
model [9], and then given the concepts of positive domain,
negative domain and edge domain, they are the basis of three-
way decision [10], [11]. Therefore, decision-theoretic rough
set is a model with solid theoretical foundation and practical
application.

Pawlak rough set model and decision-theoretic rough set
model are based on a single equivalence relation, due to
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practical needs, multigranulation rough set based on multiple
equivalence relations was put forward by Qian et al. [12].
With the development of multigranulation rough set, several
generalized multigranulation rough set models had been pro-
posed to solve real-world problems with complex environ-
ments [13]-[17]. Multigranulation decision-theoretic rough
set was proposed by Qian et al. [18], and several of its
extended models were studied [19]-[23].

With the arrival of the big data, many scholars have studied
incremental knowledge updating, using existing knowledge
to update new knowledge, rather than recalculating, which
will save a lot of time and space. There are three main aspects
of the current dynamic knowledge updating: the dynamic
change of objects, the dynamic change of attributes and the
dynamic change of attribute values.

For the decision rules for the decision table with increase of
objects, Liu et al. [24] proposed the corresponding incremen-
tal algorithm. Liang et al. [25] proposed an incremental fea-
ture selection algorithm based on rough set while increasing
objects. Considering the addition and deletion of single object
in neighborhood fuzzy decision system, Zeng et al. [26]
proposed an incremental updating method of approximations
in fuzzy rough set theory. Hu et al. [27] presented a method
to update multigranulation approximations with the varia-
tion of granulars. Li er al. [28] proposed a matrix-based
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method of approximates when attribute values were updated
dynamically in ordered information system. Li et al. [29] put
forward the rule extraction algorithm based on the charac-
teristic relation when adding and deleting multiple attributes.
Qian et al. [30] proposed a solution for the attribute reduction
problem to avoid redundant steps of incremental calcula-
tion with increasing attributes. Zeng et al. [31] proposed an
incremental feature extraction algorithm for fuzzy rough set
aiming at dynamic changes of attributes in mixed information
system with many data types.

The rest of the paper is organized as follows. Section 2
briefly introduces the basic concepts of rough sets, multi-
granulation decision-theoretic rough sets and relation matrix.
In section 3, the method of computing the lower and upper
approximations are proposed by the matrix-based, then
updating approximations when adding or deleting objects.
Several dynamic algorithms are given in Section 4. In section
5, we verify the effectiveness of proposed dynamic algo-
rithms experimentally. Finally, summarized the full text in
Section 6 and put forward further directions of research.

Il. PRELIMINARIES

A. ROUGH SETS

Give an information system IS = (U, AT, V,f), where U =
{x1,x2,...,x,} is a non-empty finite set of objects called
universe; AT is a non-empty finite set of attributes, a € AT
is called an attribute; V = | J V, is a set of attribute values,

V, is a non-empty set of \;laelflzs of attribute @ € AT, called
the domain of a; f : U x AT — V is an information function
that maps an object in U to exactly one value in V,, such that
Yae AT, x; € U,f(xj,a) € V,.

For a subset of attributes B, an indiscernibility relation Rp
is defined as follows:

Rp={(x,y) e U x U :f(x,a)=f(y,a),VYa € B}

where Rp is an equivalence relation on U. The equivalence
relation Rp partitions the universe U into a family of dis-
joint subsets called equivalence classes, the equivalence class
including x with respect to B is denoted as follows:

[x]Ip={yeU: () € Rp}

ForasetX C U, the lower and upper approximations of X
with repect to R are defined as follows:

RX)={x e U :[x]r € X}
RX)={xeU:[x]gNX # @}
where [x]g = {y € U|(x,y) € R} is a R-equivalence class

containing x;. If R(X) = R(X), we say that X is a definable
set; Otherwise, X is a rough set.

B. MULTIGRANULATION DECISION-THEORETIC ROUGH
SETS (MG-DTRS)

Let IS = (U,AT,V,f) is an information system, Aj,
Az,...,Ay € AT and VX C U, the optimistic multi-
granulation lower and upper approximations are denoted by
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—O’ .
Yo A 2%(X) and Y Ak ﬁ(X ), respectively, where

m O
> A
k=1

,a

X)={xeU:\/PX|lxla) = a)

i=1

0.8 "
X)=U—{xeU: \ PX|lxla) < B}

m
>
k=1 i=1

Th : m O,a m 0.8 .
epair < Y ;A C(X), Y po Ax - (X) > is called
the optimistic multi-granularity decision-theoretic rough sets

of X.

For an information system IS = (U,AT,V,f), Aj,
Az, ...,Ay € AT and VX C U, the pessimistic multi-
granulation lower and upper zg)groximations are denoted by

ka: 1 AkP‘a(X ) and Z?:l Ar (X)), respectively, where

m
A
k=1

P

X) = tx e U: \PXIlxla) = o}
i=1

P

m B m
YA X)) =U-{xeU:\/PXlxl) < B)
k=1

i=1

—P’ .
The pair < kazlAkP‘a(X), Yo Ak ﬂ(X) > is called
the pessimistic multi-granularity decision-theoretic rough
sets of X.

C. RELATION MATRIX
Let IS = (U,AT,V,f) is an information system, where

U = {x1,xp,...,x,}and VX C U, the characteristic function
FX) = (fi.fo, ..., f))T (T represents a transpose operation)
of X is constructed as:
1, i €X
fi={ i=1,2,....n
0, Xi ¢ X

For an information system IS = (U,AT,V,f), where
U = {x1,x2,..., x4}, A1, A2, ..., Ay, € AT, VA, C AT,
k e€{l,2,..., m}, the relation matrix My, = [mzk]nxn of Ay
is constructed as:

ij 17 .’ j e R . .
mzk: (%3, %) Ak iLhj=1,2,...,n
0, (xi,x)) ¢ Ra,

Ill. UPDATING MULTIGRANULATION
DECISION-THEORETIC ROUGH APPROXIMATIONS WITH
INCREASING OR DECREASING OF OBJECTS
A. MATRIX-BASED REPRESENTATION OF
APPROXIMATIONS IN MG-DTRS
Due to the need of practical application, this section dis-
cusses multigranulation decision-theoretic rough approxima-
tions based on the matrix and give some properties.
Definition I1: LetIS = (U, AT, V, f) is an information sys-
tem, where U = {x1,x2,...,x,}, X CU,A(,Ar,..., A, C
AT_,_ k e {1,2,...,m}. For a relation matrix My, =
[mzk]nxn, a characteristic function F(X) = (f1, /2, ..., f,,)T,
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DT, two intermediate
[y, Jnx1 and L = [V} lux1 of Ay are

an x 1 column vector Q = (1,1, ...,
matrices IA‘k X) =

defined by:
I (X) = My, x F(X)
Ll =M, xQ
where uj;k = Y lmAk]j, vAk p lmAk (i,j =
1,2,...,n)and x denotes matrix multiplication.

Definition 2: Let IS = (U,AT,V,f) is an informa-
tion system, where U = {x;,x2,...,x;}, X < U,
A1, Ay, ... Ay C AT,k € {1,2,...,m}. For two intermedi-
ate matrices IA‘k X) = [u/‘;‘k]nxl and IA'k = [vj;k 1% 1, the basic
matrix Iy, (X) = [hf;‘k]nxl of Ay is constructed as:

InX) =18 (X)/.1Y

where by = uly vy G = 1,2,...,
matrix dot divide.

Definition 3: LetIS = (U, AT, V, f) is an information sys-
tem, where U = {x1,x2,...,x,},X CU,A1,Ap, ..., A C
AT,k € {1,2, ..., m}. For abasic matrix Iy, (X) = [A} lnx1,
two cut matnces of the lower and upper approx1mat1ons of A
are constructed as I (X) [h ]nxl and I (X) [h ]nxl,
where

n) and ‘x’ denotes

W

1, hﬁlk >
A i

0, hﬁik <a
A A

“T o Hy, <8
Theorem 1: Let IS = (U, AT, V, f) is an information sys-

tem, where U = {x1,x2,...,x,},X CU,A(,Ar, ..., A, C
AT, k € {1, 2 .,m}. For two cut matrices Ijk(X) =

[hAk Inx1 and [ (X)
o,
6)) F(Zkzl AP (X)) = max™ (I (X))
—O’ﬁ
@) FOUim A (X)) = maxi (I} (X))
where ‘max’ indicate a maximum value among the corre-
sponding position values of multiple matrices with same size.

Proof: (1) By the definitions of characteristic function
and cut matrix, we can obtain F(ZZ’:IAICO’“(X)) = (f1,

foroo )T and If (X) = [ Tnxa. Vi€ (1,2, n},

[h}';fk]n>< 1, the following results hold:

0,
iffi = 1, thenx; € Z':_lAk ‘)
@xieﬂ"‘(X), Ak e{l,2,...,m}
X N [x;
< P(X|[xila,) = X O lxila,| >a, Ike{l,2,...,m
[[xi1a, |

. u
&y = % > a,
vAk
& hp =1,

e fl,2,...,m)

e (l,2,...,m)

& max,i"zlhji =1, then f; = max;_ lhu

Ar’
0,
iff; = 0, thenx; ¢ Z:’:]Ak ‘0
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S X ¢ ACX), Vke(l,2,...,m)
X N [x;
<:>P(X|[xi]Ak)=—| Lrila | a, Vk e (1,2,...,m}
[[xi]a, |
ui
i A
<:>hAk=l.—<ot, Vke{l,2,...,m}
VA,
&yl =0, Vke(l2....m)

& max,i’;lhii =0, then f; = max;_ 1hil.

Thus, F(X; A% (X)) = max™_ (I} (X))
(2) By the definitions of characteristic function and cut

PPN = (oo )T

matrix, we can obtain F()_;._; Ag

and I} (X) = [ Jnx1. Vi € {1.2,....n},
0/5
if f; = 1, then x; EZ X)
o x e’ X), FIe{l,2,....m
X N [
<:>P(X|[xi]Ak)=—| Lilay | > B, dkefl,2,...,m
[[xi1a, |
l
@hgk:.—>,3 Ie{l,2,....,m)
VfAk
s h =1 Fke(l.2,....m

& maxy_ lhA =1, thenﬁ—maxk lhAk
0/3

iff = 0, thenx; ¢ Z X)
o x ¢ A X), Vke(l,2,....m)
X N [
& P(X|[xila,) = KN Dxilay | <B, Vke{l,2,....,m
[[xi1a, |
ol
<:>hlAk:,_§ﬂ’ Vke{l,Z,,m}
VA,
& hl =0, Vke{l.2,...m

& maxyL, f =0, thenf,-_maxk 1hT.

Thus, F(Q_p Ax oF X)) = max,i":l(ljk(X)).

Theorem 2: Let IS = (U, AT, V, f) is an information sys-
tem, where U = {x1,x2,...,x,},X CU,A1,Ar, ..., Ay, C
AT, k € {1,2,...,m}. For two cut matrices Iffk(X) =

[hjfk]nx 1 and I/Ik X) = [hjfk],,X 1, the following results hold:
(1) FOop, Ax 1Ak”’”‘(X)) = min_ (I} (X))

@) F Ac " 00) = min_ (1], (X))
where ‘min’ indicate a minimum value among the corre-
sponding position values of multiple matrices with same size.
Proof: The process of proof is similar to Theorem 1.
The following example shows that there is no inclusion
relationship between them.
Example 1: Give an information system.

U = {x1,x2, x3, X4, X5, X6}, AT = {ay, az, a3, as},
letA; = {a1}, A2 = {a2}, A3 = {a3}, A4 = {a4},
= {x3, x4, x5, x7, x8}, @ = 0.8, 8 =0.2.
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TABLE 1. An information system.

According
we have:

According to the definition of relation matrix, we have:

According to Definition 1 and Definition 2, we can calcu-
late intermediate matrices / A'I X)), 1 A'l and basic matrix I4, (X)

U

S
=

Q
)

S
=

Z1
o)
r3
T4
Ts
Tg
x7
rg

W H = DN WN — =

W W W~~~

O N =N - ===
w

N W N WWWW

[

— O O = O OO RO =rmrMreEE OO0 O0OMIME OMFMFMEOOOO

()

of Ay as follows:

1
MAI

2
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(e

ORP OO RO OOFrRPRO R, PP, OO0 R~ PF, POOO—~O -~

=)

(e

ORP OO, O, OO0OFROFR =R MR OO0 =R, OO0 —~=O—O0O

(e

— o O~ O, OOFrRPRO R, PP, OO0OFrRPRO—~POO00 mPOoOOoOOoO —~O

=)

J
— m =1,
Zj_l Al‘fj‘

MAI =

(e

SO R OO0 m— OO0 PO, OOOO OO0 —O~—O

—_—

O, O OO, O OO, O = MFEMFEMPEF OO, O, OO0 O, OOO O =

o

vAl ==

2
VA]

F(X)=(0,0,1,1,1,0,1, DT

8
Do
j=1
8
=2 "
j=1

—_

OR OO, RO m—R O, OO0 mPO—ROOOO O, OOOCOCO

(e

— OO OO0 PP OR OO0 mPO—R,OOOO mOOO—~O

3
% _3

Ay

to the definition of characteristic function,

8 ; 8 ;
3 _ Z 3 o 3 _ 2 : 3 _
Up = j:lmAlf]‘ =2, VA, = j:lmAl -

uil = Z —1 mj‘tjlj3 =2, vj“\l Zj:l j:]1 =3,

Go= Y =2 A =Y =2

”/641 = Lo mf\j1f/ =1 vf\l - ngzl jjl =

4 =X =t =X s
8

so I (0 =(1,2,2,2,2, 1, 1,2),
I =(3.3,2,3,2,33.3/,
12 2
= 7. Lz,
3'°3 3
According to Definition 3, we can calculate two cut matri-
ces IA¢] (X) and III. (X) as follows:

I, (X) = 1# (X)/.LY = ( 1, =

hyt =0, I =0, k=1, Iyl =0,
Ky =1, K =0, iyt =0,h =0,
=1 =11 =1 n =1,
TS S
so I} (X) = (0,0,1,0,1,0,0,0)",
110 =101 D

Similarly, we can get cut matrices of X under A2, A3, A4
as follows:

Iy (X) = (0,0,0,0,1,0,1, ),
oo =01,1,1,1,1,1D"
I} (X) = (0,0,0,0,1,0, 1, 1),
oo =01,1,1,1,11D"
Iy,(X) = (0,0,0,0,1,0,0, )7,
1) =(1,0,1,1,1,0,1, ).

0,0.8
Then F(Y " Ac (X)) =(0,0,1,0,1,0,1, ),

———0.,0.2 .
FQ A )= LLLLLLDTY

m P,0.8
FQ A (X)=1(0.0,0,0.1,0,0,0)",

m—P,O.Z .
FOO A (0)=(1,0,1,1,1,0,1, .

m 0,0.8
SOM (X) = {x3, x5, %7, 18},
m—AO
> A
m

P,0.8
Do A0 = fsh,

,0.2
(X) ={x1,x2, x3,%4,X5,%6, X7,X8},

———P.02
Zk:lAk (X) = {x1, x3, x4, x5, X7, X8}
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B. UPDATING MULTIGRANULATION DECISION-THEORETIC
ROUGH APPROXIMATIONS WHILE INCREASING OBJECTS
In the previous section, we introduced multigranulation
decision-theoretic rough approximations based on the matrix.
In this section, we will introduce dynamic multigranula-
tion decision-theoretic rough approximations with increasing
objects.

Definition4: LetlS = (U, AT, V, f) is an information sys-
tem, where U = {x1,x2,...,x,}, X CU,A1,A>, ..., Ay C
AT,k € {1,2, ..., m}. adding nt new objects to U, assume
that the new universe is U’ = U U UT, where Ut =

(X041 X2y + + s Xpgnt }. VX T C U, the characteristic func-
tion F¥ (X)) = (fua 15 fut2s -+ » fugnt)| of X is constructed
as:
1, X € Xt
P = i=n+1,n+2,....n+n"
ﬁ {0, Xi ¢ X+

Theorem 3: Let IS = (U,AT,V,f) is an information
system, where U = {x1,x2,...,x,, X CU, U =UUUT,
VXt C Ut if X' =X UXT, then F'(X') = [ 1pnpnt)x1 i
the characteristic function of X’ and the following result hold:

oy F(X)
Feo= <F+<X+>>

Proof: 1t’s obvious the theorem holds by Definition 4.

Definition 5: Let IS = (U,AT,V,f) is an infor-
mation system, where U = {x1,x2,...,x,}, X € U,
A, Ay, oA C© AT, k€ {1,2,...,m}, Ry, is the
indiscernibility relation. Two incremental relation matrices
Sa, = [S,Il(k]nxﬁ and Ty, = [[Xk]n+xn+ are constructed as:

ij 17 (.Xi,Xj)GRAk i=1,2,...,n

) =

A 0, (xi,x)¢Ra j=n+1ln+2,....n+n"
tij _ L (xiaxj)GRAk i=n+1,n+2,....,n+nt
A 0, (xi,x)¢Ra j=n+1ln+2,....n+n"

Theorem 4: Let IS = (U,AT,V,f) is an information
system, A1,A2,...,Am“ C AT, k € {1, 2,__. coom), Sp =
.[Sxk]nanr and TA/( = [tzk]n+><n+a MAk = [mzk](n+n+)><(n+n+)
is the new relation matrix and the following result hold:

My, Sa
i = (M
A SAk T,
where Sgk is the transport matrix of S, .

Proof: 1t’s obvious the theorem holds by Definition 5.
Theorem 5: Let IS = (U, AT, V, f) is an information sys-

tem, where U = {x1,x2,...,x,},X CU,A1, A2, ..., A, C
AT,k € {1,2,...,m}, Sa, = [s;k]nx,ﬁ, Tay = 114 Tnt
F+(X+) (fn+1 fm,.. fn+n+) oF =(1,1, l)T'

a n x 1 column vector, I (X ) = [uAk](n+n+)X1 and I

A A (ntnt)x 1 are two new mtermedlate matrices of A, VX c
U,if X’ = X UXT, then the following results hold:

IAX) = I (X) + Sa, x FH(X™)
Ak S}k X F(X)+ Ty, x FF(X™)

123652

TABLE 2. An information system with added objects.

7

U
Z1
T2
z3
T4
Ts
Tg
x7
rg
Tg

Q
=
Q
)
Q
IaN

L= W =N WN
R NN RN =R

w
NN W DN WWWW

W = W W WN - ==

210

I/ _ I —i‘SAkXQ+
A T SAk xQ+TAk x OF

where
i nt
uAk+Zj:1SA ntj
i i=1.2.
Ae no ji-n) (i—n)j
ZJ Sh /+Z 1l f"+f
l:n—i—1,11—}—2,...,11—|—nJr
. + U
l
vAk+ = lsAk
g i=1.2..
A T n j(i n) (i—n)j
D Z g
l:n+l,n+2,...,n+n+

Proof: 1t’s obvious the theorem holds by Definition 1.
Example 2 (Continued Example 1):
where U™ = {x9, x10}, X = {x9}.
U=0uUt=
X =XUuxt=

{x1, x2, X3, X4, X5, X6, X7, X8, X9, X10},
{x3, x4, x5, X7, X8, X9}
According to Theorem 3, we can get the characteristic
function of X:
vy F(X) _ T
F(X)_ <F+(X+) _(0’07171517051717190)

According to Theorem 4, we can calculate incremental
relation matrices S4, and Ty, as follows:

o (1 0 0 0 0 1 1 0\
AA=lo 1 0 1 0 0 0 1

10
=)

According to Theorem 5, we can calculate new intermedi-
ate matrices / Af (X)and I A' as follows:

o

uj, = up, + Z SA1f8+f
V=l —i—Z sV =4,
A — VA A]
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2 _
Ugy = Al +Z
2
Vi =i, +Z SAI
3 _
Ugy = uAl + Z
2 .
B .3 3 _
VA, = V4, +Zj:1 Sa, = 2,
14 _ 4 2 _2
uAl - uAl + =1 SAlfs"rj — 4
2 .
M 4 4 _
VA, = Va, + Zj:] Sa4, = 4,
5o 5 + 2 ij — ]
Ugy = Ua, i1 SASH T 2
V2 =)+ 2 s =2
A T VA =1 Ay T
2 .
6 _ 6 o o _
Upy = Up, + Zj:lSAlfg+] =2,

2 .
6 _ .6 Z o _
VA, = VA, + j:l sAl =4,

sAlfSJr]

SA1f8+] 2,

T
Ugy = uAl + Z SA1f8+/
7 —
VA, = vAl + Z SA] 4,
8 _
Uy, = “Al + SA1f8+J
8 —
Va, = VAl + Z SAI 4

/9 1j J—
Uy, ZJ 1 Alﬁ + Z tA1f8+f =2,
9 __ _

Va, = Zj—l Aj + Z tAl =4,

W10 — Gg
g, Z 1 S+ Z A =2,

/10_ .
VA, J1A1+Z tAl_ ’

soLAX) =(2,2,2,2,2,2,2,2,2,2)7
LY = (4,4,2,4,2,4,4,4,4,47

L T TS A S T o

) =G5 L5 55050505 )

2°72°2°2°2°2
According to Deflmtlon 3, we can calculate two new cut
matrices 1 v (X "Yand I /Il (X") as follows:

hy' =0, Ky =0,k =1kt =0 K =1,

hy =0, h” Ohii_o h”_o h””_o

" _ M 3y g St

nh =1 =1 =1 0 =10 =1,

61 7 81 91 107

=1 m =10 =10 =1 =1,
so I} (X') = 0,0,1,0,1,0,0,0,0,0)"

Xy =0 1LLLLLLL LD

Similarly, we can get new cut matrices of X under
A2, A3, A4 as follows:

I} (X') = (0,0,0,0,0,0,0,0,0,0)",
) =01111,11,11,D"
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Iy, (X)) = (0,0,0,0,1,0,1,1,1,07,
LX) =1 1L1L 1L LD
Iy,(X) = (0,0,0,0,1,0,0,1, 1,07,
1) =(1,0,1,1,1,0,1,1,1,0)".

4 0,0.8
Then F(}_,_ Av (X)) =(0.0,1,0,1,0,1,1,1,0)",

4—0,0.2
FOO_ A )=, LLLLLLLLDT
4 P,0.8 , ,
F(M (X')) = (0,0,0,0,0,0,0,0,0,07,

4—P,0.2
F(ZkzlAk X' =(1,0,1,1,1,0,1,1,1,0)7.

4 0,0.8
So Zk:l A

(X') = {x3, x5, x7, X3, X9},
N A
DM
P08

0,0.2
(X') = {x1, x2, X3, X4, X5, X6, X7,
YA &)=
k=1 ’
P,0.2

4
ZkzlAk (X") = {x1, x3, x4, X5, X7, X3, X0}

C. UPDATING MULTIGRANULATION DECISION-THEORETIC
ROUGH APPROXIMATIONS WHILE DECREASING OBJECTS
In the previous section, we introduced multigranulation
decision-theoretic rough approximations based on the matrix.
In this section, we will introduce dynamic multigranula-
tion decision-theoretic rough approximations with decreasing
objects.

Definition 6: LetIS = (U, AT, V, f) is an information sys-

X8, X9, X10},

tem, where U = {x,x2, ..., x,},X CU,A1,Ar, ..., Ay, C
AT, k € {1,2,...,m}. deleting n~ objects from U, assume
that the new universe is U’ = U-U", where U~ =

the characteristic
, f,,)T of X~ is

(X1, Xn—n—2, .-, Xn}. VX~ C U™,

function F~(X7) = (fr—n—+1-fo—n—+2, - - -
constructed as:

% € X i=n—n +1l,n—n +2,...,n
xi ¢ X~

Theorem 6: Let IS = (U,AT,V,f) is an information
system, where U = {x|,x2,...,x,}, X CU, U =U-U",
VX C U,if X = XNU and X' = X — X, then
F'(X") = [f/1(n—n—)x1 is the characteristic function of X" and
the following result hold:

roo= (£

Proof: 1t’s obvious the theorem holds by Definition 6.
Definition 7: LetIS = (U, AT, V, f) is an information sys-
tem, where U = {x1,x2,...,x,}, X CU,A(,Ar,..., A C
AT, k € {1,2,...,m}, Ry, is the indiscernibility relation.
Two incremental relation matrices Sy, = [sxk](n,n—)xn— and
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[t’] - xn— are constructed as:

i=1,2,...,n—n"
j=n—n"+1,...,n

(xi, Xj) € Ra,
(xi, Xj) ¢ Ra,
(xi,xj)) €Ra, i=n—n"+1,...,n
xi,x))¢Ra, j=n—n"+1,...,n
Theorem 7: Let IS = (U,AT,V,f) is an informa-
tion system, Aj, Az, ..., Ay S AT, k € {1,2,...,m},
Sa, = (4 Jn—nyxn- and Ta, = [t Lisen> My =
[mzk l(n—n—)x(n—n-) 18 the new relation matrix and the follow-

ing result hold:
M/ Sa
M k
A= ( SAk TAk )

where Sgk is the transport matrix of Sy, .
Proof: It’s obvious the theorem holds by Definition 7.
Theorem 8: Let IS = (U, AT, V, f) is an information sys-

tem, where U = {x1,x2, ..., x,}, X C U, A1,A2,...,An C
AT, k € {1,2,....m}, Sa, = [} Jon—n—ysn—s Ta, =
[tl] b= xn—s F(X™ ) = (fn n- —H’fn n- +29'-~sfn)Ta 0 =
(1,1,...,DT is a n~ x 1 column vector, Q' =
(1, 1, ...DTisa(m —n") x 1 column vector, IAi(X/) =
[M,Zk](n—n*)u and I/;Z = [ka](n—n*)xl are two new inter-
mediate matrices of Ay, VX C U,if X~ = X N U~ and

X' = X — X, then the following results hold:

LAY+ Sa, x F~(X7) )

IAX) = k
4 X) (S}k X F'(X")+Ta, x F~(X7)
IY +Sp, x O~ )

Iy =
. (Sf{k x Q'+ Ty x Q7

where
/i _i_Z'f ij .
uAk j:l SAlfn—n’ +j
g = i=1,2,...,n—n"
Ar — Z S/(z n+n=) +Z tl n+n")j )
=1 Ak J A fn_”i""./
i=n—n" +1,n—n_+2,...,n
Ji n- '
vAk +Z 1 Ak
; i=1,2,...,n—n"
% =
A n—n"
/(1 n+n-) (i—n+n")j
Do +Z |y
i=n—n +1l,n—n"+2,....n

Proof: 1t’s obvious the theorem holds by Definition 1.
Example 3 (Continued Example 1):

where U™ = {x7, x3}.
U' =U—-U" ={x1,x2,x3, X4, X5, X¢},
X" =U"NX = {x7, x3},
X' =X —X" ={x3,x4,x5}.

123654

TABLE 3. An information system with added objects.

U, aq a9 as a4
1 1 1 1 3
To 1 1 1 3
T3 2 1 1 3
Ty 3 2 1 3
Ts 2 3 2 2
e | 1 2 1 1

According to Theorem 6, we can get the characteristic

function of X ~:
o 1

According to Theorem 7, we can calculate incremental
relation matrices S4, and Ty, as follows:

o _(1 0 0 0 0 1\
AA=lo 1 0 1 0 0

10
= (o 1)

According to Theorem 8, we can calculate new intermedi-
ate matrices / Af (X)and I AT as follows:

u;\11 = “1141 - ZJZ
le = v/lh - Zj_ sAl
ui/421 = u%h - Z
vfl = vil —Zj_ sA1 =4,
u:‘\31 = u/341 - Z

B33
VA T VA ZJ_ sAl =2,

1
Safotrj =0,

SA1f6+j =12,

4 4 § :
MAI - uAl - SA1f6+j
2 .
14 4 4j
Vi = V4 — s =4,
Aq Ay j:1 Ay
5 _ 5
Ug, = Uy, — E SA1f6+J 2,

/5 5
vAl —_— VAI -

2 .
6 6 6
Uy, =g, — ijl sqfori =2,
2 .
6 6 6 .
v1/41 =Va T Z-_l sAjl =4
soIA1 (X) =(0,1,2,1,2,007
=2,2,2,2,2,2"

1
LX) =0,5,1,7,1,07

5 55
According to Definition 3, we can calculate two new cut
matrices IXI (X"yand I jl (X) as follows:
1 2] 3} 4]
hAI =0, hA1 =0, hA1 = 1,hA1 =0,
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myY =1, iy =0,
ny =0, m =10 =10 =1,
my =1, ! =0,
soIy (X = (0,0,1,0, 1,0,
I x)=0.1,111,07;

Similarly, we can get new cut matrices of X under
A2, A3, A4 as follows:

I (X') = (0,0,0,0, 1,0,
0xy=01,11117"
Iy, (X) = (0,0,0,0,1,0),
0xh=a,1,1,111"
Iy,(X) = (0,0,0,0,1,0),
I =(1,011,1,07.

4 0,0.8
Then F() |, Av (X)) =(0.0,1,0.1,0),

4—0,0.2
F(Zk:IAk X)) = (1,1’1’1’1’1)T7
4 P,0.8 , ,
FQ,_ A X)) =(0,0,0.0.1,0",

——P02
F(ZkzlAk (X’)) = (0,0,1’1’1’0)T.

008
X7) = {x3, x5},

0,0.2
(X') = {x1,x2, X3, X4, x5, X6},

So ZZ:[ Ak
—
Zk:l Ak

4 P,0.8
Do A XD =),

4—P,
Zk:l Ak

IV. THE ALGORITHMS FOR UPDATING
MULTIGRANULATION DECISION-THEORETIC
APPROXIMATIONS WHILE ADDING OR DELETING
OBJECTS

In this section, we give a static algorithm and two fast
algorithms for updating multigranulation decision-theoretic
rough approximations.

For Algorithm 1, Step 1 compute the characteristic func-
tion and it’s time complexity is O(|U]); Steps 2-12 calculate
the relation matrix and it’s time complexity is om|U?);
Steps 13-19 calculate two intermediate matrices and the basic
matrix, it’s time complexity is O(m|U|?); Steps 20-28 and
Steps 29-37 calculate two cut matrices and their time com-
plexity are O(m|U|); Step 38 and Step 39 calculate the charac-
teristic function of approximations and their time complexity
are both O(m|U ). Hence, the total time complexity of Algo-
rithm 1 is O(m|U|?).

For Algorithm 2, Step 1 update the universe and the set X,
it’s time complexity is O(1); Step 2 calculate the added char-

02
(X') = {x3, x4, x5}.
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Algorithm 1 Static Algorithm for Computing Multigranula-
tion Decision-Theoretic Rough Approximations

Input: An information system IS = (U, AT, V, f), the set X, two thresholds
o and B.

0,
Output: ¥, 4,200, 51 4P oo, Y aPe),
7})’ -
s A P o,

1 Compute F(X);
2 fork=1tom
3 fori=1ton
4 forj=1ton
5 if (x;, Xj) € RAk then
io_q.
6 "y, = I;
7 else FCompute My,
i _o
8 My = 0;
9 end
10 end
11 end
12 end
13 fork=1tom
14 fori=1ton i
n & .
15 uixk :Zj=lmﬁkﬁ’
16 vff‘k = ‘J'-’:l 1‘11Xk; %Compute lA‘k (X)JA'k Ay (X)
17 hfl‘\k = uj‘k /vgk;
18 end
19 end
20 fork=1tom
21 fori=1ton
22 if hi,‘ > « then
k
23 B =1
k
24 else %Compute Ifik X)
25 W =o;
k
26 end
27 end
28 end
29 fork=1tom
30 fori=1ton
31 ifhqu > B then
" .
32 hAk =1
33 else 9%Compute IATk X)
it .
34 hAk =0;
35 end
36 end
37 end

38 Compute F(YI, Ay %% (X)) = max]™, (Ijk X)),
PO AP 00) = masft a0,
39 Compute F(Y1, Ay (X)) = mmkm:l(ljk X)),
FOO AP o0y = min_y 1}, 000
40 Return Y71, 4, 0%(X), maﬁm,
S A0, T A P oo,

acteristic function and it’s time complexity is O(|U]); Step
3 update the characteristic function and it’s time complexity
is O(1); Steps 4-14 and Steps 15-25 calculate two interme-
diate matrices and their time complexity are O(m|U||U™T|)
and O(m|U ™ |?) respectively; Steps 26-37 update two inter-
mediate matrices and basic matrix, it’s time complexity
is O(m|U’'||UY|); Steps 38-46 and Steps 47-55 calculate
two new cut matrices and their time complexity are both
O(@m|U’)); Step 56 and Step 57 update the characteristic func-
tion of approximations and their time complexity are both
O(@m|U’|). Hence, the total time complexity of Algorithm 2 is
om|U'||UT)).

For Algorithm 3, Step 1 update the universe and the
set X, it’s time complexity is O(1); Step 2 update the
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Algorithm 2 The Incremental Algorithm for Updating Algorithm 3 The Incremental Algorithm for Updating
Approximations of MG-DTRS While Adding Objects Approximations of MG-DTRS While Deleting Objects

Input: An information system IS = (U, AT, V, f), the target concept X, Input: An information system IS = (U, AT, V., f), the target conceth s

two thresholds o and B, U™, X+, F(X), 0%, 1} (X) IA'k

two thresholds @ and B, U™, X_ F(X) o, (X) IAk

()
Output: Y7, A, (X) py ?x, S Ak A XN, Output: Y[, Ay IALOO‘(X) S Ax ?x, S Ak AkPC‘(X)
YA Ak P, YA Ak ).
1 U=vuUtx' =xuxt; 1 U=U-U"X'=X-X";
2 Compute FT(X1); 2 Update F~(X~) by F(X);
3 Update F/(X') = (F(X), Ft(xt)T; 3 Compute Sy, by Ma, ;
4 fork=1tom 4 fork=1tom
5 fori=1ton 5 fori=1tonn" .
6 for j = n+1 to n4nt 6 Wio=ul e
1 i
7 if (x;, xj) € RAk then :?,k ;qk ’]1 Ak nenT A
8 s, = ! Yy = VA L=l By
9 else %Compute Say, 8 h Ay ”Ak /V , ,
ij A v
10 S‘Zk =0 ?0 endend %Compute IAk X", IAk s If/‘k (0.9}
11 end
12 end Il fork=1tom
13 end 12 for 1 :il ton-n—
14 end 13 1thk > a then
15 fork=1tom 14 WY o=1;
. =1
16  fori=n+1tontnt s ese ¢
17 fOl‘_! =n+1ton+nt e W _o. GCombute 1/¢ )
18 if (xj, xj) € Ry, then Ay T PUte fg
19 tl_/ —1: 17 end
Ag ’ 18 end
20 else B % Compute Ty X 19 end
21 )] 20 fork=1tom
A 21 fori=1tonn~
22 end ori —l 0 n-n
23 end 22 lthk > f then
24 end 23 =1
;2 :ndk 1t 24 else ,
or K= 1tom [ 1 v
27 fori=1ton ;2 dhAk =0 %Compute Loy X
en
2 ”ék =ty * Z/+1 ‘Akf"ﬂ : 27 end
2 ka = VAk + Zjn 1321{' 28 end
0 " 29 Compute F'(Y)_ | Ay %% (X)) = maxj’_ 1(1 L xy),
—
31 end %Compute 1/;2()(’), IAZ,IAk X" F/(Z/r(nfl Ak (X)) = maxjL I(IA X"
32 for i =n+1ton+nt m _
o y e n>f +Z" (i n)jf 30 Compute F’ (Z X)) = miny_ l(I (X ),
“ Ak IR N F (Z”’ Aoy = mine @l o0
34 vy S 4 Zn (= n)/ k=1 k k=1 >
Ak J—1 Ak j=1 Ak ’ 31 Return Zm Ax O,a (X) Zm 0 (X)
35 h = uAk /v
36 end Y a0, ZkzlAk P,
37 end

38 fork=1tom
39 fori=1lton+n™

TABLE 4. The description of data sets.

40 if hi“k > « then
o . .

:; i =1 No. Datasets Objects Attributes

else ,
43 iy =0 %eCompute I, (X') 1 Breast 286 10
44 end
45 end 2 Balance 625 5
46 end 3 Solar 1389 13
47 fork=1tom
48 forie1tomnt 4 Chess 3196 37
49 ifh’k > B then 5 Mushroom 8124 23
50 =1 6 Nursery 12960 8
51 else ,
52 hﬁk =0; %Compute IAI (0.4}
gi en de“d characteristic function and it’s time complexity is O(1);
55 end Step 3 compute the intermediate matrix and it’s time com-

56 Compute F'(3_7 | Ay lAkO’D‘(X/)) = max}_ ,(1,;i ")),
PO AP ) = magt 1y T(X))
Compute F’ (Zk=| APy = miny_ ( (X ))s
FIOoT A P o) = mintt_ Ak(X’)):
58 Return ka_lAkO'a(X’) mo’ﬂ(f),
S AP, T A P,

5

~

plexity is O(1); Steps 4-10 calculate two intermediate matri-
ces and basic matrix, it’s time complexity is O(m|U’||U~|);
Steps 11-19 and Steps 20-28 calculate two new cut matrices
and their time complexity are both O(m|U’|); Step 29 and
Step 30 update the characteristic function of approximations
and their time complexity are both O(m|U’|). Hence, the total
time complexity of Algorithm 3 is O(m|U’||U ™).
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TABLE 5. The comparison of static and incremental algorithms versus the size of added objects.

Breast Balance Solar Chess Mushroom Nursery
NO. Static Incre. Static  Incre. Static  Incre. Static  Incre. Static Incre. Static  Incre.
1 0.124 0.016 0.148  0.045 0.132  0.052 0.341  0.102 0.957 0.182 0.972  0.187
2 0.137 0.027 0.155 0.053 0.235 0.071 0.747  0.131 1.080 0.042 2.583  0.290
3 0.142  0.035 0.178 0.054 0.309 0.071 1.658 0.162 7.028 0.364 5.709  0.380
4 0.153 0.037 0.189  0.059 0.355 0.077 2.586 0.166 11.876  0.405 9.841 0444
5 0.154 0.041 0.208  0.059 0.438  0.057 3.921  0.219 17.852  0.507 14303  0.504
6 0.157 0.043 0.259  0.065 0.503 0.104 5475 0.185 25.813  0.557 21.509  0.551
7 0.156  0.042 0.246  0.062 0.544  0.080 8.092 0.284 36.882  0.587 32242  0.579
8 0.178 0.046 0.287  0.068 0.716  0.125 9.676  0.370 75.358  0.686 56.319 0.701
9 0.183  0.047 0.280 0.069 0.856 0.137 12.633  0.330 83.242  0.802 58.256  0.670
10  0.192 0.051 0.339 0.106 0.992 0.146 15.808 0.354 168.325  0.866 96.078  0.730
02 T T T T T T 0.35 T 1 T T
018 || _e— pamena 0315 | —a— peramena 09
0.16 0.28 08
Tou Zo25 go7
§ 0.12 % 021+ % 06
g 0.1 g 0.175 - g 0.5
g_OOS ?;_ 014+ ?;04
5 5 5
O 0.06 Q 0.105 - 003
004 /’_'/.-A—v/"—'/‘ 0‘07M—M—/ 02
002 0035 " 04 M

5
o

2 3 4 5 6 7 8 9 10 1 2 3 4
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FIGURE 1. Computational time of static and incremental algorithms versus the size of added objects.

V. EXPERIMENTAL EVALUATION AND ANALYSIS

We conducted several experiments to evaluate the perfor-
mance of the proposed incremental algorithms. From the
UCI machine learning repository, the basic information of
six data sets were wrote in Table 4, and experiments are
implemented on a PC with Windows10, AMD Ryzen5 3550H
CPU, 2.10 GHz and 16 GB memory, Algorithm 1 and Algo-
rithm 2, Algorithm 3 were compared respectively. Each data
set in Table 4 was divided into an average of 10 sub-data sets,
and the first sub-data set was seen as the first basic data set,
the combination of the first and second sub-data set was seen
as the second basic data set, and so on.

A. EXPERIMENTS WITH DIFFERENT SIZED DATA SETS
WHEN ADDING OBJECTS

In this subsection, for each basic data set, we randomly select
5% of the size of the basic data set from its complement set

VOLUME 9, 2021

in the universe as the inserted new data set. By comparing the
calculation time of Algorithm 1 and Algorithm 2, we show
the efficiency of Algorithm 2 and the experimental results
were listed in Table 5. With the increase of size for data
set, the more detailed information of two algorithms were
shown in Figure 1, it is easy to see from Figure 1 that the
calculation time of two algorithms usually increase with the
increase of the basic data set and Algorithm 2 is always faster
than Algorithm 1, the larger the basic data set, the greater the
difference in efficiency.

B. EXPERIMENTS WITH DIFFERENT SIZED DATA SETS
WHEN DELETING OBJECTS

In this subsection, for each basic data set, we randomly select
5% of the size of the basic data set from its complement set
in the universe as the inserted new data set. By comparing the
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FIGURE 2. Computational time of static and incremental algorithms versus the size of deleted objects.
TABLE 6. The comparison of static and incremental algorithms versus the size of deleted objects.
Breast Balance Solar Chess Mushroom Nursery
NO. Static Incre. Static  Incre. Static  Incre. Static  Incre. Static  Incre. Static  Incre.
1 0.025 0.007 0.030 0.021 0.064 0.025 0.250 0.044 0.615 0.049 0.829 0.057
2 0.027 0.012 0.052  0.023 0.181 0.030 0.609 0.055 2.961 0.127 2.584 0.127
3 0.035 0.017 0.078 0.025 0.214 0.033 1.311 0.072 5.904 0.255 5.278 0.259
4 0.044  0.022 0.105 0.028 0.261 0.033 2.011 0.091 10.738  0.440 8.941 0.360
5 0.050 0.025 0.128 0.029 0.316 0.039 3.748 0.124 17.711  0.690 13.189  0.568
6 0.062  0.027 0.144  0.031 0.411 0.042 5.068 0.282 28.161  1.091 20.518  0.687
7 0.079  0.032 0.178 0.033 0.507 0.043 7.053 0.394 38.015 1.302 29.607 0.948
8 0.099 0.036 0.196  0.037 0.602 0.045 9.968 0.435 68.844  1.727 48.201 1.326
9 0.125 0.041 0.220 0.048 0.781  0.050 11.22 0.531 81.432  2.098 67.229 1.710
10 0.156  0.045 0.248  0.050 0.935 0.053 13.354  0.704 131.54 2.876 82.189 1.957

calculation time of Algorithm 1 and Algorithm 3, we show
the efficiency of Algorithm 3 and the experimental results
were listed in Table 6. With the increase of size for data
set, the more detailed information of two algorithms were
shown in Figure 2, it is easy to see from Figure 2 that the
calculation time of two algorithms usually increase with the
increase of the basic data set and Algorithm 3 is always faster
than Algorithm 1, the larger the basic data set, the greater the
difference in efficiency.

VI. CONCLUSION

In this paper, we propose the method of computing
approximations based on the matrix of multigranulation
decision-theoretic rough sets. On this basis, the method of
dynamic updating approximations with objects increased or
deleted of multigranulation decision-theoretic rough sets are
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proposed, and some related properties are studied. For each
case, an example is given to verify its validity. Finally, exper-
imental studies show that two proposed incremental algo-
rithms can significantly reduce unnecessary computing time.
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