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ABSTRACT Along with the development of big data, knowledge updating occurs in various situations,
some scholars had studied the dynamicmethod of updating knowledge inmultigranulation decision-theoretic
rough sets when adding or deleting granular structures. However, there is no study about the case of adding or
deleting objects, which limits the development of multigranulation decision-theoretic rough sets. Based on
the matrix method, the dynamic knowledge updating of optimistic multigranulation decision-theoretic rough
set and pessimistic multigranulation decision-theoretic rough set were studied in this paper, then given the
static algorithm and dynamic algorithms, and the time complexity of three algorithms was analyzed. The
theory and experimental results show that two dynamic algorithms are both more effective than the static
algorithm.

INDEX TERMS Incremental updating, knowledge discovery, multigranulation decision-theoretic rough sets.

I. INTRODUCTION
As a data analysing and processing theory, rough set theory
was put forward by Z. Pawlak from Poland [1], it has made
great progress in both theory and application, and has been
applied to data mining [2], machine learning [3]–[5], knowl-
edge discovery [6] and other fields. As the basic calculation of
rough set, the calculation of lower and upper approximations
are necessary steps to obtain other significant achievements,
many scholars have popularized rough set in various aspects.

To overcome the influence of noise data, Yu et al. [7]
proposed the decision-theoretic rough set, which simulates
the process of human decision-making under uncertainty and
risk, we can obtain the calculation of thresholds through deci-
sion risk minimization based on bayesian decision theory [8],
conditional probability was estimated by naive bayesian
model [9], and then given the concepts of positive domain,
negative domain and edge domain, they are the basis of three-
way decision [10], [11]. Therefore, decision-theoretic rough
set is a model with solid theoretical foundation and practical
application.

Pawlak rough set model and decision-theoretic rough set
model are based on a single equivalence relation, due to
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practical needs, multigranulation rough set based on multiple
equivalence relations was put forward by Qian et al. [12].
With the development of multigranulation rough set, several
generalized multigranulation rough set models had been pro-
posed to solve real-world problems with complex environ-
ments [13]–[17]. Multigranulation decision-theoretic rough
set was proposed by Qian et al. [18], and several of its
extended models were studied [19]–[23].

With the arrival of the big data, many scholars have studied
incremental knowledge updating, using existing knowledge
to update new knowledge, rather than recalculating, which
will save a lot of time and space. There are three main aspects
of the current dynamic knowledge updating: the dynamic
change of objects, the dynamic change of attributes and the
dynamic change of attribute values.

For the decision rules for the decision table with increase of
objects, Liu et al. [24] proposed the corresponding incremen-
tal algorithm. Liang et al. [25] proposed an incremental fea-
ture selection algorithm based on rough set while increasing
objects. Considering the addition and deletion of single object
in neighborhood fuzzy decision system, Zeng et al. [26]
proposed an incremental updating method of approximations
in fuzzy rough set theory. Hu et al. [27] presented a method
to update multigranulation approximations with the varia-
tion of granulars. Li et al. [28] proposed a matrix-based
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method of approximates when attribute values were updated
dynamically in ordered information system. Li et al. [29] put
forward the rule extraction algorithm based on the charac-
teristic relation when adding and deleting multiple attributes.
Qian et al. [30] proposed a solution for the attribute reduction
problem to avoid redundant steps of incremental calcula-
tion with increasing attributes. Zeng et al. [31] proposed an
incremental feature extraction algorithm for fuzzy rough set
aiming at dynamic changes of attributes in mixed information
system with many data types.

The rest of the paper is organized as follows. Section 2
briefly introduces the basic concepts of rough sets, multi-
granulation decision-theoretic rough sets and relation matrix.
In section 3, the method of computing the lower and upper
approximations are proposed by the matrix-based, then
updating approximations when adding or deleting objects.
Several dynamic algorithms are given in Section 4. In section
5, we verify the effectiveness of proposed dynamic algo-
rithms experimentally. Finally, summarized the full text in
Section 6 and put forward further directions of research.

II. PRELIMINARIES
A. ROUGH SETS
Give an information system IS = 〈U ,AT ,V , f 〉, where U =
{x1, x2, . . . , xn} is a non-empty finite set of objects called
universe; AT is a non-empty finite set of attributes, a ∈ AT
is called an attribute; V =

⋃
a∈AT

Va is a set of attribute values,

Va is a non-empty set of values of attribute a ∈ AT , called
the domain of a; f : U ×AT → V is an information function
that maps an object in U to exactly one value in Va such that
∀a ∈ AT , xi ∈ U , f (xi, a) ∈ Va.
For a subset of attributes B, an indiscernibility relation RB

is defined as follows:

RB = {(x, y) ∈ U × U : f (x, a) = f (y, a),∀a ∈ B}

where RB is an equivalence relation on U . The equivalence
relation RB partitions the universe U into a family of dis-
joint subsets called equivalence classes, the equivalence class
including x with respect to B is denoted as follows:

[x]B = {y ∈ U : (x, y) ∈ RB}

For a set X ⊆ U , the lower and upper approximations of X
with repect to R are defined as follows:

R(X ) = {x ∈ U : [x]R ⊆ X}

R(X ) = {x ∈ U : [x]R ∩ X 6= ∅}

where [x]R = {y ∈ U |(x, y) ∈ R} is a R-equivalence class
containing xi. If R(X ) = R(X ), we say that X is a definable
set; Otherwise, X is a rough set.

B. MULTIGRANULATION DECISION-THEORETIC ROUGH
SETS (MG-DTRS)
Let IS = 〈U ,AT ,V , f 〉 is an information system, A1,
A2, . . . ,Am ⊆ AT and ∀X ⊆ U , the optimistic multi-
granulation lower and upper approximations are denoted by

∑m
k=1 Ak

O,α(X ) and
∑m

k=1 Ak
O,β

(X ), respectively, where

m∑
k=1

Ak

O,α

(X ) = {x ∈ U :
m∨
i=1

P(X |[x]Ai ) ≥ α}

m∑
k=1

Ak

O,β

(X ) = U − {x ∈ U :
m∧
i=1

P(X |[x]Ai ) ≤ β}

The pair <
∑m

k=1 Ak
O,α(X ),

∑m
k=1 Ak

O,β
(X ) > is called

the optimistic multi-granularity decision-theoretic rough sets
of X .
For an information system IS = 〈U ,AT ,V , f 〉, A1,

A2, . . . ,Am ⊆ AT and ∀X ⊆ U , the pessimistic multi-
granulation lower and upper approximations are denoted by∑m

k=1 Ak
P,α(X ) and

∑m
k=1 Ak

P,β
(X ), respectively, where

m∑
k=1

Ak

P,α

(X ) = {x ∈ U :
m∧
i=1

P(X |[x]Ai ) ≥ α}

m∑
k=1

Ak

P,β

(X ) = U − {x ∈ U :
m∨
i=1

P(X |[x]Ai ) ≤ β}

The pair <
∑m

k=1 Ak
P,α(X ),

∑m
k=1 Ak

P,β
(X ) > is called

the pessimistic multi-granularity decision-theoretic rough
sets of X .

C. RELATION MATRIX
Let IS = 〈U ,AT ,V , f 〉 is an information system, where
U = {x1, x2, . . . , xn} and ∀X ⊆ U , the characteristic function
F(X ) = (f1, f2, . . . , fn)T (T represents a transpose operation)
of X is constructed as:

fi =

{
1, xi ∈ X
0, xi /∈ X

i = 1, 2, . . . , n

For an information system IS = 〈U ,AT ,V , f 〉, where
U = {x1, x2, . . . , xn}, A1,A2, . . . ,Am ⊆ AT , ∀Ak ⊆ AT ,
k ∈ {1, 2, . . . ,m}, the relation matrixMAk = [mijAk ]n×n of Ak
is constructed as:

mijAk =

{
1, (xi, xj) ∈ RAk
0, (xi, xj) /∈ RAk

i, j = 1, 2, . . . , n

III. UPDATING MULTIGRANULATION
DECISION-THEORETIC ROUGH APPROXIMATIONS WITH
INCREASING OR DECREASING OF OBJECTS
A. MATRIX-BASED REPRESENTATION OF
APPROXIMATIONS IN MG-DTRS
Due to the need of practical application, this section dis-
cusses multigranulation decision-theoretic rough approxima-
tions based on the matrix and give some properties.
Definition 1:Let IS = 〈U ,AT ,V , f 〉 is an information sys-

tem, where U = {x1, x2, . . . , xn}, X ⊆ U , A1,A2, . . . ,Am ⊆
AT , k ∈ {1, 2, . . . ,m}. For a relation matrix MAk =

[mijAk ]n×n, a characteristic function F(X ) = (f1, f2, . . . , fn)T ,
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a n × 1 column vector Q = (1, 1, . . . , 1)T , two intermediate
matrices INAk (X ) = [uiAk ]n×1 and IHAk = [viAk ]n×1 of Ak are
defined by:

INAk (X ) = MAk × F(X )

IHAk = MAk × Q

where uiAk =
∑n

j=1 m
ij
Ak fj, v

i
Ak =

∑n
j=1m

ij
Ak , (i, j =

1, 2, . . . , n) and × denotes matrix multiplication.
Definition 2: Let IS = 〈U ,AT ,V , f 〉 is an informa-

tion system, where U = {x1, x2, . . . , xn}, X ⊆ U ,
A1,A2, . . . ,Am ⊆ AT , k ∈ {1, 2, . . . ,m}. For two intermedi-
ate matrices INAk (X ) = [uiAk ]n×1 and I

H
Ak = [viAk ]n×1, the basic

matrix IAk (X ) = [hiAk ]n×1 of Ak is constructed as:

IAk (X ) = INAk (X )/.I
H
Ak

where hiAk = uiAk /v
i
Ak (i = 1, 2, . . . , n) and ‘×’ denotes

matrix dot divide.
Definition 3:Let IS = 〈U ,AT ,V , f 〉 is an information sys-

tem, where U = {x1, x2, . . . , xn}, X ⊆ U , A1,A2, . . . ,Am ⊆
AT , k ∈ {1, 2, . . . ,m}. For a basic matrix IAk (X ) = [hiAk ]n×1,
two cut matrices of the lower and upper approximations of Ak
are constructed as I↓Ak (X ) = [hi↓Ak ]n×1 and I

↑

Ak (X ) = [hi↑Ak ]n×1,
where

hi↓Ak =

{
1, hiAk ≥ α

0, hiAk < α
i = 1, 2, . . . , n

hi↑Ak =

{
1, hiAk > β

0, hiAk ≤ β
i = 1, 2, . . . , n

Theorem 1: Let IS = 〈U ,AT ,V , f 〉 is an information sys-
tem, where U = {x1, x2, . . . , xn}, X ⊆ U , A1,A2, . . . ,Am ⊆
AT , k ∈ {1, 2, . . . ,m}. For two cut matrices I↓Ak (X ) =

[hi↓Ak ]n×1 and I
↑

Ak (X ) = [hi↑Ak ]n×1, the following results hold:

(1) F(
∑m

k=1 Ak
O,α(X )) = maxmk=1(I

↓

Ak (X ))

(2) F(
∑m

k=1 Ak
O,β

(X )) = maxmk=1(I
↑

Ak (X ))
where ‘max’ indicate a maximum value among the corre-
sponding position values of multiple matrices with same size.

Proof: (1) By the definitions of characteristic function
and cut matrix, we can obtain F(

∑m
k=1 Ak

O,α(X )) = (f1,

f2, . . . , fn)T and I↓Ak (X ) = [hi↓Ak ]n×1, ∀i ∈ {1, 2, . . . , n},

if fi = 1, then xi ∈
∑m

k=1
Ak

O,α
(X )

⇔ xi ∈ Akα(X ), ∃k ∈ {1, 2, . . . ,m}

⇔ P(X |[xi]Ak ) =
|X ∩ [xi]Ak |
|[xi]Ak |

≥ α, ∃k ∈ {1, 2, . . . ,m}

⇔ hiAk =
uiAk
viAk
≥ α, ∃k ∈ {1, 2, . . . ,m}

⇔ h↓iAk = 1, ∃k ∈ {1, 2, . . . ,m}

⇔ maxmk=1h
↓i
Ak = 1, then fi = maxmk=1h

↓i
Ak ;

if fi = 0, then xi /∈
∑m

k=1
Ak

O,α
(X )

⇔ xi /∈ Akα(X ), ∀k ∈ {1, 2, . . . ,m}

⇔ P(X |[xi]Ak ) =
|X ∩ [xi]Ak |
|[xi]Ak |

< α, ∀k ∈ {1, 2, . . . ,m}

⇔ hiAk =
uiAk
viAk

< α, ∀k ∈ {1, 2, . . . ,m}

⇔ h↓iAk = 0, ∀k ∈ {1, 2, . . . ,m}

⇔ maxmk=1h
↓i
Ak = 0, then fi = maxmk=1h

↓i
Ak .

Thus, F(
∑m

k=1 Ak
O,α(X )) = maxmk=1(I

↓

Ak (X )).
(2) By the definitions of characteristic function and cut

matrix, we can obtain F(
∑m

k=1 Ak
O,β

(X )) = (f1, f2, . . . , fn)T

and I↑Ak (X ) = [hi↑Ak ]n×1, ∀i ∈ {1, 2, . . . , n},

if fi = 1, then xi ∈
∑m

k=1
Ak

O,β
(X )

⇔ xi ∈ Ak
β
(X ), ∃k ∈ {1, 2, . . . ,m}

⇔ P(X |[xi]Ak ) =
|X ∩ [xi]Ak |
|[xi]Ak |

> β, ∃k ∈ {1, 2, . . . ,m}

⇔ hiAk =
uiAk
viAk

> β, ∃k ∈ {1, 2, . . . ,m}

⇔ hi↑Ak = 1, ∃k ∈ {1, 2, . . . ,m}

⇔ maxmk=1h
i↑
Ak = 1, then fi = maxmk=1h

i↑
Ak ;

if fi = 0, then xi /∈
∑m

k=1
Ak

O,β
(X )

⇔ xi /∈ Ak
β
(X ), ∀k ∈ {1, 2, . . . ,m}

⇔ P(X |[xi]Ak ) =
|X ∩ [xi]Ak |
|[xi]Ak |

≤ β, ∀k ∈ {1, 2, . . . ,m}

⇔ hiAk =
uiAk
viAk
≤ β, ∀k ∈ {1, 2, . . . ,m}

⇔ hi↑Ak = 0, ∀k ∈ {1, 2, . . . ,m}

⇔ maxmk=1h
i↑
Ak = 0, then fi = maxmk=1h

i↑
Ak .

Thus, F(
∑m

k=1 Ak
O,β

(X )) = maxmk=1(I
↑

Ak (X )).
Theorem 2: Let IS = 〈U ,AT ,V , f 〉 is an information sys-

tem, where U = {x1, x2, . . . , xn}, X ⊆ U , A1,A2, . . . ,Am ⊆
AT , k ∈ {1, 2, . . . ,m}. For two cut matrices I↓Ak (X ) =

[hi↓Ak ]n×1 and I
↑

Ak (X ) = [hi↑Ak ]n×1, the following results hold:

(1) F(
∑m

k=1 Ak
P,α(X )) = minmk=1(I

↓

Ak (X ))

(2) F(
∑m

k=1 Ak
P,β

(X )) = minmk=1(I
↑

Ak (X ))
where ‘min’ indicate a minimum value among the corre-
sponding position values of multiple matrices with same size.

Proof: The process of proof is similar to Theorem 1.
The following example shows that there is no inclusion

relationship between them.
Example 1: Give an information system.

U = {x1, x2, x3, x4, x5, x6}, AT = {a1, a2, a3, a4},

let A1 = {a1}, A2 = {a2}, A3 = {a3}, A4 = {a4},

X = {x3, x4, x5, x7, x8}, α = 0.8, β = 0.2.
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TABLE 1. An information system.

According to the definition of characteristic function,
we have:

F(X ) = (0, 0, 1, 1, 1, 0, 1, 1)T

According to the definition of relation matrix, we have:

MA1 =



1 0 0 0 0 1 1 0
0 1 0 1 0 0 0 1
0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1
0 0 1 0 1 0 0 0
1 0 0 0 0 1 1 0
1 0 0 0 0 1 1 0
0 1 0 1 0 0 0 1



MA2 =



1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 1
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 1
0 0 0 0 1 0 1 1



MA3 =



1 1 1 1 0 1 0 0
1 1 1 1 0 1 0 0
1 1 1 1 0 1 0 0
1 1 1 1 0 1 0 0
0 0 0 0 1 0 1 1
1 1 1 1 0 1 0 0
0 0 0 0 1 0 1 1
0 0 0 0 1 0 1 1



MA4 =



1 0 1 1 0 0 1 0
0 1 0 0 0 1 0 0
1 0 1 1 0 0 1 0
1 0 1 1 0 0 1 0
0 0 0 0 1 0 0 1
0 1 0 0 0 1 0 0
1 0 1 1 0 0 1 0
0 0 0 0 1 0 0 1


According to Definition 1 and Definition 2, we can calcu-

late intermediate matrices IHA1 (X ), I
H
A1

and basic matrix IA1 (X )
of A1 as follows:

u1A1 =
∑8

j=1
m1j
A1
fj = 1, v1A1 =

∑8

j=1
m1j
A1
=3,

u2A1 =
∑8

j=1
m2j
A1
fj = 2, v2A1 =

∑8

j=1
m2j
A1
=3,

u3A1 =
∑8

j=1
m3j
A1
fj = 2, v3A1 =

∑8

j=1
m3j
A1
=2,

u4A1 =
∑8

j=1
m4j
A1
fj = 2, v4A1 =

∑8

j=1
m4j
A1
=3,

u5A1 =
∑8

j=1
m5j
A1
fj = 2, v5A1 =

∑8

j=1
m5j
A1
=2,

u6A1 =
∑8

j=1
m6j
A1
fj = 1, v6A1 =

∑8

j=1
m6j
A1
=3,

u7A1 =
∑8

j=1
m7j
A1
fj = 1, v7A1 =

∑8

j=1
m7j
A1
=3,

u8A1 =
∑8

j=1
m8j
A1
fj = 2, v8A1 =

∑8

j=1
m8j
A1
=3,

so INA1 (X ) = (1, 2, 2, 2, 2, 1, 1, 2)T ,

IHA1 = (3, 3, 2, 3, 2, 3, 3, 3)T ,

IA1 (X ) = INA1 (X )/.I
H
A1 = (

1
3
,
2
3
, 1,

2
3
, 1,

1
3
,
1
3
,
2
3
)T .

According to Definition 3, we can calculate two cut matri-
ces I↓A1 (X ) and I

↑

A1
(X ) as follows:

h1↓A1 = 0, h2↓A1 = 0, h3↓A1 = 1, h4↓A1 = 0,

h5↓A1 = 1, h6↓A1 = 0, h7↓A1 = 0, h8↓A1 = 0,

h1↑A1 = 1, h2↑A1 = 1, h3↑A1 = 1, h4↑A1 = 1,

h5↑A1 = 1, h6↑A1 = 1, h7↑A1 = 1, h8↑A1 = 1,

so I↓A1 (X ) = (0, 0, 1, 0, 1, 0, 0, 0)T ,

I↑A1 (X ) = (1, 1, 1, 1, 1, 1, 1, 1)T ;

Similarly, we can get cut matrices of X under A2,A3,A4
as follows:

I↓A2 (X ) = (0, 0, 0, 0, 1, 0, 1, 1)T ,

I↑A2 (X ) = (1, 1, 1, 1, 1, 1, 1, 1)T ,

I↓A3 (X ) = (0, 0, 0, 0, 1, 0, 1, 1)T ,

I↑A3 (X ) = (1, 1, 1, 1, 1, 1, 1, 1)T ,

I↓A4 (X ) = (0, 0, 0, 0, 1, 0, 0, 1)T ,

I↑A4 (X ) = (1, 0, 1, 1, 1, 0, 1, 1)T .

Then F(
∑m

k=1
Ak

O,0.8
(X )) = (0, 0, 1, 0, 1, 0, 1, 1)T ,

F(
∑m

k=1
Ak

O,0.2
(X )) = (1, 1, 1, 1, 1, 1, 1, 1)T ,

F(
∑m

k=1
Ak

P,0.8
(X )) = (0, 0, 0, 0, 1, 0, 0, 0)T ,

F(
∑m

k=1
Ak

P,0.2
(X )) = (1, 0, 1, 1, 1, 0, 1, 1)T .

So
∑m

k=1
Ak

O,0.8
(X ) = {x3, x5, x7, x8},∑m

k=1
Ak

O,0.2
(X )={x1,x2, x3,x4,x5,x6, x7,x8},∑m

k=1
Ak

P,0.8
(X ) = {x5},∑m

k=1
Ak

P,0.2
(X ) = {x1, x3, x4, x5, x7, x8}.
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B. UPDATING MULTIGRANULATION DECISION-THEORETIC
ROUGH APPROXIMATIONS WHILE INCREASING OBJECTS
In the previous section, we introduced multigranulation
decision-theoretic rough approximations based on the matrix.
In this section, we will introduce dynamic multigranula-
tion decision-theoretic rough approximations with increasing
objects.
Definition 4:Let IS = 〈U ,AT ,V , f 〉 is an information sys-

tem, where U = {x1, x2, . . . , xn}, X ⊆ U , A1,A2, . . . ,Am ⊆
AT , k ∈ {1, 2, . . . ,m}. adding n+ new objects to U , assume
that the new universe is U ′ = U ∪ U+, where U+ =
{xn+1, xn+2, . . . , xn+n+}. ∀X+ ⊆ U+, the characteristic func-
tionF+(X+) = (fn+1, fn+2, . . . , fn+n+ )T ofX+ is constructed
as:

fi =

{
1, xi ∈ X+

0, xi /∈ X+
i = n+ 1, n+ 2, . . . , n+ n+

Theorem 3: Let IS = 〈U ,AT ,V , f 〉 is an information
system, where U = {x1, x2, . . . , xn}, X ⊆ U , U ′ = U ∪U+,
∀X+ ⊆ U+, if X ′ = X ∪ X+, then F ′(X ′) = [f ′i ](n+n+)×1 is
the characteristic function of X ′ and the following result hold:

F ′(X ′) =
(

F(X )
F+(X+)

)
Proof: It’s obvious the theorem holds by Definition 4.
Definition 5: Let IS = 〈U ,AT ,V , f 〉 is an infor-

mation system, where U = {x1, x2, . . . , xn}, X ⊆ U ,
A1,A2, . . . ,Am ⊆ AT , k ∈ {1, 2, . . . ,m}, RAk is the
indiscernibility relation. Two incremental relation matrices
SAk = [sijAk ]n×n+ and TAk = [t ijAk ]n+×n+ are constructed as:

sijAk =

{
1, (xi, xj) ∈ RAk i = 1, 2, . . . , n
0, (xi, xj) /∈ RAk j = n+ 1, n+ 2, . . . , n+ n+

t ijAk =

{
1, (xi, xj) ∈ RAk i = n+ 1, n+ 2, . . . , n+ n+

0, (xi, xj) /∈ RAk j = n+ 1, n+ 2, . . . , n+ n+

Theorem 4: Let IS = 〈U ,AT ,V , f 〉 is an information
system, A1,A2, . . . ,Am ⊆ AT , k ∈ {1, 2, . . . ,m}, SAk =
[sijAk ]n×n+ and TAk = [t ijAk ]n+×n+ , M

′
Ak = [mijAk ](n+n+)×(n+n+)

is the new relation matrix and the following result hold:

M ′Ak =
(
MAk SAk
STAk TAk

)
where STAk is the transport matrix of SAk .

Proof: It’s obvious the theorem holds by Definition 5.
Theorem 5: Let IS = 〈U ,AT ,V , f 〉 is an information sys-

tem, where U = {x1, x2, . . . , xn}, X ⊆ U , A1,A2, . . . ,Am ⊆
AT , k ∈ {1, 2, . . . ,m}, SAk = [sijAk ]n×n+ , TAk = [t ijAk ]n+×n+ ,
F+(X+) = (fn+1, fn+2, . . . , fn+n+)T , Q+ = (1, 1, . . . , 1)T is
a n+ × 1 column vector, I

′N
Ak (X

′) = [u′iAk ](n+n+)×1 and I
′H
Ak =

[v′iAk ](n+n+)×1 are two new intermediate matrices of Ak , ∀X ⊆
U , if X ′ = X ∪ X+, then the following results hold:

I
′N
Ak (X

′) =
(

INAk (X )+ SAk × F
+(X+)

STAk × F(X )+ TAk × F
+(X+)

)

TABLE 2. An information system with added objects.

I
′H
Ak =

(
IHAk + SAk × Q

+

STAk × Q+ TAk × Q
+

)
where

u′iAk =



uiAk +
∑n+

j=1
sijAk fn+j

i = 1, 2, . . . , n∑n

j=1
sj(i−n)Ak fj +

∑n+

j=1
t (i−n)jAk fn+j

i = n+ 1, n+ 2, . . . , n+ n+

v′iAk =



viAk +
∑n+

j=1
sijAk

i = 1, 2, . . . , n∑n

j=1
sj(i−n)Ak +

∑n+

j=1
t (i−n)jAk

i = n+ 1, n+ 2, . . . , n+ n+

Proof: It’s obvious the theorem holds by Definition 1.
Example 2 (Continued Example 1):
where U+ = {x9, x10}, X+ = {x9}.

U ′ = U ∪ U+ = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10},

X ′ = X ∪ X+ = {x3, x4, x5, x7, x8, x9}.

According to Theorem 3, we can get the characteristic
function of X ′:

F ′(X ′) =
(

F(X )
F+(X+)

)
= (0, 0, 1, 1, 1, 0, 1, 1, 1, 0)T

According to Theorem 4, we can calculate incremental
relation matrices SA1 and TA1 as follows:

SA1 =
(
1 0 0 0 0 1 1 0
0 1 0 1 0 0 0 1

)T
TA1 =

(
1 0
0 1

)
According to Theorem 5, we can calculate new intermedi-

ate matrices I
′N
A1
(X ′) and I

′H
A1

as follows:

u′1A1 = u1A1 +
∑2

j=1
s1jA1 f8+j = 2,

v′1A1 = v1A1 +
∑2

j=1
s1jA1 = 4,
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u′2A1 = u2A1 +
∑2

j=1
s2jA1 f8+j = 2,

v′2A1 = v2A1 +
∑2

j=1
s2jA1 = 4,

u′3A1 = u3A1 +
∑2

j=1
s3jA1 f8+j = 2,

v′3A1 = v3A1 +
∑2

j=1
s3jA1 = 2,

u′4A1 = u4A1 +
∑2

j=1
s4jA1 f8+j = 2,

v′4A1 = v4A1 +
∑2

j=1
s4jA1 = 4,

u′5A1 = u5A1 +
∑2

j=1
s5jA1 f8+j = 2,

v′5A1 = v5A1 +
∑2

j=1
s5jA1 = 2,

u′6A1 = u6A1 +
∑2

j=1
s6jA1 f8+j = 2,

v′6A1 = v6A1 +
∑2

j=1
s6jA1 = 4,

u′7A1 = u7A1 +
∑2

j=1
s7jA1 f8+j = 2,

v′7A1 = v7A1 +
∑2

j=1
s7jA1 = 4,

u′8A1 = u8A1 +
∑2

j=1
s8jA1 f8+j = 2,

v′8A1 = v8A1 +
∑2

j=1
s8jA1 = 4;

u′9A1 =
∑8

j=1
sj1A1 fj +

∑2

j=1
t1jA1 f8+j = 2,

v′9A1 =
∑8

j=1
sj1A1 +

∑2

j=1
t1jA1 = 4,

u′10A1 =
∑8

j=1
sj2A1 fj +

∑2

j=1
t2jA1 f8+j = 2,

v′10A1 =
∑8

j=1
sj2A1 +

∑2

j=1
t2jA1 = 4;

so I
′N
A1 (X

′) = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2)T

I
′H
A1 = (4, 4, 2, 4, 2, 4, 4, 4, 4, 4)T

I ′A1 (X
′) = (

1
2
,
1
2
, 1,

1
2
, 1,

1
2
,
1
2
,
1
2
,
1
2
,
1
2
)T

According to Definition 3, we can calculate two new cut
matrices I↓A1 (X

′) and I↑A1 (X
′) as follows:

h1↓A1 = 0, h2↓A1 = 0, h3↓A1 = 1, h4↓A1 = 0, h5↓A1 = 1,

h6↓A1 = 0, h7↓A1 = 0, h8↓A1 = 0, h9↓A1 = 0, h10↓A1 = 0,

h1↑A1 = 1, h2↑A1 = 1, h3↑A1 = 1, h4↑A1 = 1, h5↑A1 = 1,

h6↑A1 = 1, h7↑A1 = 1, h8↑A1 = 1, h9↑A1 = 1, h10↑A1 = 1,

so I↓A1 (X
′) = (0, 0, 1, 0, 1, 0, 0, 0, 0, 0)T ,

I↑A1 (X
′) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T ;

Similarly, we can get new cut matrices of X under
A2,A3,A4 as follows:

I↓A2 (X
′) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,

I↑A2 (X
′) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T ,

I↓A3 (X
′) = (0, 0, 0, 0, 1, 0, 1, 1, 1, 0)T ,

I↑A3 (X
′) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T ,

I↓A4 (X
′) = (0, 0, 0, 0, 1, 0, 0, 1, 1, 0)T ,

I↑A4 (X
′) = (1, 0, 1, 1, 1, 0, 1, 1, 1, 0)T .

Then F(
∑4

k=1
Ak

O,0.8
(X ′)) = (0, 0, 1, 0, 1, 0, 1, 1, 1, 0)T ,

F(
∑4

k=1
Ak

O,0.2

(X ′)) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T ,

F(
∑4

k=1
Ak

P,0.8
(X ′)) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T ,

F(
∑4

k=1
Ak

P,0.2

(X ′)) = (1, 0, 1, 1, 1, 0, 1, 1, 1, 0)T .

So
∑4

k=1
Ak

O,0.8
(X ′) = {x3, x5, x7, x8, x9},∑4

k=1
Ak

O,0.2

(X ′) = {x1, x2, x3, x4, x5, x6, x7,

x8, x9, x10},∑4

k=1
Ak

P,0.8
(X ′) = ∅,

∑4

k=1
Ak

P,0.2

(X ′) = {x1, x3, x4, x5, x7, x8, x9}.

C. UPDATING MULTIGRANULATION DECISION-THEORETIC
ROUGH APPROXIMATIONS WHILE DECREASING OBJECTS
In the previous section, we introduced multigranulation
decision-theoretic rough approximations based on the matrix.
In this section, we will introduce dynamic multigranula-
tion decision-theoretic rough approximations with decreasing
objects.
Definition 6:Let IS = 〈U ,AT ,V , f 〉 is an information sys-

tem, where U = {x1, x2, . . . , xn}, X ⊆ U , A1,A2, . . . ,Am ⊆
AT , k ∈ {1, 2, . . . ,m}. deleting n− objects from U , assume
that the new universe is U ′ = U−U−, where U− =
{xn−n−+1, xn−n−+2, . . . , xn}. ∀X− ⊆ U−, the characteristic
function F−(X−) = (fn−n−+1, fn−n−+2, . . . , fn)T of X− is
constructed as:

fi =

{
1, xi ∈ X−

0, xi /∈ X−
i = n− n− + 1, n− n− + 2, . . . , n

Theorem 6: Let IS = 〈U ,AT ,V , f 〉 is an information
system, where U = {x1, x2, . . . , xn}, X ⊆ U , U ′ = U −U−,
∀X ⊆ U , if X− = X ∩ U− and X ′ = X − X−, then
F ′(X ′) = [f ′i ](n−n−)×1 is the characteristic function of X

′ and
the following result hold:

F(X ) =
(

F ′(X ′)
F−(X−)

)
Proof: It’s obvious the theorem holds by Definition 6.

Definition 7:Let IS = 〈U ,AT ,V , f 〉 is an information sys-
tem, where U = {x1, x2, . . . , xn}, X ⊆ U , A1,A2, . . . ,Am ⊆
AT , k ∈ {1, 2, . . . ,m}, RAk is the indiscernibility relation.
Two incremental relation matrices SAk = [sijAk ](n−n−)×n− and
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TAk = [t ijAk ]n−×n− are constructed as:

sijAk =

{
1, (xi, xj) ∈ RAk i = 1, 2, . . . , n− n−

0, (xi, xj) /∈ RAk j = n− n− + 1, . . . , n

t ijAk =

{
1, (xi, xj) ∈ RAk i = n− n− + 1, . . . , n
0, (xi, xj) /∈ RAk j = n− n− + 1, . . . , n

Theorem 7: Let IS = 〈U ,AT ,V , f 〉 is an informa-
tion system, A1,A2, . . . ,Am ⊆ AT , k ∈ {1, 2, . . . ,m},
SAk = [sijAk ](n−n−)×n− and TAk = [t ijAk ]n−×n− , M

′
Ak =

[mijAk ](n−n−)×(n−n−) is the new relation matrix and the follow-
ing result hold:

MAk =

(
M ′Ak SAk
STAk TAk

)
where STAk is the transport matrix of SAk .
Proof: It’s obvious the theorem holds by Definition 7.
Theorem 8: Let IS = 〈U ,AT ,V , f 〉 is an information sys-

tem, where U = {x1, x2, . . . , xn}, X ⊆ U , A1,A2, . . . ,Am ⊆
AT , k ∈ {1, 2, . . . ,m}, SAk = [sijAk ](n−n−)×n− , TAk =

[t ijAk ]n−×n− , F
−(X−) = (fn−n−+1, fn−n−+2, . . . , fn)T , Q− =

(1, 1, . . . , 1)T is a n− × 1 column vector, Q′ =

(1, 1, . . . , 1)T is a (n − n−) × 1 column vector, I
′N
Ak (X

′) =
[u′iAk ](n−n−)×1 and I

′H
Ak = [v′iAk ](n−n−)×1 are two new inter-

mediate matrices of Ak , ∀X ⊆ U , if X− = X ∩ U− and
X ′ = X − X−, then the following results hold:

INAk (X ) =

(
I
′N
Ak (X

′)+ SAk × F
−(X−)

STAk × F
′(X ′)+ TAk × F

−(X−)

)

IHAk =

(
I
′H
Ak + SAk × Q

−

STAk × Q
′
+ TAk × Q

−

)
where

uiAk =



u′iAk +
∑n−

j=1
sijAk fn−n−+j

i = 1, 2, . . . , n− n−∑n−n−

j=1
sj(i−n+n

−)
Ak fj +

∑n−

j=1
t (i−n+n

−)j
Ak fn−n−+j

i = n− n− + 1, n− n− + 2, . . . , n

viAk =



v′iAk +
∑n−

j=1
sijAk
i = 1, 2, . . . , n− n−∑n−n−

j=1
sj(i−n+n

−)
Ak +

∑n−

j=1
t (i−n+n

−)j
Ak

i = n− n− + 1, n− n− + 2, . . . , n

Proof: It’s obvious the theorem holds by Definition 1.
Example 3 (Continued Example 1):
where U− = {x7, x8}.

U ′ = U − U− = {x1, x2, x3, x4, x5, x6},

X− = U− ∩ X = {x7, x8},

X ′ = X − X− = {x3, x4, x5}.

TABLE 3. An information system with added objects.

According to Theorem 6, we can get the characteristic
function of X−:

F−(X−) =
(
1
1

)
According to Theorem 7, we can calculate incremental

relation matrices SA1 and TA1 as follows:

SA1 =
(
1 0 0 0 0 1
0 1 0 1 0 0

)T
TA1 =

(
1 0
0 1

)
According to Theorem 8, we can calculate new intermedi-

ate matrices I
′N
A1
(X ′) and I

′H
A1

as follows:

u′1A1 = u1A1 −
∑2

j=1
s1jA1 f6+j = 0,

v′1A1 = v1A1 −
∑2

j=1
s1jA1 = 2,

u′2A1 = u2A1 −
∑2

j=1
s2jA1 f6+j = 2,

v′2A1 = v2A1 −
∑2

j=1
s2jA1 = 4,

u′3A1 = u3A1 −
∑2

j=1
s3jA1 f6+j = 2,

v′3A1 = v3A1 −
∑2

j=1
s3jA1 = 2,

u′4A1 = u4A1 −
∑2

j=1
s4jA1 f6+j = 2,

v′4A1 = v4A1 −
∑2

j=1
s4jA1 = 4,

u′5A1 = u5A1 −
∑2

j=1
s5jA1 f6+j = 2,

v′5A1 = v5A1 −
∑2

j=1
s5jA1 = 2,

u′6A1 = u6A1 −
∑2

j=1
s6jA1 f6+j = 2,

v′6A1 = v6A1 −
∑2

j=1
s6jA1 = 4;

soI
′N
A1 (X

′) = (0, 1, 2, 1, 2, 0)T

I
′H
A1 = (2, 2, 2, 2, 2, 2)T

I ′A1 (X
′) = (0,

1
2
, 1,

1
2
, 1, 0)T

According to Definition 3, we can calculate two new cut
matrices I↓A1 (X

′) and I↑A1 (X
′) as follows:

h1↓A1 = 0, h2↓A1 = 0, h3↓A1 = 1, h4↓A1 = 0,
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h5↓A1 = 1, h6↓A1 = 0,

h1↑A1 = 0, h2↑A1 = 1, h3↑A1 = 1, h4↑A1 = 1,

h5↑A1 = 1, h6↑A1 = 0,

so I↓A1 (X = (0, 0, 1, 0, 1, 0)T ,

I↑A1 (X
′) = (0, 1, 1, 1, 1, 0)T ;

Similarly, we can get new cut matrices of X under
A2,A3,A4 as follows:

I↓A2 (X
′) = (0, 0, 0, 0, 1, 0)T ,

I↑A2 (X
′) = (1, 1, 1, 1, 1, 1)T ,

I↓A3 (X
′) = (0, 0, 0, 0, 1, 0)T ,

I↑A3 (X
′) = (1, 1, 1, 1, 1, 1)T ,

I↓A4 (X
′) = (0, 0, 0, 0, 1, 0)T ,

I↑A4 (X
′) = (1, 0, 1, 1, 1, 0)T .

Then F(
∑4

k=1
Ak

O,0.8
(X ′)) = (0, 0, 1, 0, 1, 0)T ,

F(
∑4

k=1
Ak

O,0.2

(X ′)) = (1, 1, 1, 1, 1, 1)T ,

F(
∑4

k=1
Ak

P,0.8
(X ′)) = (0, 0, 0, 0, 1, 0)T ,

F(
∑4

k=1
Ak

P,0.2

(X ′)) = (0, 0, 1, 1, 1, 0)T .

So
∑4

k=1
Ak

O,0.8
(X ′) = {x3, x5},∑4

k=1
Ak

O,0.2

(X ′) = {x1, x2, x3, x4, x5, x6},∑4

k=1
Ak

P,0.8
(X ′) = {x5},∑4

k=1
Ak

P,0.2

(X ′) = {x3, x4, x5}.

IV. THE ALGORITHMS FOR UPDATING
MULTIGRANULATION DECISION-THEORETIC
APPROXIMATIONS WHILE ADDING OR DELETING
OBJECTS
In this section, we give a static algorithm and two fast
algorithms for updating multigranulation decision-theoretic
rough approximations.

For Algorithm 1, Step 1 compute the characteristic func-
tion and it’s time complexity is O(|U |); Steps 2-12 calculate
the relation matrix and it’s time complexity is O(m|U |2);
Steps 13-19 calculate two intermediate matrices and the basic
matrix, it’s time complexity is O(m|U |2); Steps 20-28 and
Steps 29-37 calculate two cut matrices and their time com-
plexity areO(m|U |); Step 38 and Step 39 calculate the charac-
teristic function of approximations and their time complexity
are both O(m|U |). Hence, the total time complexity of Algo-
rithm 1 is O(m|U |2).

For Algorithm 2, Step 1 update the universe and the set X ,
it’s time complexity is O(1); Step 2 calculate the added char-

Algorithm 1 Static Algorithm for Computing Multigranula-
tion Decision-Theoretic Rough Approximations
Input: An information system IS = 〈U ,AT ,V , f 〉, the set X , two thresholds

α and β.

Output:
∑m
k=1 Ak

O,α (X ),
∑m
k=1 Ak

O,β
(X ),

∑m
k=1 Ak

P,α (X ),∑m
k=1 Ak

P,β
(X ).

1 Compute F(X );
2 for k = 1 to m
3 for i = 1 to n
4 for j = 1 to n
5 if (xi, xj) ∈ RAk then

6 mijAk
= 1;

7 else %Compute MAk
8 mijAk

= 0;
9 end
10 end
11 end
12 end
13 for k = 1 to m
14 for i = 1 to n
15 uiAk

=
∑n
j=1 m

ij
Ak
fj;

16 viAk
=
∑n
j=1 m

ij
Ak

; %Compute INAk
(X ),IHAk

,IAk (X )

17 hiAk
= uiAk

/viAk
;

18 end
19 end
20 for k = 1 to m
21 for i = 1 to n
22 if hiAk

≥ α then

23 hi↓Ak
= 1;

24 else %Compute I↓Ak
(X )

25 hi↓Ak
= 0;

26 end
27 end
28 end
29 for k = 1 to m
30 for i = 1 to n
31 if hiAk

> β then

32 hi↑Ak
= 1;

33 else %Compute I↑Ak
(X )

34 hi↑Ak
= 0;

35 end
36 end
37 end
38 Compute F(

∑m
k=1 Ak

O,α (X )) = maxmk=1(I
↓

Ak
(X )),

F(
∑m
k=1 Ak

O,β
(X )) = maxmk=1(I

↑

Ak
(X ));

39 Compute F(
∑m
k=1 Ak

P,α (X )) = minmk=1(I
↓

Ak
(X )),

F(
∑m
k=1 Ak

P,β
(X )) = minmk=1(I

↑

Ak
(X ));

40 Return
∑m
k=1 Ak

O,α (X ),
∑m
k=1 Ak

O,β
(X ),∑m

k=1 Ak
P,α (X ),

∑m
k=1 Ak

P,β
(X ).

acteristic function and it’s time complexity is O(|U+|); Step
3 update the characteristic function and it’s time complexity
is O(1); Steps 4-14 and Steps 15-25 calculate two interme-
diate matrices and their time complexity are O(m|U ||U+|)
and O(m|U+|2) respectively; Steps 26-37 update two inter-
mediate matrices and basic matrix, it’s time complexity
is O(m|U ′||U+|); Steps 38-46 and Steps 47-55 calculate
two new cut matrices and their time complexity are both
O(m|U ′|); Step 56 and Step 57 update the characteristic func-
tion of approximations and their time complexity are both
O(m|U ′|). Hence, the total time complexity of Algorithm 2 is
O(m|U ′||U+|).
For Algorithm 3, Step 1 update the universe and the

set X , it’s time complexity is O(1); Step 2 update the
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Algorithm 2 The Incremental Algorithm for Updating
Approximations of MG-DTRS While Adding Objects
Input: An information system IS = 〈U ,AT ,V , f 〉, the target concept X ,

two thresholds α and β, U+, X+, F(X ), Q+, INAk
(X ), IHAk

.

Output:
∑m
k=1 Ak

O,α (X ′),
∑m
k=1 Ak

O,β
(X ′),

∑m
k=1 Ak

P,α (X ′),∑m
k=1 Ak

P,β
(X ′).

1 U ′ = U ∪ U+,X ′ = X ∪ X+;
2 Compute F+(X+);
3 Update F ′(X ′) = (F(X ),F+(X+))T ;
4 for k = 1 to m
5 for i = 1 to n
6 for j = n+1 to n+n+

7 if (xi, xj) ∈ RAk then

8 sijAk
= 1;

9 else %Compute SAk
10 sijAk

= 0;
11 end
12 end
13 end
14 end
15 for k = 1 to m
16 for i = n+1 to n+n+

17 for j = n+1 to n+n+

18 if (xi, xj) ∈ RAk then

19 t ijAk
= 1;

20 else %Compute TAk
21 t ijAk

= 0;
22 end
23 end
24 end
25 end
26 for k = 1 to m
27 for i = 1 to n
28 u′iAk

= uiAk
+
∑n+
j=1 s

ij
Ak
fn+j;

29 v′iAk
= viAk

+
∑n+
j=1 s

ij
Ak

;

30 h′iAk
= u′iAk

/v′iAk
;

31 end %Compute I
′N
Ak

(X ′), I
′H
Ak

, I ′Ak
(X ′)

32 for i = n+1 to n+n+

33 u′iAk
=
∑n
j=1 s

j(i−n)
Ak

fj +
∑n+
j=1 t

(i−n)j
Ak

fn+j;

34 v′iAk
=
∑n
j=1 s

j(i−n)
Ak

+
∑n+
j=1 t

(i−n)j
Ak

;

35 h′iAk
= u′iAk

/v′iAk
;

36 end
37 end
38 for k = 1 to m
39 for i = 1 to n+n+

40 if hiAk
≥ α then

41 hi↓Ak
= 1;

42 else
43 hi↓Ak

= 0; %Compute I
′
↓

Ak
(X ′)

44 end
45 end
46 end
47 for k = 1 to m
48 for i = 1 to n+n+

49 if hiAk
> β then

50 hi↑Ak
= 1;

51 else
52 hi↑Ak

= 0; %Compute I
′
↑

Ak
(X ′)

53 end
54 end
55 end
56 Compute F ′(

∑m
k=1 Ak

O,α (X ′)) = maxmk=1(I
′
↓

Ak
(X ′)),

F ′(
∑m
k=1 Ak

O,β
(X ′)) = maxmk=1(I

′
↑

Ak
(X ′));

57 Compute F ′(
∑m
k=1 Ak

P,α (X ′)) = minmk=1(I
′
↓

Ak
(X ′)),

F ′(
∑m
k=1 Ak

P,β
(X ′)) = minmk=1(I

′
↑

Ak
(X ′));

58 Return
∑m
k=1 Ak

O,α (X ′),
∑m
k=1 Ak

O,β
(X ′),∑m

k=1 Ak
P,α (X ′),

∑m
k=1 Ak

P,β
(X ′).

Algorithm 3 The Incremental Algorithm for Updating
Approximations of MG-DTRS While Deleting Objects
Input: An information system IS = 〈U ,AT ,V , f 〉, the target concept X ,

two thresholds α and β, U−, X−, F(X ), Q−, INAk
(X ), IHAk

.

Output:
∑m
k=1 Ak

O,α (X ′),
∑m
k=1 Ak

O,β
(X ′),

∑m
k=1 Ak

P,α (X ′),∑m
k=1 Ak

P,β
(X ′).

1 U ′ = U − U−,X ′ = X − X−;
2 Update F−(X−) by F(X );
3 Compute SAk by MAk ;
4 for k = 1 to m
5 for i = 1 to n-n−

6 u′iAk
= uiAk

−
∑n−
j=1 s

ij
Ak
fn−n−+j;

7 v′iAk
= viAk

−
∑n−
j=1 s

ij
Ak

;

8 h′iAk
= u′iAk

/v′iAk
;

9 end %Compute I
′N
Ak

(X ′), I
′H
Ak

, I ′Ak
(X ′)

10 end
11 for k = 1 to m
12 for i = 1 to n-n−

13 if hiAk
≥ α then

14 hi↓Ak
= 1;

15 else
16 hi↓Ak

= 0; %Compute I
′
↓

Ak
(X ′)

17 end
18 end
19 end
20 for k = 1 to m
21 for i = 1 to n-n−

22 if hiAk
> β then

23 hi↑Ak
= 1;

24 else
25 hi↑Ak

= 0; %Compute I
′
↑

Ak
(X ′)

26 end
27 end
28 end
29 Compute F ′(

∑m
k=1 Ak

O,α (X ′)) = maxmk=1(I
′
↓

Ak
(X ′)),

F ′(
∑m
k=1 Ak

O,β
(X ′)) = maxmk=1(I

′
↑

Ak
(X ′));

30 Compute F ′(
∑m
k=1 Ak

P,α (X ′)) = minmk=1(I
′
↓

Ak
(X ′)),

F ′(
∑m
k=1 Ak

P,β
(X ′)) = minmk=1(I

′
↑

Ak
(X ′));

31 Return
∑m
k=1 Ak

O,α (X ′),
∑m
k=1 Ak

O,β
(X ′),∑m

k=1 Ak
P,α (X ′),

∑m
k=1 Ak

P,β
(X ′).

TABLE 4. The description of data sets.

characteristic function and it’s time complexity is O(1);
Step 3 compute the intermediate matrix and it’s time com-
plexity is O(1); Steps 4-10 calculate two intermediate matri-
ces and basic matrix, it’s time complexity is O(m|U ′||U−|);
Steps 11-19 and Steps 20-28 calculate two new cut matrices
and their time complexity are both O(m|U ′|); Step 29 and
Step 30 update the characteristic function of approximations
and their time complexity are bothO(m|U ′|). Hence, the total
time complexity of Algorithm 3 is O(m|U ′||U−|).
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TABLE 5. The comparison of static and incremental algorithms versus the size of added objects.

FIGURE 1. Computational time of static and incremental algorithms versus the size of added objects.

V. EXPERIMENTAL EVALUATION AND ANALYSIS
We conducted several experiments to evaluate the perfor-
mance of the proposed incremental algorithms. From the
UCI machine learning repository, the basic information of
six data sets were wrote in Table 4, and experiments are
implemented on a PCwithWindows10, AMDRyzen5 3550H
CPU, 2.10 GHz and 16 GB memory, Algorithm 1 and Algo-
rithm 2, Algorithm 3 were compared respectively. Each data
set in Table 4 was divided into an average of 10 sub-data sets,
and the first sub-data set was seen as the first basic data set,
the combination of the first and second sub-data set was seen
as the second basic data set, and so on.

A. EXPERIMENTS WITH DIFFERENT SIZED DATA SETS
WHEN ADDING OBJECTS
In this subsection, for each basic data set, we randomly select
5% of the size of the basic data set from its complement set

in the universe as the inserted new data set. By comparing the
calculation time of Algorithm 1 and Algorithm 2, we show
the efficiency of Algorithm 2 and the experimental results
were listed in Table 5. With the increase of size for data
set, the more detailed information of two algorithms were
shown in Figure 1, it is easy to see from Figure 1 that the
calculation time of two algorithms usually increase with the
increase of the basic data set and Algorithm 2 is always faster
than Algorithm 1, the larger the basic data set, the greater the
difference in efficiency.

B. EXPERIMENTS WITH DIFFERENT SIZED DATA SETS
WHEN DELETING OBJECTS
In this subsection, for each basic data set, we randomly select
5% of the size of the basic data set from its complement set
in the universe as the inserted new data set. By comparing the
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FIGURE 2. Computational time of static and incremental algorithms versus the size of deleted objects.

TABLE 6. The comparison of static and incremental algorithms versus the size of deleted objects.

calculation time of Algorithm 1 and Algorithm 3, we show
the efficiency of Algorithm 3 and the experimental results
were listed in Table 6. With the increase of size for data
set, the more detailed information of two algorithms were
shown in Figure 2, it is easy to see from Figure 2 that the
calculation time of two algorithms usually increase with the
increase of the basic data set and Algorithm 3 is always faster
than Algorithm 1, the larger the basic data set, the greater the
difference in efficiency.

VI. CONCLUSION
In this paper, we propose the method of computing
approximations based on the matrix of multigranulation
decision-theoretic rough sets. On this basis, the method of
dynamic updating approximations with objects increased or
deleted of multigranulation decision-theoretic rough sets are

proposed, and some related properties are studied. For each
case, an example is given to verify its validity. Finally, exper-
imental studies show that two proposed incremental algo-
rithms can significantly reduce unnecessary computing time.
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