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ABSTRACT The task of predicting how long a certain industrial asset will be able to operate within its
nominal specifications is called Remaining Useful Life (RUL) estimation. Efficient methods of performing
this task promise to drastically transform the world of industrial maintenance, paving the way for the
so-called Industry 4.0 revolution. Given the abundance of data resulting from the advent of the digitalization
era, Machine Learning (ML) models are the ideal candidates for tackling the RUL estimation problem in a
fully data-driven fashion. However, given the safety-critical nature of maintenance operations on industrial
assets, it’s crucial that such ML-based methods be designed such that their levels of transparency and
reliability are maximized. Modern ML algorithms, however, are often employed as black-box methods,
which do not provide any clue regarding the confidence level associated with their output. In this paper,
we address this limitation by investigating the performance of a recently proposed class of algorithms, Deep
Gaussian Processes, which provide uncertainty estimates associated with their RUL prediction, yet retain the
expressive power of modern ML techniques. Contrary to standard approaches to uncertainty quantification,
such methods scale favourably with the size of the available datasets, allowing their usage in the ‘‘big data’’
setting. We perform a thorough evaluation and comparison of several variants of DGPs applied to RUL
predictions. The performance of the algorithms is evaluated on the NASA N-CMAPSS (New Commercial
Modular Aero-Propulsion System Simulation) dataset for aircraft engines. The results show that the proposed
methods are able to yield very accurate RUL predictions along with sensible uncertainty estimates, providing
more reliable solutions for (safety-critical) real-life industrial applications.

INDEX TERMS Deep Gaussian processes, remaining useful life estimation, uncertainty quantification.

I. INTRODUCTION
Recently, Predictive Maintenance (PM) methods have been
gaining popularity for many different industrial applications.
PM aims at predicting the need for maintenance actions based
on the information extracted from condition monitoring data
describing the health state of the system. Efficient Remaining
Useful Life (RUL) estimation is a key enabler of PM and
the application of Machine Learning (ML) and Deep Learn-
ing (DL) techniques to RUL prediction tasks has been an
active research area over the last several years [1]–[5].

While the majority of model-based prognostics approaches
quantify the associated uncertainty, only a few research stud-
ies on data-driven RUL prediction have tackled the challenge
of quantifying the level of uncertainty associated with the
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predictions of the proposed techniques. Nevertheless, Uncer-
tainty Quantification (UQ) is crucial in the context of PM
because RUL models are used for critical decision-making
and, therefore, need to be transparent regarding the level of
uncertainty in their predictions. As a result, the deployment
of ML techniques in real-world engineering scenarios cannot
prescind from the design of reliable algorithms capable of
providing a probability density function over RUL predic-
tions instead of simple point estimates.

While Deep Neural Networks (DNN) have delivered their
most prominent achievements in the fields of Computer
Vision and Natural Language Processing, recent research
works have also shown their effectiveness with regard to
prognostics [6], [7]. DNNs owe a great part of their suc-
cess to their substantial representational power and to their
capacity for learning sets of hierarchical features across their
multilayer architectures directly from raw data. However,
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one of the limitations of standard DNN models is that they
do not provide an explicit quantification of the uncertainty
associated with the predicted RUL. Their effective extension
within a Bayesian framework, enabling them to perform
UQwithout sacrificing their state-of-the-art performance, has
recently become an active research area in theML community
[8]–[10], [13]. However, a very limited number of solutions
have been proposed for prognostics. Previous works on UQ
solutions for purely data-driven prognostics have been based
mainly on Relevance Vector Machines [11] and Gaussian
Process (GP) regression [12]. GPs, in particular, exhibit good
adaptability and the capacity to handle nonlinear, relatively
complex regression problems. In addition, compared to stan-
dard neural networks, they are based on a well-understood
probabilistic formulation. Their flexibility and the availability
of open-source software implementations [14] have led to
a number of interesting applications in prognostics of engi-
neered systems [15]–[19].

Despite their desirable properties in terms of UQ and their
elegant theoretical formulation, GPs are affected by two main
limitations hindering their application to real-world datasets.
First and foremost, they suffer from cubic complexity to the
data size. Specifically, given a dataset of N input-output pairs
(X, y) = {xi, yi}Ni=1, the exact calculation of the marginal
likelihood involves the computation of the inverse of the
N×N kernel matrixKNN = k(X,X), which results in a com-
putationally prohibitive O

(
N 3
)
cost. Second, their hypoth-

esis space, i.e. the function space they are able to model,
is completely determined by the choice of the kernel function,
which might not be complex enough to describe certain types
of data. However, over the last decades, a number of efficient
solutions to address the aforementioned limitations and refine
standard GP models have been proposed.

The contribution of this work is a thorough evaluation of
three different enhancements of standard GP models in the
context of prognosis: namely, Stochastic Variational Gaus-
sian Processes (SVGPs) [20], [21], Deep Gaussian Pro-
cesses (DGPs) [22], [23], and Deep Sigma Point Processes
(DSPPs)1 [24], [25]. These methods are also compared to a
standard feed-forward neural network (FFNN) and theMonte
Carlo Dropout technique (MCD). While both methods are
valid baselines to compare the RUL prediction accuracy, only
the second one provides the UQ in addition to the actual
prediction. The quality of the resulting uncertainty estimates
is assessed via two different metrics, namely the α-λ [26] and
the probabilistic α-λ [27], both well established in prognosis
applications. To the best of our knowledge, these approaches
have not yet been applied for RUL prediction and, more-
over, the three approaches have not yet been evaluated on
a common task. Such an evaluation will provide guidance
to decision-makers and a better understanding of both the
advantages and limitations of each method. The evaluation
is performed on a case study for RUL prediction on aircraft

1With a slight abuse of notation, we will refer to both deep Gaussian
process model variants (DGP and DSPP) as ‘‘DGP models.’’

engines using the newCommercialModular Aero-Propulsion
System Simulation (N-CMAPSS) dataset from NASA. Our
evaluation results highlight that, while retaining high predic-
tion accuracy, the proposed models are able to successfully
perform UQ. The comparisons with the FFNN and MCD
baselines show that DGP models yield competitive perfor-
mance in terms of both accuracy and UQ.

The remainder of the paper is organized as follows.
Section II outlines related work on UQ in data-driven prog-
nostics. In Section III, the applied methods are described.
In Section IV, the case study is introduced and the experi-
ments are explained. In section VI, the results are presented.
Finally, a summary of the work and an outlook are given in
Section VII.

II. RELATED WORK
A. DEEP LEARNING TECHIQUES IN PROGOSTICS
Over the last several years, different types of DNNs have
been developed for RUL prediction, ranging from relatively
complex, fully-connected networks to Convolutional Neural
Networks [2], [28], [29] and Recurrent Neural Networks [4],
[30], [31]. DL models have shown promising performance
in estimating the RUL from sensor data on prognostics
benchmark datasets [32], [33] using several different network
architectures (see [7] for an extensive review). More sophis-
ticated extensions to the aforementioned standard architec-
tures have also recently been applied to prognosis, including
attention mechanisms [34] and capsule neural networks [35].
As opposed to classical ML techniques, DL methods can
extract relevant information directly from raw data, with very
little need for pre-processing and feature extraction. How-
ever, a common drawback shared by the majority of the DL
models proposed in the literature is that they do not provide
uncertainty estimates associated with their predictions, thus
severely limiting the usefulness of their deployment in real-
life applications.

B. BAYESIAN DNNs
Equipping DL predictions with meaningful uncertainty esti-
mates is a very active research area in the ML commu-
nity. In the context of Bayesian DL, the central idea is
to replace overconfident DL models with Bayesian neu-
ral networks, whereby the weights are treated as random
variables. A predictive distribution is then obtained through
weight marginalization in such a way that uncertainty in
weight space is transferred into probabilistic predictions
rather than simple point estimates. A large portion of cur-
rent research is focused on approximating such predictive
distributions, whose exact calculation is typically intractable.
Popular methods that follow this approach are, for example,
Hamiltonian Monte Carlo [13], Laplace approximation [36],
expectation-propagation [37], and variational inference [8],
[9], [38]. Among these, MC Dropout [9] has found a broad
range of applications due to its simple yet effective rationale:
by applying the dropout technique at inference time and
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forward-propagating the input data through the network sev-
eral times, one can approximate the first two moments of the
predictive distribution. More details concerning MC Dropout
are reported in an apposite paragraph in Section III. An alter-
native class of methods for UQ is Deep Ensembles [10],
a non-Bayesian technique for estimating uncertainty in DNNs
based on training multiple models independently and then
aggregating their outputs. These methods provide competi-
tive results but are very computationally expensive.

C. UQ IN DATA-DRIVEN PROGNOSTICS
In light of their flexible, probabilistic, non-parametric frame-
work, GPs have found several applications in prognosis,
e.g. nuclear component degradation [15], lithium-ion batter-
ies [16], [18], [19], and bearings [17].

On the other hand, despite the increasing efforts to integrate
DNNs with effective UQ techniques, very few of the methods
mentioned in the previous subsection have been success-
fully transferred to prognosis tasks. For instance, ensemble
approaches were applied for UQ in prognostics in [39] where,
rather than simply training independent models, Bayesian
model-averaging was also applied to each model in order to
obtain multiple predictions for the elements in the ensem-
ble. UQ based on Bayesian neural networks and variationial
inference were only recently investigated in [40], [41], with
relatively good results in terms of UQ.

The goal of this work is to introduce a new class of meth-
ods, DGP models, in an attempt to integrate the benefits of
DNNs into the well-understood Bayesian framework of GP
regression. We elaborate more on these approaches in the
following sections.

III. METHODS
As mentioned above, the main idea of this work is to apply
DGP models to the problem of RUL estimation. Our main
motivation is that DGP models combine the benefits of DL,
via their expressive hierarchical representation, and GPs,
in light of their ability to perform UQ. In this section, we pro-
vide some details concerning how such a combination can
be realized by going through the main mathematical features
characterizing each of the investigated methods. A compre-
hensive analysis of the GP-based techniques used here can
be found, for instance, in [24], by which the discussion
below is largely inspired. In order to compare our GP-based
methods with a strong Bayesian DL baseline, we additionally
implement Monte Carlo Dropout (MCD) [9] and apply it to
the same RUL benchmark dataset. Our choice of MCD is
also motivated by the interpretation provided in [9], which
establishes a connection between MCD and the probabilistic
GP introduced in [22]. A description of the main principles
underlying MCD can be found at the end of this section.

A. STOCHASTIC VARIATIONAL GAUSSIAN
PROCESSES - SVGPs
SVGP is a popular inducing point method [42] based on
variational inference [43] that enables the application of the

GP framework to big datasets. SVGPs introduce a multi-
variate Normal variational distribution, q(u) = N (m,S),
over the inducing variables u, where m and S are the mean
and the covariance, respectively. These variables are obtained
from a set of inducing points Z = {zi}Mi=1, lying within the
same space as X, through the data generating function f ,
i.e. u = f (Z). The parameters of such a distribution can be
estimated through the optimization of the ELBO (evidence
lower bound), which can be compactly written as follows:

Lsvgp =

N∑
i=1

{
logN

(
yi | µf (xi) , σ 2

obs

)
−
σf (xi)2

2σ 2
obs

}
−KL(q(u) | p(u)) (1)

where σ 2
obs is the variance of the Normal likelihood p(y | f ),

KL denotes the Kullback-Leibler divergence, and the two
terms µf and σf indicate the predictive mean and the latent
function variance, respectively, which have the following
form:

µf (xi) = kTi K
−1
MMm

σf (xi)2 = K̃ii + kTi K
−1
MMSK−1MMki (2)

where K̃NN = KNN − KNMK−1MMKMN , ki =

k (xi,Z) ,KMM = k(Z,Z) and KNM = KT
MN = k(X,Z).

Given a new test datum x∗ (newly recorded sensor read-
ings), SVGPs yield the following Normal predictive distri-
bution over the corresponding test output y∗ (corresponding
RUL estimate):

p (y∗ | x∗) = N
(
y∗ | µf (x∗) , σf (x∗)2 + σ 2

obs

)
(3)

Eq. 3 computes a probability distribution over the algo-
rithm’s predictions. This is in stark contrast to standard DL
methods applied to prognosis, whose output is limited to a
simple point estimate of the RUL.

SVGPs offer twomain advantages over standard GPs: first,
their formulation involves, at most, the calculation of K−1MM ,
which results in a significant computational advantage if
M � N . Second, the objective in Eq. 1 is written as a sum
over single data points and naturally lends itself to mini-batch
training.

B. DEEP GAUSSIAN PROCESSES - DGPs
The classes of functions modelled by standard GP models,
including SVGPs, are limited by the expressiveness of the
chosen kernel. One possible way to tackle this shortcoming is
to use a DNN to automatically learn the kernel from data [44].
However, these approaches often require problem-specific
architectures and are prone to overfitting.

Analogous to the transition from shallow to deep networks,
DGPs consist of hierarchical compositions of GPs and offer
a powerful alternative means of increasing the representa-
tional power of ‘‘single-layer’’ GPs. They retain many of
the advantages of shallow GPs and introduce a relatively
small number of parameters to optimize compared to standard
neural network models.
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In this work, we apply a variant of DGPs, recently pro-
posed in [23], to overcome some of the drawbacks of the
original DGP formulation [22]. This improved model enjoys
the same advantages as SVGPs, i.e. it reduces computational
complexity by introducing inducing variables for each GP in
the hierarchy and supports mini-batch training. More specifi-
cally, similarly to SVGPs, the following ELBO2 is optimized:

Ldsvi = EQ
[
log p

(
y | f, σ 2

obs

)]
−

∑
KL (4)

where Q = Q
(
f,uf , . . . , gW ,ugW

)
is a variational distribu-

tion depending on each of the GP’s latent function values
and the corresponding inducing variables. Hidden GP latent
functions values are referred to as gw, with w = 1, ..,W
where W is the number of GPs in the first hidden layer. The
KL term in Eq. 4 is of the same form as in the SVGP objective
and it is summed over all the inducing variables in the DGP
architecture, i.e.

{
uf , . . . ,ugW

}
. The first term in Eq. 4 can be

written as a sum over data points since sampling from Q can
be reduced to sampling from {q (fi) , . . . , q (giw)} where the
index i ranges over the number of data pointsN . The resulting
method is based on a doubly-stochastic variational inference
pipeline since the sampling procedure involves the use of the
re-parametrization trick [45] and the minimization of the fac-
torized objective can be performed with mini-batch training.
An illustration of a 2-layer DGP architecture implementing
the technique introduced in [23] is provided in Fig. 1.

FIGURE 1. 2-layer DGP architecture. The first hidden layer consists of
W = 2 GPs, taking as input the data x to calculate µgw (x) and σgw (x) as
prescribed by Eq. 2. The re-parametrization trick is then used to sample
from N

(
µgw (x), σgw (x)

)
and obtain the features to be fed into the next

GP layer.

The final predictive distribution can be written as a contin-
uous mixture of Normal distributions:

p (y∗ | x∗) = E∏W
w=1 q(g∗w|x∗)[

N
(
y∗ | µf (g∗) , σf (g∗)2 + σ 2

obs

)]
(5)

2Here we consider the case of a 2-layer DGP, for the sake of clarity.

where the expectation is analytically intractable but can be
approximated via Monte Carlo samples, resulting in a finite
mixture of Gaussians. As in Eq. 3, Eq. 5 computes a distribu-
tion over RUL values y∗, given new sensor readings x∗, thus
allowing us to quantify the uncertainty of the model.

C. DEEP SIGMA POINT PROCESSES - DSPPs
Despite their many practical successes, variational inference
methods often tend to provide overly confident uncertainty
estimates [46].

A recent series of works [24], [25] aimed to address this
limitation by reformulating the variational inference scheme
at the basis of SVGPs and DGPs. In particular, the authors
note an inconsistency between the ELBO (the objective func-
tion to be optimized shown in Eq. 1) and the predictive distri-
bution to be used at test time (Eq. 3). More specifically, both
quantities are written as functions of two variance terms, one
input-dependent, σf (x)2, and one input-independent, σ 2

obs.
However, these two contributions appear asymmetrically in
Eq. 1. By opportunely modifying the ELBO to fix the afore-
mentioned asymmetry between the objective and the pre-
dictive posterior, the authors introduce a new loss function
whereby the two variance terms, σf (x)2 and σ 2

obs, are treated
consistently. The new objective is given by:

Lppgpr =

N∑
i=1

log p (yi | xi)− βregKL(q(u) | p(u))

=

N∑
i=1

logN
(
yi | µf (xi) , σf (xi)2 + σ 2

obs

)
−βregKL(q(u) | p(u)) (6)

where βreg acts as a regularization hyperparameter.
In [25], the authors show that equipping SVGPs with this

new objective results in a significant improvement in terms
of UQ.

In [24], the DGP framework proposed in [23] is combined
with the new loss function introduced in [25].

DSPPs arise from the necessity of overcoming one last
theoretical obstacle: the direct application of the objective
introduced in [25] to the DGP predictive distribution in Eq. 5
would result in the computation of the logarithm of a con-
tinuous mixture of Normal distributions. The approximation
of such expectation via Monte Carlo sampling would yield a
biased estimator.

To cope with this issue, the authors propose replacing the
continuous mixture of Gaussians with a parametric (finite)
mixture of Gaussians. This procedure is practically imple-
mented by applying an opportune quadrature rule (e.g. the
Gauss-Hermite quadrature rule). To better understand this
point, let’s rewrite Eq. 5 as:

p (yi | xi)

=

∫
dgiN

(
yi | µf (gi) , σf (gi)2 + σ 2

obs

) 2∏
w=1

q (giw | xi)

(7)
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and approximate each distribution inside the product over w
as an S-component mixture of delta distributions, i.e.:

W∏
w=1

q (giw | xi)

→

S∑
s=1

ω(s)
W∏
w=1

δ
(
giw −

(
µgw (xi)+ ξ

(s)
w σgw (xi)

))
(8)

where
{
ω(s)

}S
s=1 and

{
ξ
(s)
w

}S
s=1

are sets of learnable parame-

ters. This transformation allows us to replace the continuous
mixture of Gaussians in Eq. 7 with a (parametric) finite mix-
ture by exploiting the properties of the Dirac delta function.

D. MONTE CARLO DROPOUT - MCD
The Dropout technique [47] is based on randomly dropping
units and the corresponding weights from a neural network
at training time. As pointed out in the original paper, this
procedure results in sampling an exponential number of dif-
ferent ‘‘thinned’’ networks during training. Predictions are
then made by using the entire network, including all units
and connections. The resulting technique is straightforward
to implement and provides an effective strategy to counter
overfitting in DNNs.

MCD provides a Bayesian interpretation of the classic
Dropout framework and shows that, by enabling dropout at
test time, an approximation of a Bayesian neural network
can be obtained and standard point predictions can be paired
to meaningful uncertainty estimates. Furthermore, it can be
shown that a standard neural network model with dropout
applied before every weight layer represents an approxima-
tion of the probabilistic Gaussian Process introduced in [22].
This observation motivates the analysis of MCD in the con-
text of our work in light of its close relation to GP-based
models.

As already mentioned earlier, in Bayesian inference, given
amodel with parametersW (in the case ofMCD, these will be
the weights and biases of the neural network), the final goal is
to calculate a predictive posterior distribution p(y∗|x∗,X,Y)
for a new data point (x∗, y∗) as

p(y∗|x∗,X,Y) =
∫
p(y∗|x∗,W )p(W |X,Y)dW . (9)

However, the likelihood distribution p(y|x,W ) is typically
a very complicated function of the weights, due to the com-
plex nonlinear mapping implemented by the neural network.
This aspect effectively prevents the analytical calculation of
the weight posterior and the predictive posterior.

The framework of variational inference aims at tackling
this problem by introducing an approximation, qθ (W ), of the
true posterior, p(y∗|x∗,X,Y), such that:

KL (qθ (W ) | (p(W |X,Y))) =
∫
qθ (W ) log

qθ (W )
p(W |X,Y)

dW .

(10)

is minimized for some optimal variational parameters θ∗.
It can be easily shown that this optimization problem is equiv-
alent to the maximization of the so-called evidence lower
bound (ELBO), LVI (θ ):

LVI (θ )=
∫
qθ (W ) log p(Y|X,W )dW − KL(qθ (W )|p(W )).

(11)

Now, the main novelty introduced in [9] is a specific form
of the approximate posterior qθ (W ) and a resulting unbiased
estimator of Eq. 11. More specifically, we consider the fol-
lowing from of qθ (W ):

Wi = Mi · diag([Zi,j]
Ki
j=1)

Zi,j ∼ Bernoulli(pi) ∀ i = 1, . . . ,L; j = 1, . . . ,Ki−1,

where Mi and p are the variational parameters, L is the num-
ber of layers in the network, and Ki is the number of nodes
in the i-th layer. The parameter p represents the probability
of keeping the input and can be interpreted as the opposite of
the classical dropout rate. This choice allows us to obtain the
following unbiased estimator of the ELBO:

LMCD =
1
N

N∑
i=1

E
(
yi, ŷi

)
+ λ

L∑
i=1

‖Wi‖
2
2 (12)

where E(yi, ŷi) refers to arbitrary loss function (e.g. Mean
Squared Error for regression, Softmax for classification).
We can now obtain the mean and the variance of an
approximation qθ (y∗|x∗,X,Y) of the true predicting poste-
rior defined in Eq. 9 as follows:

Eqθ (y∗|x∗,X,Y) (y?) ≈
1
T

T∑
t=1

f W (x?)

Varqθ (y∗|x∗,X,Y) (y?) ≈ τ
−1ID +

1
T

T∑
t=1

(
f W (x?)

)T
f W (x?)

−
(
Eqθ (y∗|x∗,X,Y) (y?)

)T
×Eqθ (y∗|x∗,X,Y) (y?) (13)

where f W is our neural network model parametrized by its
weights W , T is the number of samples used for averaging,
and τ is the model precision. In practice, the equation above
tells us that, in order to determine the mean and the variance
of the approximate predictive posterior, it is sufficient to
forward-propagate the input through the trained network T
times. Since dropout is enabled at testing time, each iteration
will result in a different network model.

Note that the variance calculated, as in Eq. 13, contains two
terms: the first term models the intrinsic uncertainty, whereas
the second term captures the epistemic uncertainty. Since in
Eq. 13 the first term does not depend on x, what we are ulti-
mately modelling is homoscedastic noise. In order to make
the intrinsic uncertainty term more expressive, we allow τ to
depend on x and we model it by adding an additional output
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FIGURE 2. Schematic of the RUL estimation task. Given some monitoring signals provided by a set of sensors measuring the health
state of a machine (left), a data-driven model (middle) outputs a prediction of the RUL of the machine. Such an estimate (right)
represents the number of cycles left for the industrial component to perform until a failure occurs. If the algorithm is designed to
perform UQ, it will also output the confidence interval (region between the two orange dots) associated with its mean prediction
(red dot).

to the network. This consideration results in the following
modified version of the variance expression:

Varqθ (y∗|x∗,X,Y) (y?)

≈
1
T

T∑
t=1

τ−1(x?)+
(
f W (x?)

)T
f W (x?)

−
(
Eqθ (y∗|x∗,X,Y) (y?)

)T Eqθ (y∗|x∗,X,Y) (y?) (14)

The expression of the variance reported above accounts for
the eventual heteroscedasticity of the data noise.

IV. CASE STUDY
The main focus of this work is on the problem of RUL
estimation of industrial assets, providing not only the point
estimate but also the associated uncertainty of the prediction.
We perform the evaluation on the case study of nine turbofan
engines that are operated under different conditions. In this
framework, the goal is to map a set of high-dimensional time
series input data, x, describing the health state of the system
(e.g. sensor readings), onto the target value, y, representing
the remaining number of cycles the system will be able to
operate without incurring any failure. A simple schematic
representation of the RUL task is illustrated in Fig. 2. By the
nature of the problem, predictions of the RUL when the level
of degradation of the machine is very low are much more
challenging and are subject to a high degree of indeterminacy.

A. CASE STUDY OF PREDICTING THE RUL
OF TURBOFAN ENGINES
We evaluate and compare the UQ capabilities of the selected
ML techniques on a fleet of nine large turbofan engines under
real flight conditions (the data is part of the new C-MAPSS
dataset) [48]. Concretely, the flight data cover climb, cruise,
and descent flight conditions corresponding to different com-
mercial flight routes. Full degradation trajectories of the tur-
bofan engines are available. The degradation trajectories are

FIGURE 3. Approximate density distributions of the flight envelopes
given by recordings of altitude, flight Mach number, throttle resolver
angle, and total temperature at the fan inlet for complete trajectories
(from start until a failure occurs) of three training units (2, 5, 10) and
three test units (11, 14, 15).

given in the form of multivariate time-series of sensor read-
ings. Overall, we split the full dataset into six training units
(2,5,10,16,18,20) and three test units (11,14,15). Figure 3
shows the distribution of the flight envelopes for a subset of
three3 out of six training units and all three test units. It is
worth noting that test unit 14 has an operation distribution that
is significantly different from the training units. Concretely,
it operates at shorter and lower altitude flights compared

3The distributions of the remaining three training units are very close to
those shown in the figure and have not been shown for the sake of clarity.
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to other units. The training dataset contains, thereby, flight
profiles that are not fully representative of the test conditions
of this unit. Such a discrepancy between training and testing
distributions was left on purpose when selecting a subset of
the C-MAPSS dataset since a desirable property of any UQ
algorithm is to provide lower confidence levels associated
with data significantly different from those seen during train-
ing. We assess the extent to which this property is satisfied by
the proposed methods later in the paper.

Two distinctive failure modes are present in the develop-
ment dataset: a high pressure turbine (HPT) efficiency degra-
dation and a more complex failure mode that affects the low
pressure turbine (LPT) efficiency and flow in combination
with the high pressure turbine (HPT) efficiency degradation.
Test units (i.e., units 11, 14, and 15) are subjected to the
latter complex failure mode. The sampling rate of the data
is 0.1 Hz, resulting in a total dataset size of 0.53M samples
for model development and 0.12M samples for testing. More
details about the generation process can be found in [48].

B. PROBLEM FORMULATION
Given are multivariate time series of condition monitoring
sensor readings and physics-inferred process features Xi =
[x(1)i , . . . , x(ni)i ]T ∈ Rm and their corresponding RUL, i.e.
Yi = [y(1)i , . . . , y

(ni
i )]T , from a fleet of six units (i.e. Ntrain =

6). The length of the input feature vector for the i-th unit
is given by ni, which differs from unit to unit. The total
combined length of the available dataset is N =

∑Ntrain
i=1 ni

and the dimension of the input features is 41 (i.e. m = 41).
More compactly, we denote the available dataset as D =
{Xi,Yi}

Ntrain
i=1 . Given this set-up, the task is to obtain a predic-

tive model that provides a reliable RUL estimate (Ŷ) with UQ
on a test dataset ofM = 3 units DT∗ = {Xsj∗}

M
j=1.

V. MODEL ARCHITECTURES AND EVALUATION METRICS
A. MODEL ARCHITECTURES
We compare the performance of our GP-based methods with
two baselines, namely MCD and a standard feed-forward
neural network (FFNN). Below, we detail all the design
choices made in the implementation of each technique.

1) GP MODELS
For the SVGP model, we performed a hyperparameter
grid search over the number of inducing points I ∈

{200, 400, 800}. We consider the NLL on the validation set
as our model-selection metric. The lowest validation NLL is
reached with I = 800.
The DGP model uses a single hidden layer with a

skip-connection enhancing the input, andW = 4 hidden GPs.
We perform a hyperparameter grid-search over the number of
inducing points I ∈ {50, 100, 200}. The lowest NLL on the
validation set is achieved for I = 100.
For the DSPP, we perform a hyperparameter grid search

over the number of inducing points I ∈ {50, 100, 200},
the width of the hidden layer W ∈ {2, 3}, and the number

of quadrature sites Q ∈ {5, 8, 10, 15, 20}. The lowest NLL
on the validation set is reached with I = 100, W = 2, and
Q = 15.

2) MCD MODEL
For the MCD approach, we perform a grid search over the
hyperparameter space characterized by L ∈ {2, 3, 4, 5} hid-
den linear layers with Hf ∈ {50, 65, 80, 100, 150, 200} hid-
den units each. The dropout rate is searched over a log range
of 12 possible values within the interval [0.01, 1]. A ReLU
function is used after each hidden layer. The lowest NLL on
the validation set is achieved for L = 5, Hf = 200 and
p = 0.46.

3) FFNN MODEL
For the FFNN model, we perform a grid search over the
hyperparameter space characterized by L ∈ {2, 3, 4, 5} hid-
den layers withHf ∈ {50, 65, 80, 100, 150, 200} hidden units
each. A ReLU function is used after each hidden layer and a
constant dropout rate of p = 0.15. In this case, we consider
the RMSE on the validation set as our evaluation metric. The
lowest RMSE value is reached with L = 5 and Hf = 65.
The batch size is set to 2000 samples using the Adam

optimizer with a learning rate of 10−3 for all the above
models.

B. EVALUATION METRICS
We evaluate the prediction accuracy and uncertainties
obtained by the proposed techniques in terms of the stan-
dard Root-Mean-Square Error (RMSE) and negative log-
likelihood (NLL). In addition, we also incorporate the α − λ
metric, which is commonly used in prognostics analysis [26]
and is defined as:

α − λ =

{
1, if (1− α)λ∗ ≤ λp ≤ (1+ α)λ∗

0, otherwise
(15)

where λ∗ is the ground truth and λp the prediction. Therefore,
the α − λ metric measures whether the prediction accuracy
of an RUL model is within an α % error at specific time
instances during the relative lifetime λ of the system.
For an arbitrary chosen accuracy α, the metric can be

evaluated and averaged over the whole trajectory with N
samples:

α − λ =
1
N

N∑
n=0

(α − λ)n. (16)

However, this evaluation metric takes only single-value
predictions into account, neglecting the uncertainty associ-
ated with them. In order to account for predictive uncertainty,
a probabilistic version of the standard α − λ is used [27].
Given the variance obtained from the model, we can fit a
Gaussian distribution to each output and calculate the proba-
bility for a given prediction of being inside the boundary α.
For a generic Gaussian distribution N (µ, σ ), we define the
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TABLE 1. Comparison of SVGP, DGP, DSPP, MCD, and FFNN in terms of
negative log-likelihood (NLL), RMSE, α − λ, and Pα−λ on the test data.

cumulative distribution function as

F(x, µ, σ ) = 8
(
x − µ
σ

)
=

1
2

[
1+ erf

(
x − µ

σ
√
2

)]
. (17)

This allows us to define the probabilistic α−λ for a single
prediction N (µ, σ ) as

Pα−λ = F((1+ α)λ∗, µ, σ )− F((1− α)λ∗, µ, σ ). (18)

Again, for an arbitrarily chosen accuracy α, the metric can
be evaluated and averaged over the whole trajectory with N
samples:

Pα−λ =
1
N

N∑
n=0

P(α−λ)n . (19)

For both cases we set the α value equal to 20%, as is
commonly done in the literature.

VI. RESULTS
In this section, we apply the methods described above to
the N-CMAPPS dataset in order to predict the RUL of the
three test units (i.e., units 11, 14, and 15) and quantify the
uncertainty of the predictions. We report the results provided
by all the methods listed above. All the GP-based methods
are equipped with the new objective introduced in [25]4 since
we found empirically that, in accord with the results of [25],
using the ELBO has a negative impact on the UQ quality
for both SVGP and DGPs. All the considered algorithms are
implemented using PyTorch [49]. For the GP-based models,
we used the open-source library GPyTorch [50].

A. PERFORMANCE ANALYSIS
In this section, we compare the prediction accuracy of the
considered models in terms of the probabilistic negative log-
likelihood (NLL), RMSE, α − λ and Pα−λ. The results are
shown in Tab. 1. The table shows that DSPPs provide the best
NLL results, whereas MCD only slightly outperforms DGPs
and DSSPs in terms of RMSE. While the performances of
DSPPs andMCD agree in terms of α − λ, DSSPs outperform
all the other methods on the Pα−λ metric. All the results
reported in Tab. 1 are obtained on the hold-out test dataset.

4In particular, in the case of DGPs, we compute a biased estimator of
the continuous mixture of Gaussians obtained by applying Monte Carlo
sampling.

B. UQ ANALYSIS
1) VISUALIZATIONS
In this paragraph, we provide some visualizations to demon-
strate the UQ performance of the proposed methods. Since
all our GP-based models provide very similar confidence
bounds, we report only the results obtained by the DSPP
model.

We start our analysis by showing the test prediction error of
the considered FFNN model. The results are shown in Fig. 4.

FIGURE 4. Prediction error of the FFNN models as a function of the
relative lifetime.

As expected, the predictions tend to align to the ground
truth towards the end of the units’ lifetime. However, the net-
work is overly confident in its RUL estimates, even when they
significantly diverge from the ground truth (first predictions
are far removed from the ground truth).

In contrast, as shown in Fig. 5, the predictions provided by
MCD (left) and DSPP (right) are supported by meaningful
uncertainty estimates. In both cases, the confidence bounds
show an important desirable characteristic for RUL models.
The values of the predictive variance decrease over time. This
is physically meaningful since predictions are much more
uncertain when the system is far from the end of its life. As a
result, the confidence bounds associated with early operating
times are significantly larger than those corresponding to the
machine’s end of life. Such a property has very important
practical implications since it enables the design of risk-aware
maintenance strategies.

2) ROBUSTNESS TO A SHIFT BETWEEN TRAINING AND
TESTING DISTRIBUTION
As discussed in Section IV, test unit 14 operates at shorter
and lower altitude flights compared to the training units.
This aspect results in a distributional shift between training
and testing distributions, thus challenging the generalization
capabilities of the proposed method. In this section, we eval-
uate whether the obtained UQ models are robust under the
aforementioned distributional shift. In particular, we are inter-
ested in assessing whether the uncertainty estimates exhibit
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FIGURE 5. Evolution of predictive uncertainty (i.e. ±2σ ) provided by MCD (left) and DSPP (right) over the relative time for each test unit, i.e. Unit 11
(blue), Unit 14 (orange), and Unit 15 (green).

FIGURE 6. Evolution of predictive uncertainty (i.e. ±2σ ) provided by the
DSPP model over the relative time for each test unit, i.e. Unit 11 (blue),
Unit 14 (orange), and Unit 15 (green).

higher uncertainty on inputs that are far away from the train-
ing data distribution.

Figure 6 shows the evolution of the predictive uncertainty
(i.e. ±2σ ) provided by the DSSP model over time for each
unit. While at the very first cycles, the level of uncertainty is
quite high for all the units (due to the inherent indeterminacy
of estimating the RULwhen themachines are operating under
nominal conditions), the RUL predictions for Unit 14 exhibit
greater uncertainty compared to the test units 11 and 15 at
later cycles closer to the end of life, when the signs of a
fault are increasingly apparent. Therefore, the confidence
bounds of the proposed methods reflect another important
and desirable characteristic for RUL models: the values of
the predictive variance exhibit greater uncertainty on inputs
that are far away from training data.

VII. CONCLUSION
In this work, we analyzed a number of methods capable of
modelling the uncertainty associated with their predictions.

In particular, we focused on the problem of RUL estimation,
i.e. predicting the remaining useful lifetime of an industrial
asset of interest. In light of the safety-critical nature of this
task, UQ is vital in order to enable the deployment of reliable
and transparent machine learning algorithms in such real-life
industrial applications. The considered methods combine the
strengths of neural networks and GPs, merging the expressive
power and scalability of neural networks with the probabilis-
tic nature of GPs.

Overall, our results demonstrate that the best performing
models are DSPP and MCD: DSSP achieves the highest
NLL score while the MCD achieves the best RMSE score.
Both of them outperform all other techniques in terms of
α − λ and Pα−λ. Furthermore, our visualizations show that
the confidence bounds provided by the considered models are
meaningful: uncertainty decreases as the system approaches
the end of life and it is higher for units whose operating
conditions differ significantly from those of the training units.
These aspects are in strong contrast to the behaviour of a
standard deep neural network model, which does not take
uncertainty into account in its predictions and solely returns
point estimates. Last but not least, contrary to the standard
GP models, all the proposed methods are characterized by
favourable scaling properties and can be applied to large
training datasets.

In the future, we will focus on two main aspects. First,
wewould like to extend the proposedmethods so that they can
better capture the temporal correlations present in time-series
data. We expect such a modification to have a positive impact
on the final performance. However, although this is rela-
tively straightforward for MCD (it amounts to replacing the
current fully-connected architecture with a one-dimensional
Convolutional Neural Network), it is not a trivial matter with
regard to the GP-based models. Second, we would like to
investigate more recent Bayesian DNNs and compare them to
the methods proposed in this work. We leave these potential
research directions to future work.

VOLUME 9, 2021 123525



L. Biggio et al.: Uncertainty-Aware Prognosis via DGP

REFERENCES
[1] B. Saha, K. Goebel, and J. Christophersen, ‘‘Comparison of prognostic

algorithms for estimating remaining useful life of batteries,’’ Trans. Inst.
Meas. Control, vol. 31, nos. 3–4, pp. 293–308, Jun. 2009.

[2] X. Li, Q. Ding, and J.-Q. Sun, ‘‘Remaining useful life estimation in
prognostics using deep convolution neural networks,’’ Rel. Eng. Syst. Saf.,
vol. 172, pp. 1–11, Apr. 2018.

[3] H.-Z. Huang, H.-K. Wang, Y.-F. Li, L. Zhang, and Z. Liu, ‘‘Support vector
machine based estimation of remaining useful life: Current research status
and future trends,’’ J. Mech. Sci. Technol., vol. 29, no. 1, pp. 151–163,
Jan. 2015.

[4] Y. T. Wu, M. Yuan, S. Dong, L. Li, and Y. Liu, ‘‘Remaining useful life
estimation of engineered systems using vanilla LSTM neural networks,’’
Neurocomputing, vol. 275, pp. 167–179, Jan. 2018.

[5] J. Deutsch and D. He, ‘‘Using deep learning-based approach to predict
remaining useful life of rotating components,’’ IEEE Trans. Syst., Man,
Cybern., Syst., vol. 48, no. 1, pp. 11–20, Jan. 2018.

[6] O. Fink, Q. Wang, M. Svensén, P. Dersin, W.-J. Lee, and M. Ducoffe,
‘‘Potential, challenges and future directions for deep learning in prognos-
tics and health management applications,’’ Eng. Appl. Artif. Intell., vol. 92,
Jun. 2020, Art. no. 103678.

[7] L. Biggio and I. Kastanis, ‘‘Prognostics and health management of indus-
trial assets: Current progress and road ahead,’’Frontiers Artif. Intell., vol. 3,
pp. 1–24, Nov. 2020.

[8] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, ‘‘Weight
uncertainty in neural network,’’ inProc. Int. Conf. Mach. Learn., Jun. 2015,
pp. 1613–1622.

[9] Y. Gal and Z. Ghahramani, ‘‘Dropout as a Bayesian approximation: Repre-
senting model uncertainty in deep learning,’’ in Proc. 33rd ICML, vol. 48,
2016, pp. 1050–1059.

[10] B. Lakshminarayanan, A. Pritzel, and C. Blundell, ‘‘Simple and scalable
predictive uncertainty estimation using deep ensembles,’’ in Proc. 31st Int.
Conf. Neural Inf. Process. Syst., 2017, pp. 6405–6416.

[11] M. E. Tipping, ‘‘Sparse Bayesian learning and the relevance vector
machine,’’ J. Mach. Learn. Res., vol. 1, pp. 211–244, Sep. 2001.

[12] C. E. Rasmussen, ‘‘Gaussian processes in machine learning,’’ in Summer
School onMachine Learning. Berlin, Germany: Springer, 2003, pp. 63–71.

[13] R. Neal, ‘‘MCMC using Hamiltonian dynamics,’’ in Handbook of Markov
Chain Monte Carlo, S. Brooks, A. Gelman, G. L. Jones, and X. L. Meng,
Eds. London, U.K.: Chapman & Hall, 2011, pp. 116–162.

[14] C. E. Rasmussen and H. Nickisch, ‘‘Gaussian processes for machine
learning (GPML) toolbox,’’ J. Mach. Learn. Res., vol. 11, pp. 3011–3015,
Dec. 2010.

[15] P. Baraldi, F. Mangili, and E. Zio, ‘‘A prognostics approach to nuclear
component degradation modeling based on Gaussian process regression,’’
Prog. Nucl. Energy, vol. 78, pp. 141–154, Jan. 2015.

[16] D. Liu, J. Pang, J. Zhou, Y. Peng, and M. Pecht, ‘‘Prognostics for state
of health estimation of lithium-ion batteries based on combination Gaus-
sian process functional regression,’’ Microelectron. Rel., vol. 53, no. 6,
pp. 832–839, 2013.

[17] S. Hong, Z. Zhou, C. Lu, B. Wang, and T. Zhao, ‘‘Bearing remaining
life prediction using Gaussian process regression with composite kernel
functions,’’ J. Vibroeng., vol. 17, no. 2, pp. 695–704, 2015.

[18] L. Li, P. Wang, K.-H. Chao, Y. Zhou, and Y. Xie, ‘‘Remaining useful life
prediction for lithium-ion batteries based on Gaussian processes mixture,’’
PLoS ONE, vol. 11, no. 9, Sep. 2016, Art. no. e0163004.

[19] D. Liu, J. Pang, J. Zhou, and Y. Peng, ‘‘Data-driven prognostics for
lithium-ion battery based on Gaussian process regression,’’ in Proc. IEEE
Prognostics Syst. Health Manage. Conf. (PHM- Beijing), Beijing, China,
May 2012, pp. 1–5, doi: 10.1109/PHM.2012.6228848.

[20] J. Hensman, A. Matthews, and Z. Ghahramani, ‘‘Scalable variational
Gaussian process classification,’’ in Proc. Mach. Learn. Res., vol. 38,
pp. 351–360, Apr. 2015.

[21] J. Hensman, N. Fusi, and N. D. Lawrence, ‘‘Gaussian processes for big
data,’’ in Proc. 29th Conf. Uncertainty Artif. Intell., 2013, pp. 282–290.

[22] A. C. Damianou andN. D. Lawrence, ‘‘DeepGaussian processes,’’ inProc.
16th Int. Conf. Artif. Intell. Statist., vol. 31, JMLR, 2013.

[23] H. Salimbeni and M. P. Deisenroth, ‘‘Doubly stochastic variational infer-
ence for deep Gaussian processes,’’ in Proc. 31st Int. Conf. Neural Inf.
Process. Syst., 2017, pp. 4591–4602.

[24] M. Jankowiak, G. Pleiss, and J. R. Gardner, ‘‘Deep sigma point
processes,’’ 2020, arXiv:2002.09112. [Online]. Available: http://arxiv.
org/abs/2002.09112

[25] M. Jankowiak, G. Pleiss, and J. R. Gardner, ‘‘Parametric Gaus-
sian process regressors,’’ 2019, arXiv:1910.07123. [Online]. Available:
http://arxiv.org/abs/1910.07123

[26] A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. Saha, S. Saha, and
M. Schwabacher, ‘‘Metrics for evaluating performance of prognostic tech-
niques,’’ in Proc. Int. Conf. Prognostics Health Manage., Oct. 2008,
pp. 1–17.

[27] A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel, ‘‘Metrics for
offline evaluation of prognostic performance,’’ Int. J. Prognostics Health
Manage., vol. 1, no. 1, pp. 4–23, 2010.

[28] L. Wen, Y. Dong, and L. Gao, ‘‘A new ensemble residual convolutional
neural network for remaining useful life estimation,’’ Math. Biosci. Eng.,
vol. 16, no. 2, pp. 862–880, 2019.

[29] L. Ren, Y. Sun, H. Wang, and L. Zhang, ‘‘Prediction of bearing remaining
useful life with deep convolution neural network,’’ IEEE Access, vol. 6,
pp. 13041–13049, 2018.

[30] J. Chen, H. Jing, Y. Chang, and Q. Liu, ‘‘Gated recurrent unit based
recurrent neural network for remaining useful life prediction of nonlin-
ear deterioration process,’’ Rel. Eng. Syst. Saf., vol. 185, pp. 372–382,
May 2019.

[31] J. Wu, K. Hu, Y. Cheng, H. Zhu, X. Shao, and Y. Wang, ‘‘Data-driven
remaining useful life prediction via multiple sensor signals and deep long
short-term memory neural network,’’ ISA Trans., vol. 97, pp. 241–250,
Feb. 2020, doi: 10.1016/j.isatra.2019.07.004.

[32] A. Saxena, K. Goebel, D. Simon, and N. Eklund, ‘‘Damage propagation
modeling for aircraft engine run-to-failure simulation,’’ in Proc. Int. Conf.
Prognostics Health Manage., IEEE, 2008, pp. 1–9.

[33] P. Nectoux, R. Gouriveau, K. Medjaher, E. Ramasso, B. Chebel-Morello,
N. Zerhouni, and C. Varnier, ‘‘PRONOSTIA: An experimental platform
for bearings accelerated degradation tests,’’ in Proc. IEEE Int. Conf. Prog-
nostics Health Manage., Jun. 2012, pp. 1–8.

[34] P. R. D. O. da Costa, A. Akçay, Y. Zhang, and U. Kaymak, ‘‘Remaining
useful lifetime prediction via deep domain adaptation,’’Rel. Eng. Syst. Saf.,
vol. 195, Mar. 2020, Art. no. 106682.

[35] A. R.-T. Palazuelos, E. L. Droguett, and R. Pascual, ‘‘A novel deep capsule
neural network for remaining useful life estimation,’’ Proc. Inst. Mech.
Eng., O, J. Risk Rel., vol. 234, no. 1, pp. 151–167, 2020.

[36] H. Ritter, A. Botev, and D. Barber, ‘‘A scalable laplace approximation for
neural networks,’’ in Proc. 6th Int. Conf. Learn. Represent. (ICLR), vol. 6,
2018, pp. 1–15.

[37] J. M. Hernández-Lobato, J. Miguel, and R. Adams, ‘‘Probabilistic back-
propagation for scalable learning of Bayesian neural networks,’’ in Proc.
Int. Conf. Mach. Learn., 2015, pp. 1861–1869.

[38] M. Teye, H. Azizpour, and K. Smith, ‘‘Bayesian uncertainty estimation for
batch normalized deep networks,’’ in Proc. Int. Conf. Mach. Learn., 2018,
pp. 4907–4916.

[39] Y. Deng, A. D. Bucchianico, and M. Pechenizkiy, ‘‘Controlling the
accuracy and uncertainty trade-off in RUL prediction with a surrogate
Wiener propagation model,’’ Rel. Eng. Syst. Saf., vol. 196, Apr. 2020,
Art. no. 106727.

[40] W. Peng, Z.-S. Ye, and N. Chen, ‘‘Bayesian deep-learning-based health
prognostics toward prognostics uncertainty,’’ IEEE Trans. Ind. Electron.,
vol. 67, no. 3, pp. 2283–2293, Mar. 2020.

[41] M. Benker, L. Furtner, T. Semm, and M. F. Zaeh, ‘‘Utilizing uncertainty
information in remaining useful life estimation via Bayesian neural net-
works and Hamiltonian Monte Carlo,’’ J. Manuf. Syst., 2020. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S027861252
0301928, doi: 10.1016/j.jmsy.2020.11.005.

[42] E. Snelson and Z. Ghahramani, ‘‘Sparse Gaussian processes using pseudo-
inputs,’’ in Proc. Adv. Neural Inf. Process. Syst., 2006, pp. 1–8.

[43] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, ‘‘Variational inference:
A review for statisticians,’’ J. Amer. Stat. Assoc., vol. 112, no. 518,
pp. 859–877, 2017.

[44] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, ‘‘Deep ker-
nel learning,’’ in Proc. 19th Int. Conf. Artif. Intell. Statist., in Pro-
ceedings of Machine Learning Research, vol. 51, A. Gretton and
C. C. Robert, Eds. Cadiz, Spain: PMLR, May 2016, pp. 370–378.
[Online]. Available: http://proceedings.mlr.press/v51/wilson16.pdf and
https://proceedings.mlr.press/v51/wilson16.html

[45] D. P. Kingma and M. Welling, ‘‘Auto-encoding variational Bayes,’’ Stat,
vol. 1050, p. 1, Apr. 2014.

[46] R. E. Turner and M. Sahani, ‘‘Two problems with variational expectation
maximisation for time-series models,’’ in Bayesian Time Series Models,
D. Barber, T. Cemgil, and S. Chiappa, Eds. Cambridge, U.K.: Cambridge
Univ. Press, 2011, ch. 5, pp. 109–130.

123526 VOLUME 9, 2021

http://dx.doi.org/10.1109/PHM.2012.6228848
http://dx.doi.org/10.1016/j.isatra.2019.07.004
http://dx.doi.org/10.1016/j.jmsy.2020.11.005


L. Biggio et al.: Uncertainty-Aware Prognosis via DGP

[47] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, ‘‘Dropout: A simple way to prevent neural networks from overfitting,’’
J. Mach. Learn. Res., vol. 14, no. 56, pp. 1929–1958, 2014.

[48] M. A. Chao, C. Kulkarni, K. Goebel, and O. Fink, ‘‘Aircraft engine run-to-
failure dataset under real flight conditions for prognostics and diagnostics,’’
Data, vol. 6, no. 1, p. 5 2021.

[49] A. Paszke et al., ‘‘PyTorch: An imperative style, high-performance
deep learning library,’’ 2019, arXiv:1912.01703. [Online]. Available:
http://arxiv.org/abs/1912.01703

[50] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson,
‘‘GPyTorch: Blackbox matrix-matrix Gaussian process inference with
GPU acceleration,’’ in Proc. 32nd Int. Conf. Neural Inf. Process. Syst.,
2018, pp. 7587–7597.

LUCA BIGGIO received the B.Sc. and M.Sc.
degrees in physics and theoretical physics from
the University of Genoa, Italy, in 2016 and 2018,
respectively, and the M.Phil. degree in machine
learning and machine intelligence from the Uni-
versity of Cambridge, U.K., in 2019. He is cur-
rently pursuing the Ph.D. degree in computer
science with ETH Zürich. His research interests
include machine learning, including deep learning
for time series analysis and computer vision, rein-

forcement learning, and Bayesian deep learning.

ALEXANDER WIELAND received the B.Sc. and
M.Sc. degrees in chemical and process engineer-
ing from ETH Zürich, and the master’s degree in
machine learning and technical system finishing
with a thesis on ‘‘Uncertainty Quantification in
Remaining Useful Lifetime Estimation with Deep
Learning Models’’ from the Chair of Intelligent
Maintenance Systems, ETH Zürich. His research
interests include uncertainty-aware diagnostic and
prognostic techniques for complex engineered
systems.

MANUEL ARIAS CHAO received the M.Sc.
degree in thermal power from Cranfield Univer-
sity, U.K., in 2008. He is currently pursuing the
Ph.D. degree with the Chair of Intelligent Mainte-
nance Systems, ETH Zürich, Switzerland. He has
an industrial experience as a Lead Engineer in
system engineering and thermodynamics for gas
turbines. He was a Research Associate with the
Institute of Data Analysis and Process Design
(IDP), Zurich University of Applied Sciences. His

research interests include deep learning techniques for diagnostics and prog-
nostics of complex engineered systems.

IASON KASTANIS received the Ph.D. degree in
computer science from UCL. He studied mathe-
matics and computer science and specializes in
advanced vision and signal processing. He is cur-
rently employed at CSEM as an Expert in com-
puter vision and machine learning, where he is
leading various projects in the area of industrial
quality control and predictive maintenance sys-
tems. He is also supervising Ph.D. students in the
aforementioned topics in collaboration with ETHZ

and actively involved in the implementation of the latest technological
advancements in the industry. His research interests include research and
development of the latest methods concerning the topic of predictive main-
tenance systems, and the problems encountered in real-world applications
where data is scarce and not curated.

OLGA FINK (Member, IEEE) received the
Diploma degree in industrial engineering from
Hamburg University of Technology and the Ph.D.
degree from ETH Zürich. Before joining the
ETH Faculty, she was heading the research group
‘‘Smart Maintenance’’ at Zurich University of
Applied Sciences (ZHAW). She is currently a
Swiss National Science Foundation (SNSF) Pro-
fessor of intelligent maintenance systems at ETH
Zürich. She is also a Researcher affiliate withMas-

sachusetts Institute of Technology. She has gained valuable industrial expe-
rience as a Reliability Engineer for railway rolling stock and as a Reliability
and Maintenance Expert for railway systems. Her research interests include
intelligent maintenance systems, data-driven, condition-based, predictive
maintenance, hybrid approaches fusing physical performance models, deep
learning algorithms, deep learning and decision support algorithms for fault
detection, and diagnostics of complex industrial assets.

VOLUME 9, 2021 123527


