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ABSTRACT Semi-supervised domain adaptation (SSDA) is a promising technique for various applications.
It can transfer knowledge learned from a source domain having high-density labeled samples to a target
domain having limited labeled samples. Several previous works have attempted to reduce the distribution
discrepancy between source domain and target domain by using adversarial-based or entropy-basedmethods.
These works have improved the performance of SSDA. However, there are still lacunae in producing
class-wise domain-invariant features, which impair the improvement of the classification accuracy in the
target domain. We propose a novel mapping function using explicit class-wise matching that can make a
better decision boundary in the embedding space for superior classification accuracy in the target domain.
In general, in a target domainwith low-density label samples, it is more challenging to create awell-organized
distribution for the classification than in a source domain where rich label information is available. In our
mapping function, a representative vector of each class in the embedding spaces of the source and target
domains is derived and aligned by using class-wise matching. It is observed that the distribution in the
embedding space of the source domain can be effectively reproduced in the target domain. Our method
achieves outstanding accuracy of classification in the target domain compared with previous works on the
Office-31, Office-Home, Visda2017 and DomainNet datasets.

INDEX TERMS Semi-supervised learning, domain adaptation, classification, transfer learning, mapping
function.

I. INTRODUCTION
Traditional supervised learning approaches are quite effec-
tive, but they require sufficient labeled samples to suc-
cessfully train a model. However, collecting labeled data
is often expensive and time-consuming. Domain adapta-
tion has emerged as a new machine learning strategy in
which the model is built using a large amount of labeled
data from a source domain and a small amount of labeled
data (or even none) from the target domain. In general,
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domain adaptation can reduce the labor cost of re-labeling
by utilizing the knowledge learned in the primary domain
(source domain) and then transferring that experience to
the target domain, which shares common features but has
a different distribution. The key issue of domain adaptation
is how to approximate the joint distribution of the source
domain and target domain, i.e., to predict the labels of unla-
beled target data with the minimum prediction error. Domain
adaptation is widely used in various real-world applications
such as image classification [1]–[4], object detection [5]–[8],
semantic segmentation [9]–[11], and person re-identification
[12]–[14]. Depending on whether the label information of the
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FIGURE 1. Key idea of the proposed method. The goal of the proposed
method is to reproduce a well-organized source distribution on the target
domain.

target domain can be used for training, the domain adapta-
tion method is categorized into two subgroups: unsupervised
domain adaptation (UDA) and semi-supervised domain adap-
tation (SSDA).

In UDA [15]–[23], the source samples and unlabeled target
samples are integrated for training. The knowledge from
the source domain obtained by the supervision training is
transferred to the target domain. However, unlabeled target
samples that are less correlated with the source samples
are less affected by the supervision in the source domain,
which leads to inter-domain discrepancy in UDA. By con-
trast, SSDA [24]–[28] uses extra information by adding a few
labeled targets and enforcing the corresponding target feature
to be attracted toward source feature clusters, which guaran-
tees partial alignment between the two domain distributions.

These methods help to improve the network performance
in the target domains. However, they still show a poor gener-
alization quality because of two main reasons: First, such as
the model of S+T [24] is trained by the supervised learning
manner with the labeled source and target samples without
any information from the unlabeled target data. Therefore,
the information from the target domain is exploited inef-
ficiently. Moreover, the number of labeled target samples
is much lower than the labeled source samples leading to
the biased selection problem. In fact, MME [26] shows
that the estimated prototypes of the labeled samples are
biased toward the source domain when the vast majority of
the labeled source samples and the minority labeled target
samples are combined. Second, the knowledge being trans-
ferred from the source domain to the target domain also
containsweakly-related source representationswith the target
domain, which can be harmful to the target performance.
This phenomenon is known as negative transfer. Some pre-
vious works [15]–[17] use adversarial learning inspired by
generative adversarial networks (GAN) [40] to mitigate the
negative transfer. These methods show a good performance
by reducing the domain discrepancy between source and
target domains by confusing a domain classifier. However,
they ignore class discriminability, leading to a limitation of
the target classification performance.

Therefore, in this paper, we propose a novel SSDAmethod
that can reconstruct the well-organized source distribution
in the target domain via a proposed mapping function while
using limited labeled target data. The concept of the proposed
mapping function is shown in Fig. 1. The source distribution
is almost perfectly organized, so that classification between
classes is easily possible by training on large-scale labeled
data. The distribution of the source domain is then reproduced
by minimizing the distance between the class centroids in the
target domain and source data samples within the same class.
The proposed mapping function allows the target domain
to actively select the feasible source features to be repro-
duced. In addition to this, dual feature extractors are used to
separately capture features of the source and target domain.
Therefore, it can avoid the accumulated error in a single
network, and the negative effect from the noise labels in the
source domain is mitigated.

Our contributions are summarized as follows:

• First, two feature extractors are used to train separately
on the source domain and the target domain. Only the
source features that are closely related to the target fea-
tures are transferred to the target domain. This mitigates
the negative transfer problem and accumulated errors
from the bias learning.

• Second, a new mapping function is proposed to recon-
struct the well-organized distribution of the source
domain on the target domain by using explicit class-wise
matching for domain-invariant and class-discriminative
feature learning.

• Finally, we conduct extensive experiments on theOffice-
31, Office-Home, Visda2017 and DomainNet bench-
mark datasets to demonstrate the superiority of our pro-
posed method.

II. RELATED WORK
In this section, we review the existing methods for UDA and
SSDA.

A. UNSUPERVISED DOMAIN ADAPTATION
Domain-adversarial training of neural networks (DANN) [15]
is a popular training method in UDA, which utilizes an adver-
sarial manner to transfer both domains’ data to a common
feature space and shares weights between the source and
target domains. DANN proposes a gradient reversal layer
to reduce the discrepancy between the source and target
domains. The adversarial discriminative domain adaptation
(ADDA) [16] method uses two convolution neural networks,
one each to extract the image features of the source and target.
The discrepancy between source and target representations is
minimized by using the adversarial adaptive method. Unsu-
pervised Domain Adaptation with Deep Metric Learning
(M-ADDA) [18] is an improved version of ADDA, which
solves UDA tasks by using a metric-learning-based method.
In this method, first, the source model is trained on the source
dataset by using triplet loss. Then it works as a reference to
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TABLE 1. Main concept, Pros and Cons of existing SSDA methods.

train the target model on the target samples through adversar-
ial training, aiming to achieve domain-invariance. In general,
the framework of M-ADDA is similar to ADDA except for
added triplet loss in the source training term.

B. SEMI-SUPERVISED DOMAIN ADAPTATION
In the SSDA [24]–[28], a few target labels are added, and
it works as a bridge to leverage target distribution toward
the source distribution. Semi-supervised domain adaptation
via minimax entropy (MME) [26] that uses the minimax
entropy technique is the most popular method. Specifically,
each class in the source domain is represented by a prototype.
Then, the classifier is trained to produce the domain-invariant
prototype for each class by maximizing the entropy of the
softmax prediction output of unlabeled samples in the target
domain. The feature extractor is updated by minimizing the
entropy on unlabeled samples in the target domain to reduce
the distance between them and the class prototype. However,
only unlabeled target samples having a close relationshipwith
labeled targets move to the class prototypes. Other unlabeled
target samples stay unaligned, which leads to an intra-domain
discrepancy problem in the target domain [27]. APE [27] is

one of the earlier methods to analyze the target intra-domain
discrepancy issue and attempts to resolve it via three schemes,
i.e., attraction, perturbation, and exploration. However, APE
cannot solve the bias of the decision boundary, which is
dominated by the source domain. Bidirectional Adversarial
Training (BiAT) [28] exploits the advantages of adversarial
learning to enforce the exchange of source and target domain
knowledge mutually. In this method, a bidirectional strategy
is created using two opposing adversarial learning methods.
One approach uses adaptive adversarial training to transfer
knowledge from the source domain to the target domain.
Another one uses entropy-penalized virtual adversarial train-
ing for transferring target knowledge to the source domain.

The main concept, and pros and cons of each existing
SSDA method are listed in Table 1.

III. PROPOSED METHOD
A. PROBLEM FORMULATION
In semi-supervised domain adaptation, we are given labeled
data from the source domain and a few labeled samples
from the target domain. The set of labeled source samples
is denoted as Ds = {xs, ys} = {(xsi , y

s
i )}

ns
i=1, where x

s is
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FIGURE 2. Architecture of the proposed method for training and inference stages. The domain adaptation problem is handled by using explicit class-wise
matching and domain-invariant representations.

TABLE 2. Important symbols in the proposed method.

the set of source samples, xsi is the i-th element in this set,
ys is the label vector, ysi is its i-th component, and ns is the
number of source images. The labeled target samples are

denoted as Dlt = {x
tl , ytl } = {(x tli , y

tl
i )}

nlt
i=1, where x

tl is
the group of labeled target samples, x tli is the i-th labeled
target sample, ytli is its category label, and nlt is the number
of labeled target samples. An unlabeled target set is denoted
as Dut = {(x

tu
i )}

nut
i=1, where x

tu
i is the i-th unlabeled target

sample, and nut is the number of unlabeled target samples.
The total target dataset is denoted asDt = Dlt ∪D

u
t . All target

images are denoted as x t = x tl ∪ x tu . Table 2 summarizes the
important symbols used to explain the proposed method.

The core idea of our proposed method is to establish the
mapping function that can reproduce a well-organized source
distribution on the target domain with few labeled target
samples by using class-wise matching (shown in Fig. 1) for
domain-invariant and class-discriminative feature learning.

B. STEP 1: SUPERVISED TRAINING ON THE SOURCE
DOMAIN
In step 1, we train the source feature extractor E1 and clas-
sifier C , as shown in Fig. 2, by minimizing the standard
cross-entropy loss with K classes on the source samples (xs)
and their corresponding labels ys in a supervised manner as
follows:

Ls = −E(xs,ys)∼Ds
K∑
k=1

1[k=ysi ]
log
(
C(E1(xsi ))

)
, (1)

where 1[.] is an indication function whose value is 1 if the
input [] is true, otherwise 0. At the end of this step, the source
distribution in the embedding space can be well-organized
for the classification because it can utilize the rich labeled
samples for the training.

C. STEP 2: EXTRACTION OF DOMAIN-INVARIANT
REPRESENTATIONS AND EXPLICIT CLASS-WISE
MATCHING

1) Extraction of domain-invariant representations: During
step 2, the pre-trained feature extractor E1 is fixed to extract
the domain representation from the source domain. Similar
to DANN [15], the feature extractor E2 captures the target
domain feature from the target samples and then its parame-
ters are updated to minimize the domain discrepancy between
the source and target domains by fooling the domain classifier
D as follows:

min
E2

max
D

L(D,E1,E2)

= Exs∼Ds
[
log(D(E1(xs)))

]
+Ext∼Dt

[
log(1−D(E2(x t )))

]
, (2)

where min
E2

max
D

L(D,E1,E2) is the domain loss and is indi-

cated as Ld . Overall, only the domain features of source and
target domains are aligned by adopting (2) but the important
information in each class cannot be considered. Thus, this
process slightly improves the performance of the target classi-
fication. There is still a shortcoming in producing class-wise
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domain-invariant features, which prevents the classification
accuracy in the target domain from improving.

Therefore, we propose a novel mapping function that uses
explicit class-wise matching to establish a better decision
boundary in the embedding space of the target domain based
on the well-organized source distribution where rich label
information is available. In the proposed mapping function,
a representative vector of each class in the embedding spaces
of the source and target domains is derived and aligned by
using the proposed class-wise matching.

2) Class-wise matching: The feature extractor E2 and clas-
sifier C are trained using the supervised learning method on
the few labeled target samples as follows:

Lt = −E(xtl ,ytl )∼Dlt

K∑
k=1

1[k=y
tl
i ]
log
(
C(E2(x

tl
i ))
)
. (3)

Using this, the feature extractor E2 can correctly extract the
unique characteristics in the target domain. Then, we compute
a centroid ctk of the k-th class of target domain in the embed-
ding space and ctk is indicated as in Fig. 1. Each class centroid
is calculated by taking a mean vector of feature vectors that
belong to the same class as follows:

ctk =
1

nl,kt

∑
x
tl
i ∈D

l,k
t

f
(
xi
)
, (4)

where Dl,kt and nl,kt denote the set of labeled target images
and number of labeled target samples with class k, respec-
tively. f (xi) is the feature vector of xi. The class centroids
represent the features of each class in the target domain. For
each class centroid denoted in (4), we compute the distances
from xsi , then produce the sample-to-centroid distance over K
classes in cross-domain via a softmax function as follows:

Ps→t
(
y = k | xsi

)
=

exp
(
d(f (xsi ), c

t
k )
)

K∑
j=1

exp
(
d(f (xsi ), c

t
j )
) , (5)

where d
(
., .
)
is the function of Euclidean distance between

source samples and class centroids of target data, and
Ps→t

(
y = k | xsi

)
is the probability xsi belonging to class

k in the target domain. This procedure is shown in Fig. 1 and
implemented as shown in Fig. 2. The parameters of target
feature extractor E2 are optimized to minimize the distance
between the location of each sample in the source domain
and its corresponding ctk by minimizing the following cross-
entropy loss:

Ls→t = −
1
ns

ns∑
i=1

K∑
k=1

1[k=ysi ]
logPs→t (y = k | xsi ). (6)

D. STEP 3: SELF-TRAINING FOR ROBUSTNESS
PREDICTION ON UNLABELED TARGET DATA
Given the lack of information in the target domain owing to
the limited number of labeled target samples in the semi-
supervised learning, many previous works [29]–[31] found

FIGURE 3. Diagram for pseudo labeling and the consistency
regularization on the unlabeled target samples [31].

ways to exploit the information from the unlabeled target
samples that closely correlate with the labeled target sam-
ple. They showed their effectiveness by using data aug-
mentation [32] and consistency regularization with pseudo-
labeling [31]. Inspired from the current SOTA method [31],
as shown in Fig. 3, weak augmentation and strong augmenta-
tion are applied to the unlabeled images before feeding them
to the feature extractor E2 which was trained in step 2 with
limited labeled samples. While weak augmentation is a sim-
ple transformation such as flipping and blurring on images,
strong augmentation is borrowed from RandAugment [32],
which uses random augmentation techniques including rota-
tion, polarization, brightness, and color variations on an input
image. The prediction vectors of a weak augmented image
and a strong augmented image can be defined as follows:

pweak
xtui
= softmax

(
C(E2(x

tu
i + σ ))

)
,

pstrong
xtui

= softmax
(
C(E2(x

tu
i + δ))

)
. (7)

The pseudo labels of unlabeled samples are generated
by taking the probability of prediction values of weak aug-
mentation, x + σ . Then, consistency regularization is con-
ducted by minimizing the cross-entropy of the prediction of
a strong augmented image x + δ and its pseudo label. At this
time, the model is very sensitive to incorrect pseudo labels.
Therefore, only the prediction pweak

xtui
, in which over the given

threshold value (max pweak
xtui

> τ ), τ is the threshold value

(the detailed process to select the optimal τ is showed in
IV. D), is selected to sort out incorrect pseudo labels. Then,
the regularization cost for the unlabeled target sample with a
high confident pseudo label is computed as follows:

Lu(x tui ) = 1
[
max pweak

xtui
> τ

]
H
(
max(pweak

xtui
), pstrong

xtui

)
, (8)

where 1[.] is an indication function and H (., .) is the cross-
entropy.

[26] and [41] show a way to successfully cluster the fea-
tures of the unlabeled target data. They minimize conditional
entropy measured using the similarity between the weight
vector of the classifier, which represents a certain class, and
unlabeled target features. This is calculated as follows:

H = −Extu∼Dut
K∑
k=1

P(y = k | x tu )logP(y = k | x tu ), (9)
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FIGURE 4. Example images in DomainNet, Office-Home, Office-31, and Visda2017 datasets.

TABLE 3. Description of datasets for the experiments.

where P(y = k | x tu ) represents the probability of x tu

belonging to class k , namely the k-th dimension of softmax
score vector P(y = k | x tu ) = σ (C(E2(x tu ))). The clas-
sifier is trained to update its weight vectors by maximizing
the entropy on the unlabeled target data, while the feature
extractor is trained to generate the unlabeled target feature
more similar to the updated weight vector by minimizing
the entropy. Following this, the total cost functions used for
training the feature extractorE2 and classifierC are computed
as follows:

LE2 = Ld + Lt + Ls→t +
1
nut

nut∑
i=1

Lu
(
x tui
)
+ λH (10)

LC = Lt +
1
nut

nut∑
i=1

Lu
(
x tui
)
− λH , (11)

where λ is a hyper-parameter used to balance between mini-
max entropy and supervision losses and will be explained in
section IV. 4.

TABLE 4. Domain adaptation results (accuracy %) on Office-31 dataset.

The components in (10) are summarized as: LE2 and LC
are the costs used to train the feature extractor E2 and classi-
fier C , respectively. They consist of elements such as: Ld is
the domain loss to minimize the discrepancy between source
and target domains.Lt is the classification loss on the labeled
target samples, which is computed by the standard entropy
minimization. Ls→t described in (6) is the mapping function
loss, which is used to minimize the distance between the
source samples and the class centroid of the target domain
within the same class. Lu is the consistency regularization
loss that was explained in (8). H is the conditional entropy
which was described in (9).

E. INFERENCE ON THE TARGET DATASET
In this step, by using feature extractor E2 and classifier C ,
class prediction ypredict on the target domain is given as:

ypredict = argmax
xut ∼D

u
t

(
C(E2(x

tu
i ))
)
. (12)

IV. EXPERIMENTS
In this section, first, benchmark datasets for experiments
are described. Then, baseline and implementation details,
results, and comparison are provided. Finally, we analyze the
effectiveness of the proposed method based on some ablation
studies.
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FIGURE 5. Visualization of source and target features with t-SNE [39]. We plotted the features of ten classes on the source
and target domains of (a) S+T [24], (b) ENT [25], (c) MME [26], and (d) Our method on DomainNet dataset with a scenario
Painting to Real. Each class was represented by different colors. The left column illustrated the source distribution. The
middle column showed the output features on the target domain. On the right, the features of the source and target
domains were aligned to measure the gap between them to evaluate the efficiency of adaption methods. The features in
the proposed method were well-aligned in the two domains compared with S+T, ENT, and MME methods.
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A. DATASETS AND EXPERIMENT SETTINGS
1) Office-31 [33] is a popular dataset that contains

4110 images belonging to 31 classes from three domains:
Amazon (A), Webcam (W), and DSLR (D).

2) Office-Home [34] is a standard benchmark dataset for
domain adaptation containing 15,500 images belonging to
65 categories, forming four domains: Artistic (Art), Clipart
(Cl), Product (Pr), and Real-World (Rw), which represent
artistic depictions for object images, picture collection of
clipart, object images with a clear background, and object
images collected with a regular camera, respectively.

3) DomainNet [35] is a benchmark dataset for large-scale
domain adaptation, which consists of six domains of 345 cat-
egories. For a fair comparison with the previous SSDAmeth-
ods, we selected Real (R), Clipart (C), Painting (P), and
Sketch (S) as the four evaluation domains and performed the
following cross-domain evaluations: R←C (adaptation from
source Real to target Clipart), R←P, P←C, C←S, S←P,
R←S, and P←R with 126 classes. For each set of cross-
domain experiments, we evaluated classification accuracy in
the target domain with varying cases such as 1-shot, 3-shot,
5-shot, and 10-shot settings, where 1, 3, 5, and 10 are the
number of available labeled target samples, respectively.

4) Visda2017 [42] dataset consists of 55,388 Real images
(R) and 152,397 Synthetic (Syn) images from 12 categories.
Synthetic samples worked as the source domain, and Real
samples were used for the target domains. We randomly
selected three Real images in each of 12 categories for 3-shot
setting to conduct SSDA experiments.

All results for comparison of Office31, Office-Home, and
DomainNet datasets were collected from previousworks [26],
[27], and [28] based on ResNet-34 backbone. Except for
results of Visda2017 dataset, we ran them ourselves by using
codes released by authors. 1,2

A list of domains and classes in benchmark datasets for our
experiments were presented in Table 3 and example images
of datasets are shown in Fig. 4.

5) Implementation details: We adopted AlexNet [36] and
ResNet-34 [37] as the backbone networks for SSDA. The
number of images in each mini-batch were computed by
N × (m+ k), whereN is the number of classes,m is the num-
ber of samples in each selected class of the source domain,
and k is the labeled target samples in the target domain. For
example, in our experiments, we set N = 10, m = 10, and
k = 3 to implement a 3-shot setting. The indexes of 10 classes
were selected randomly, in each class contains ten labeled
images from the source domain and three labeled images
from the target domain. N and m were maintained, and k
could be adjusted depending on the shot setting. For instance,
the values of k could be set at 1, 3, 5, or 10 correspond-
ing to 1-shot, 3-shot, 5-shot, and 10-shot settings, respec-
tively. In addition, the k labeled target images in each class
were fixed during training. We used the Stochastic Gradient

1https://github.com/VisionLearningGroup/SSDA_MME
2https://github.com/TKKim93/APE

FIGURE 6. Visualization of source features with t-SNE [39]. (a) showed
source features extracted by supervision learning on the labeled source
data, and (b) illustrated the reproduced source distribution on the target
domain by using the mapping function.

Descent (SGD) optimizer. The learning rate was computed
by using the following formula: η = (η0/((1 + 10p)0.75)),
where η0 = 0.01 is an initial learning rate, p = [0, 1] was
the training progress. It was adjusted during the stochastic
gradient descent (SGD) as following the strategy used in [15].
The weight decay was set as 0.0005, the momentum was 0.9.
λ in (10) was set as 0.1. All implementations were done in
PyTorch [38] and on a GeForce RTX3090 GPU.

6) Comparison: We compared our proposed method with
seven recent approaches: S+T [24], DANN [15], CDAN [20],
ENT [25], MME [26], APE [27], and BiAT [28]. For fair
comparison, DANN and CDAN were modified to train on
the labeled source, limited labeled target, and unlabeled target
samples.

B. RESULT ANALYSIS
1) Results on Office-31 and Office-Home: Tables 4 and

5 reported the results of all methods on Office-31 and
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TABLE 5. Domain adaptation results (accuracy %) for 12 scenarios on 3-shot settings on Office-Home dataset.

TABLE 6. Domain adaptation results (accuracy %) for 7 scenarios on 1-shot and 3-shot settings on DomainNet dataset.

TABLE 7. Domain adaptation results (accuracy %) for 7 scenarios on 5-shot and 10-shot settings on DomainNet dataset.

Office-Home, respectively. The proposed method showed
the best performance in all the scenarios. On the Office-
31 dataset, considering the results in 1-shot as well as
3-shot settings, our method also reported outstanding per-
formance when using AlexNet backbone. On Office-Home

dataset, the average classification accuracy on the tar-
get domain of our method was higher than MME and
APE, i.e., 2.7% and 2.3% with AlexNet backbone and
2.8% and 1.9% with ResNet-34 backbone in the 3-shot
setting.
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TABLE 8. Domain adaptation results (accuracy %) for 3-shot setting on Visda2017 dataset from Synthetic to Real.

FIGURE 7. (a) The target classification accuracy depended on threshold
values in (8). (b) Experiments found the optimal threshold value in case
Real to Clipart on the DomainNet dataset under the 3-shot setting.

2) Results on DomainNet: Table 6 presented the clas-
sification accuracy of the proposed and benchmark meth-
ods on DomainNet dataset for 1-shot and 3-shot settings.
In experiments using ResNet-34 as the backbone network,
the mean accuracy of our method in 1-shot and 3-shot settings
was higher than S+T, i.e., 16.2% and 14.9%, respectively.
Compared with APE, our method obtained notable accuracy
improvements in 1-shot and 3-shot settings. In experiments
using the AlexNet backbone, our method reported that the
average classification accuracy on the target domain was
higher than BiAT, up to 7.2% and 7.6%, respectively, in 1-shot
and 3-shot settings.

FIGURE 8. Ablation study for the adaptation from Real to Clipart on the
DomainNet dataset.

To prove the efficiency of our proposed method for vari-
ous few-shot cases, we additionally conducted experiments
in 5-shot and 10-shot settings with the ResNet-34 backbone.
As can be observed in Table 7, compared with APE, which
is the SOTA method for SSDA, our method improved perfor-
mances by 2.5% and 2.3% in 5-shot and 10-shot cases. With
the same settings, the proposedmethod provided higher mean
accuracy than S+T, up to 12.8% and 11.8%, respectively.

3) Results on Visda2017: We extensively evaluated the
proposed method on Visda2017 dataset. The detailed com-
parison results of our method and the state-of-the-art SSDA
methods were listed in Table 8. The proposed method
achieved the best mean accuracy, 86.7%, and gained 8.3%
better than APE 28]. The S+T [24] showed the lowest results
among the existing SSDAmethods because themodel of S+T
was trained without using the unlabeled target data. In con-
trast, other methods tried to exploit the information from the
target domain via the unlabeled target data. The classification
performance of ENT [25] was lower than MME [26] because
MME operated with minimization and maximization entropy
terms of the unlabeled target data while ENT simply used
only the minimum entropy regularization on the unlabeled
target data.

C. FEATURE VISUALIZATION
In Fig. 5, we showed the extracted features of source and
target domains with t-SNE [39] on DomainNet dataset with
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a scenario P to R using the ResNet-34 backbone. The left-
side figures visualized the results of the distribution of source
features. A different color was used for denoting each class.
The middle images showed the output features on the target
data. Then, the features of the source and target domains were
aligned to measure the gap between them to evaluate the
efficiency of adaption methods. They were displayed in the
right-side figures. The red color represented the features of
the source domain while the blue color indicated the features
of the target domain. This figure showed that features of
both domains extracted by our method were well-aligned
compared to other benchmark methods. The extracted results
in the embedding space of two methods, S+T and ENT, were
relatively similar because they used the same strategy to train
their models, which is the cross-entropy loss on the mixed
labeled data of source and target. While our method was suc-
cessful at reproducing a well-organized source distribution
on the target domain through the proposed mapping func-
tion (MP), MME using a minimax entropy-based approach
provided a worse alignment compared with the proposed
method.

Figure 6 (a) showed the well-clustered features of the
source distribution extracted by the feature extractorE1 on the
source data. Figure 6 (b) illustrated the reproduced version
of the source distribution on the target domain when the
same data was extracted by the feature extractor E2. Overall,
it was proven that the proposed mapping function worked
effectively.

D. ABLATION STUDY
1) Sensitiveness of threshold value for pseudo labeling:

During the pseudo labeling in step 2, the correct pseudo labels
for unlabeled target samples can considerably increase the
accuracy of classification. Figures 7 (a) and (b) showed the
results of the adaptation from R to C on the DomainNet
dataset under the 3-shot setting to analyze the sensitivity of
the network performance with varying thresholds τ in (8) for
the pseudo labeling.

Figure 7 (a) expressed the variation of inference accuracy
depending on different τ s. Figure 7 (b) showed the inference
accuracy at the final training step denoted by a blue dashed
line in Fig. 7 (a) to find the optimal τ . In Fig. 7 (a), when the
τ is too small, such as τ = 0.3 ∼ 0.6, the inference accuracy
changed negligibly or even decreased, as the model suffered
from a negative effect due to incorrect pseudo labels. When
τ was set to 0.94 or 0.98, the pseudo labels used for training
could be chosen very strictly, leading to the classifier ignoring
useful information. As shown in Fig. 7 (b), the final τ value
was set to 0.9, indicated by a red dashed line. Furthermore,
in Fig. 7 (a), the inference accuracy increased steadily with
τ = 0.9, while other cases started to decrease. However,
we limited the number of iterations for ablation studies to fair
comparison with the previous works.

2) Impact of each component on the target learner: In
this portion, we analyzed the impact of components applied
in our framework, including the domain adaptation module

TABLE 9. Ablation study to analyze the impact of each component on the
inference accuracy (%) of the target domain in the case of R←C on the
DomainNet dataset.

(DA, section III. C. 1), self-training (ST, section III. D),
and the proposed mapping function (MP, section III. C. 2).
The baseline (BL) was built by adding a feature extrac-
tor to the MME [26] architecture without the above three
components. The results of various scenarios were displayed
in Fig. 8, in which we studied the tendency of change of
the target classification accuracy. Therefore, we could eval-
uate the impact of each component in the proposed frame-
work. First, we analyzed the impact of DA on the baseline
framework. In this case, the cost function was computed as
the sum of (1), (2), (3), and (9). In this figure, the perfor-
mance of the baseline with the domain adaptation module
showed poor classification accuracy; just over 65%. This
is lower than the result reported in MME. However, when
we used SL, the loss function was identified by (1), (2),
(3), (8), and (9). The classification accuracy on the target
domain improved up to over 69%. This is easy to understand
because the SL could support the proposed network to exploit
the useful information effectively from the unlabeled target
samples by establishing the relationship between labeled tar-
get samples and unlabeled target samples. Only when the
MP was applied, the classification performance improved
significantly. This is because the proposed MP successfully
imitated the well-established source distribution built on the
high-density labeled samples to the target domain as illus-
trated in Fig. 5 (d) and Fig. 6 (a). Thus, the inference accuracy
when the baseline was combined with (ST+MP, cost function
calculated by (1), (3), (8), (6), and (9)) and (DA+ST+MP,
cost function computed by (1), (2), (3), (8), (6), and (9)) on
DomainNet reached over 76% and over 77%, respectively,
after 20,000 iterations. In this case, the baseline integrated
with (DA+ST+MP) reported that its classification accuracy
was slightly higher than the case of the baseline integrated
with (ST+MP). This proved that the proposed method could
achieve high performance without an adaptation module. The
detailed results were provided in Table 9, which presented
that the classification accuracy in the target domain increased
steadily with the proposed MP.
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FIGURE 9. Visualization of the confusion matrix for different methods. These experiments were implemented on Visda2017 dataset, based on
ResNet-34 backbone. The results were obtained from task Synthetic to Real. Figures (a), (b), (c), (d) and (e) displayed the confusion matrix visualization
of S+T [24], ENT [25], MME [26], APE [27], and Our method, respectively.

3) The confusion matrix visualization analysis: Figures 9
(a)-(e) displayed the confusion matrix of the different SSDA
methods. As shown in Fig. 9, the existing SSDA methods
caused the intra-class problem seriously. Specifically, in the
ENT [25] and APE [27] methods, the inference accuracy of
the Truck class was very low. Themodel of thesemethodswas
confused for the representations among Truck, Bus, and Car
classes because they contained many similar representations.

On the contrary, the accuracies of inference results on
the Truck class of S+T [24] and MME [26] methods
were improved. Because S+T was proposed to reduce the
intra-class variation problem, while MME utilized the advan-
tages of the minimax strategy on the entropy of unlabeled
target samples, however, their target classification accuracy
was limited. This is because S+T ignored the unlabeled
target information during training, and MME had the bias
learning problem. The proposed method achieved the highest
classification performance. It demonstrated that the proposed
mapping function and dual feature extractor worked effec-
tively to mitigate the bias learning and accumulated error in
the single network.

The feature visualization in Fig. 5 and the confusion
matrix visualization in Fig. 9 demonstrated that the proposed
method achieved the class feature discriminability on the tar-

get domain. By using dual feature extractors, it could mitigate
accumulated errors in the single network due to bias selection.
In addition, the proposed mapping function was successful
in reproducing the well-organized source distribution on the
target domain. Therefore, it boosted the target classification
results.

V. CONCLUSION
In this work, we developed a new structure with dual fea-
ture extractors to capture discriminative features on source
and target domains, respectively. Specifically, a feature was
trained with high-density samples on the source domain to
establish a well-organized distribution. Then, it was con-
nected to the target domain, which is trained using a few
target samples, by the class-wise mapping function to recon-
struct the well-organized source distribution in the embed-
ding space on the target domain. Experiment results on the
cross-domain dataset verified that the embedding space of
source and target domain generated by our proposed method
was well aligned comparing to several previous domain adap-
tation methods. Furthermore, the inference accuracy in the
target domain was improved considerably compared with the
benchmark methods.
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