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ABSTRACT Semi-supervised domain adaptation (SSDA) is a promising technique for various applications.
It can transfer knowledge learned from a source domain having high-density labeled samples to a target
domain having limited labeled samples. Several previous works have attempted to reduce the distribution
discrepancy between source domain and target domain by using adversarial-based or entropy-based methods.
These works have improved the performance of SSDA. However, there are still lacunae in producing
class-wise domain-invariant features, which impair the improvement of the classification accuracy in the
target domain. We propose a novel mapping function using explicit class-wise matching that can make a
better decision boundary in the embedding space for superior classification accuracy in the target domain.
In general, in a target domain with low-density label samples, it is more challenging to create a well-organized
distribution for the classification than in a source domain where rich label information is available. In our
mapping function, a representative vector of each class in the embedding spaces of the source and target
domains is derived and aligned by using class-wise matching. It is observed that the distribution in the
embedding space of the source domain can be effectively reproduced in the target domain. Our method
achieves outstanding accuracy of classification in the target domain compared with previous works on the
Office-31, Office-Home, Visda2017 and DomainNet datasets.

INDEX TERMS Semi-supervised learning, domain adaptation, classification, transfer learning, mapping

function.

I. INTRODUCTION

Traditional supervised learning approaches are quite effec-
tive, but they require sufficient labeled samples to suc-
cessfully train a model. However, collecting labeled data
is often expensive and time-consuming. Domain adapta-
tion has emerged as a new machine learning strategy in
which the model is built using a large amount of labeled
data from a source domain and a small amount of labeled
data (or even none) from the target domain. In general,
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domain adaptation can reduce the labor cost of re-labeling
by utilizing the knowledge learned in the primary domain
(source domain) and then transferring that experience to
the target domain, which shares common features but has
a different distribution. The key issue of domain adaptation
is how to approximate the joint distribution of the source
domain and target domain, i.e., to predict the labels of unla-
beled target data with the minimum prediction error. Domain
adaptation is widely used in various real-world applications
such as image classification [1]-[4], object detection [5]-[8],
semantic segmentation [9]-[11], and person re-identification
[12]-[14]. Depending on whether the label information of the
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FIGURE 1. Key idea of the proposed method. The goal of the proposed
method is to reproduce a well-organized source distribution on the target
domain.

target domain can be used for training, the domain adapta-
tion method is categorized into two subgroups: unsupervised
domain adaptation (UDA) and semi-supervised domain adap-
tation (SSDA).

In UDA [15]-[23], the source samples and unlabeled target
samples are integrated for training. The knowledge from
the source domain obtained by the supervision training is
transferred to the target domain. However, unlabeled target
samples that are less correlated with the source samples
are less affected by the supervision in the source domain,
which leads to inter-domain discrepancy in UDA. By con-
trast, SSDA [24]—-[28] uses extra information by adding a few
labeled targets and enforcing the corresponding target feature
to be attracted toward source feature clusters, which guaran-
tees partial alignment between the two domain distributions.

These methods help to improve the network performance
in the target domains. However, they still show a poor gener-
alization quality because of two main reasons: First, such as
the model of S+T [24] is trained by the supervised learning
manner with the labeled source and target samples without
any information from the unlabeled target data. Therefore,
the information from the target domain is exploited inef-
ficiently. Moreover, the number of labeled target samples
is much lower than the labeled source samples leading to
the biased selection problem. In fact, MME [26] shows
that the estimated prototypes of the labeled samples are
biased toward the source domain when the vast majority of
the labeled source samples and the minority labeled target
samples are combined. Second, the knowledge being trans-
ferred from the source domain to the target domain also
contains weakly-related source representations with the target
domain, which can be harmful to the target performance.
This phenomenon is known as negative transfer. Some pre-
vious works [15]-[17] use adversarial learning inspired by
generative adversarial networks (GAN) [40] to mitigate the
negative transfer. These methods show a good performance
by reducing the domain discrepancy between source and
target domains by confusing a domain classifier. However,
they ignore class discriminability, leading to a limitation of
the target classification performance.
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Therefore, in this paper, we propose a novel SSDA method
that can reconstruct the well-organized source distribution
in the target domain via a proposed mapping function while
using limited labeled target data. The concept of the proposed
mapping function is shown in Fig. 1. The source distribution
is almost perfectly organized, so that classification between
classes is easily possible by training on large-scale labeled
data. The distribution of the source domain is then reproduced
by minimizing the distance between the class centroids in the
target domain and source data samples within the same class.
The proposed mapping function allows the target domain
to actively select the feasible source features to be repro-
duced. In addition to this, dual feature extractors are used to
separately capture features of the source and target domain.
Therefore, it can avoid the accumulated error in a single
network, and the negative effect from the noise labels in the
source domain is mitigated.

Our contributions are summarized as follows:

« First, two feature extractors are used to train separately
on the source domain and the target domain. Only the
source features that are closely related to the target fea-
tures are transferred to the target domain. This mitigates
the negative transfer problem and accumulated errors
from the bias learning.

« Second, a new mapping function is proposed to recon-
struct the well-organized distribution of the source
domain on the target domain by using explicit class-wise
matching for domain-invariant and class-discriminative
feature learning.

« Finally, we conduct extensive experiments on the Office-
31, Office-Home, Visda2017 and DomainNet bench-
mark datasets to demonstrate the superiority of our pro-
posed method.

Il. RELATED WORK
In this section, we review the existing methods for UDA and
SSDA.

A. UNSUPERVISED DOMAIN ADAPTATION

Domain-adversarial training of neural networks (DANN) [15]
is a popular training method in UDA, which utilizes an adver-
sarial manner to transfer both domains’ data to a common
feature space and shares weights between the source and
target domains. DANN proposes a gradient reversal layer
to reduce the discrepancy between the source and target
domains. The adversarial discriminative domain adaptation
(ADDA) [16] method uses two convolution neural networks,
one each to extract the image features of the source and target.
The discrepancy between source and target representations is
minimized by using the adversarial adaptive method. Unsu-
pervised Domain Adaptation with Deep Metric Learning
(M-ADDA) [18] is an improved version of ADDA, which
solves UDA tasks by using a metric-learning-based method.
In this method, first, the source model is trained on the source
dataset by using triplet loss. Then it works as a reference to
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TABLE 1. Main concept, Pros and Cons of existing SSDA methods.

Method Concept Pros Cons
Domain-shifting and negative transfer
due to ignore the unlabeled target in-
Easv to impl ; formation
: ini i asy to implemen Lo L
Simple training strategy using labeled source Yy p me! High intra-domain discrepancy
S+T and target data (without unlabeled target data) Intra-class variation can be reduced . .
The target classification accuracy
strickly depends on the number of
labeled target samples
Joi .. ine all available d Easy to implement Negative transfer
oint training strategy using all avatlable data Regularization by using the unlabeled Domain-shifting
ENT (including unlabeled target data) . . L. L
target data via the minimum entropy High intra-domain discrepancy
Eas impl .
Tliqy (;0 lm;) eiment b Negative transfer
N . e distribution gap between source .
- . The cl s
Cl.ass prototype-based optu_n}zatlon using the and target domains can be reduced e class protot}_fpes are dominated by
MME  Minimax loss on the conditional entropy of Bet ) . be i the source domain
the unlabeled target samples ctween-class varlance can be In- Strictly depending on the accurately
creased, and within-class variance can estimated DIOLOLYDES
be reduced P P
The attraction scheme aims to estimate and Intra-domain discrepancy can be re-
minimize the intra-domain discrepancy, the duced
i h i id th - . . . Hard to implement
APE p grturbanon scheme is used to aVOldAt c neg Effective way to exploit the informa- P
ative transfer, and the exploration aims to a .
. tion from unlabeled target data
class-aware matching
Bidirectional adversarial strategy for reduc- The features of source and target do-
ing domain gap between source and target do- mains can be exploited efficiently ) .
mains (Adaptive Adversarial Training (AAT) The domain eap between source and High computation cost
BiAT process for source to target domain and En- &ap Hard to implement

tropy penalized Virtual Adversarial Training

target domain can be significantly re-
duced

(E-VAT) process for target to source domain)

train the target model on the target samples through adversar-
ial training, aiming to achieve domain-invariance. In general,
the framework of M-ADDA is similar to ADDA except for
added triplet loss in the source training term.

B. SEMI-SUPERVISED DOMAIN ADAPTATION

In the SSDA [24]-[28], a few target labels are added, and
it works as a bridge to leverage target distribution toward
the source distribution. Semi-supervised domain adaptation
via minimax entropy (MME) [26] that uses the minimax
entropy technique is the most popular method. Specifically,
each class in the source domain is represented by a prototype.
Then, the classifier is trained to produce the domain-invariant
prototype for each class by maximizing the entropy of the
softmax prediction output of unlabeled samples in the target
domain. The feature extractor is updated by minimizing the
entropy on unlabeled samples in the target domain to reduce
the distance between them and the class prototype. However,
only unlabeled target samples having a close relationship with
labeled targets move to the class prototypes. Other unlabeled
target samples stay unaligned, which leads to an intra-domain
discrepancy problem in the target domain [27]. APE [27] is
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one of the earlier methods to analyze the target intra-domain
discrepancy issue and attempts to resolve it via three schemes,
i.e., attraction, perturbation, and exploration. However, APE
cannot solve the bias of the decision boundary, which is
dominated by the source domain. Bidirectional Adversarial
Training (BiAT) [28] exploits the advantages of adversarial
learning to enforce the exchange of source and target domain
knowledge mutually. In this method, a bidirectional strategy
is created using two opposing adversarial learning methods.
One approach uses adaptive adversarial training to transfer
knowledge from the source domain to the target domain.
Another one uses entropy-penalized virtual adversarial train-
ing for transferring target knowledge to the source domain.

The main concept, and pros and cons of each existing
SSDA method are listed in Table 1.

lll. PROPOSED METHOD

A. PROBLEM FORMULATION

In semi-supervised domain adaptation, we are given labeled
data from the source domain and a few labeled samples
from the target domain. The set of labeled source samples

is denoted as Dy = {x°,y’} = {(xf,yf.)}?;l, where x* is
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FIGURE 2. Architecture of the proposed method for training and inference stages. The domain adaptation problem is handled by using explicit class-wise

matching and domain-invariant representations.

TABLE 2. Important symbols in the proposed method.

Notation ~ Description
z®,y° The set of source samples and their labels
x5, y; The i-th element of source sample and its label
xtt /zte A set of label/unlabeled target samples
yt A set of target labels
D! A set of labeled target samples z*t and their labels 3
D} A set of unlabeled target samples =
Di‘k The set of labeled target samples with class k
ct The centroid of class k
s The number of source samples
ni /ni The number of labeled/unlabeled target samples
ni’k The number labeled target samples in class k
Ei/E> The source/target feature extractor
C The source/target classifier

the set of source samples, xis is the i-th element in this set,
y* is the label vector, y; is its i-th component, and ny is the
number of source images. The labeled target samples are
denoted as D! = {x",y"} = {(xl.”,y?)}?;l, where x" is
the group of labeled target samples, xlf’ is the i-th labeled
target sample, y? is its category label, and nf is the number
of labeled target se&mples. An unlabeled target set is denoted
as DY = {(x;“)}?él, where xl.t“ is the i-th unlabeled target
sample, and n} is the number of unlabeled target samples.
The total target dataset is denoted as D; = D! UDY. All target
images are denoted as x' = x” U x'. Table 2 summarizes the
important symbols used to explain the proposed method.
The core idea of our proposed method is to establish the
mapping function that can reproduce a well-organized source
distribution on the target domain with few labeled target
samples by using class-wise matching (shown in Fig. 1) for
domain-invariant and class-discriminative feature learning.
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B. STEP 1: SUPERVISED TRAINING ON THE SOURCE
DOMAIN

In step 1, we train the source feature extractor E; and clas-
sifier C, as shown in Fig. 2, by minimizing the standard
cross-entropy loss with K classes on the source samples (x*)
and their corresponding labels y* in a supervised manner as
follows:

K

L= —E(xsyys)NDS Z ]l[k:yf]log(C(El(x;))), (1)
k=1

where 1| is an indication function whose value is 1 if the
input [] is true, otherwise 0. At the end of this step, the source
distribution in the embedding space can be well-organized
for the classification because it can utilize the rich labeled
samples for the training.

C. STEP 2: EXTRACTION OF DOMAIN-INVARIANT
REPRESENTATIONS AND EXPLICIT CLASS-WISE
MATCHING

1) Extraction of domain-invariant representations: During
step 2, the pre-trained feature extractor E is fixed to extract
the domain representation from the source domain. Similar
to DANN [15], the feature extractor E5 captures the target
domain feature from the target samples and then its parame-
ters are updated to minimize the domain discrepancy between
the source and target domains by fooling the domain classifier
D as follows:

minmax £(D, E;, E>)
E, D

= Eys~p, [log(D(E)(x*)))]
+Eyi~p, [log(1 — D(E2(x")))], 2)

where rr}}in mDax L(D, E|, E) is the domain loss and is indi-
2

cated as L. Overall, only the domain features of source and
target domains are aligned by adopting (2) but the important
information in each class cannot be considered. Thus, this
process slightly improves the performance of the target classi-
fication. There is still a shortcoming in producing class-wise
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domain-invariant features, which prevents the classification
accuracy in the target domain from improving.

Therefore, we propose a novel mapping function that uses
explicit class-wise matching to establish a better decision
boundary in the embedding space of the target domain based
on the well-organized source distribution where rich label
information is available. In the proposed mapping function,
a representative vector of each class in the embedding spaces
of the source and target domains is derived and aligned by
using the proposed class-wise matching.

2) Class-wise matching: The feature extractor E and clas-
sifier C are trained using the supervised learning method on
the few labeled target samples as follows:

Li = ~Equ yiyep! Z 1 yiylog (CCE(x; 55)) R )

Using this, the feature extractor E> can correctly extract the
unique characteristics in the target domain. Then, we compute
a centroid cf( of the k-th class of target domain in the embed-
ding space and ¢; is indicated as in Fig. 1. Each class centroid
is calculated by taking a mean vector of feature vectors that
belong to the same class as follows:

t
%= x > ) “4)
! x;[ eDf’k
where Df’k and ni'k denote the set of labeled target images

and number of labeled target samples with class k, respec-
tively. f(x;) is the feature vector of x;. The class centroids
represent the features of each class in the target domain. For
each class centroid denoted in (4), we compute the distances
from xis , then produce the sample-to-centroid distance over K
classes in cross-domain via a softmax function as follows:
exp(d(f(x)). c))
K

3 ewp(d(F (). )

j=1

Ps—)t(y:k|xis): Q)

where d(., .) is the function of Euclidean distance between
source samples and class centroids of target data, and
Ps_>t(y =k | xf) is the probability x; belonging to class
k in the target domain. This procedure is shown in Fig. 1 and
implemented as shown in Fig. 2. The parameters of target
feature extractor E, are optimized to minimize the distance
between the location of each sample in the source domain
and its corresponding c,t( by minimizing the following cross-
entropy loss:

K

Lo = ——ZZ Lig=y1logPs—i(y =k | x{).  (6)

S i=1 k=1

D. STEP 3: SELF-TRAINING FOR ROBUSTNESS
PREDICTION ON UNLABELED TARGET DATA

Given the lack of information in the target domain owing to
the limited number of labeled target samples in the semi-
supervised learning, many previous works [29]-[31] found
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ways to exploit the information from the unlabeled target
samples that closely correlate with the labeled target sam-
ple. They showed their effectiveness by using data aug-
mentation [32] and consistency regularization with pseudo-
labeling [31]. Inspired from the current SOTA method [31],
as shown in Fig. 3, weak augmentation and strong augmenta-
tion are applied to the unlabeled images before feeding them
to the feature extractor E; which was trained in step 2 with
limited labeled samples. While weak augmentation is a sim-
ple transformation such as flipping and blurring on images,
strong augmentation is borrowed from RandAugment [32],
which uses random augmentation techniques including rota-
tion, polarization, brightness, and color variations on an input
image. The prediction vectors of a weak augmented image
and a strong augmented image can be defined as follows:

pwiak — soﬁmax(C(E2(x?u + 0)))7
pxtrong _ soﬁmaX(C(EZ(x[” + 5))) @)

un
Xi

The pseudo labels of unlabeled samples are generated
by taking the probability of prediction values of weak aug-
mentation, x + o. Then, consistency regularization is con-
ducted by minimizing the cross-entropy of the prediction of
a strong augmented image x + § and its pseudo label. At this
time, the model is very sensitive to incorrect pseudo labels.
Therefore, only the prediction pweak in which over the given

weak

threshold value (max Pl > r) T is the threshold value

(the detailed process to select the optimal 7 is showed in
IV. D), is selected to sort out incorrect pseudo labels. Then,
the regularization cost for the unlabeled target sample with a
high confident pseudo label is computed as follows:

Ly (xl“) = ]l[maxpwg“k > r]H(max(pW,ﬁ“k) pm{mg), 8

y

where 1| is an indication function and H(., .) is the cross-
entropy.

[26] and [41] show a way to successfully cluster the fea-
tures of the unlabeled target data. They minimize conditional
entropy measured using the similarity between the weight
vector of the classifier, which represents a certain class, and
unlabeled target features. This is calculated as follows:

K
H = —ExruNDyZP(y =k | x")ogP(y =k | x"), (9)
k=1
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FIGURE 4. Example images in DomainNet, Office-Home, Office-31, and Visda2017 datasets.

TABLE 3. Description of datasets for the experiments.

Datascts Domains Type  Instance  Classes
DSLR 498
Office-31 Webcam Object 795 31
Amazon 2,817
Artistic 2,427
Office-Home ~ CHPAT  (pieee 4365 6
Product 4,439
Real-World 4357
Clipart 48,837
Infograph 53,201
DomainNet Painting Object 75,759 345
Quickdraw 172,500
Real 175,327
Sketch 70,386
Visda2o17  Synthetic o 152397 )
Real 55,388

where P(y = k | x™) represents the probability of x
belonging to class k, namely the k-th dimension of softmax
score vector P(y = | x) = o(C(E2(x™))). The clas-
sifier is trained to update its weight vectors by maximizing
the entropy on the unlabeled target data, while the feature
extractor is trained to generate the unlabeled target feature
more similar to the updated weight vector by minimizing
the entropy. Following this, the total cost functions used for
training the feature extractor £ and classifier C are computed
as follows:

u

Lg —£d+£,+£H,+—Z£ (x(*) +4H  (10)

i=1

1
[.:C:E[—f—_
n

n
7 Y Lu(x") = AH, (11)
T i=1

where A is a hyper-parameter used to balance between mini-
max entropy and supervision losses and will be explained in
section I'V. 4.
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TABLE 4. Domain adaptation results (accuracy %) on Office-31 dataset.

W—A D—A MEAN

Net Method
Ishot  3-hot  l-shot  3shot  I-shot  3-shot
S+T 504 612 50.0 624 502 61.8
DANN | 57.0 644 545 652 558 648
CDAN | 502 60.3 509 614 495 609
ENT 504 640 485 662 504 65.1
MME 50.7 673 50.0 678 565 67.6
APE - 67.6 - 69.0 - 68.3
BiAT 572 682 558 685 563 684

Ours 587 715 588 714 588 715

AlexNet

The components in (10) are summarized as: Lg, and L¢
are the costs used to train the feature extractor E> and classi-
fier C, respectively. They consist of elements such as: L is
the domain loss to minimize the discrepancy between source
and target domains. £; is the classification loss on the labeled
target samples, which is computed by the standard entropy
minimization. L_,; described in (6) is the mapping function
loss, which is used to minimize the distance between the
source samples and the class centroid of the target domain
within the same class. £, is the consistency regularization
loss that was explained in (8). H is the conditional entropy
which was described in (9).

E. INFERENCE ON THE TARGET DATASET
In this step, by using feature extractor £ and classifier C,
class prediction ypeqicr On the target domain is given as:

Ypredier = argmax (C(Ex(x["))). (12)
x~Df

IV. EXPERIMENTS

In this section, first, benchmark datasets for experiments
are described. Then, baseline and implementation details,
results, and comparison are provided. Finally, we analyze the
effectiveness of the proposed method based on some ablation
studies.
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FIGURE 5. Visualization of source and target features with t-SNE [39]. We plotted the features of ten classes on the source
and target domains of (a) S+T [24], (b) ENT [25], (<) MME [26], and (d) Our method on DomainNet dataset with a scenario
Painting to Real. Each class was represented by different colors. The left column illustrated the source distribution. The
middle column showed the output features on the target domain. On the right, the features of the source and target
domains were aligned to measure the gap between them to evaluate the efficiency of adaption methods. The features in
the proposed method were well-aligned in the two domains compared with S+T, ENT, and MME methods.
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A. DATASETS AND EXPERIMENT SETTINGS

1) Office-31 [33] is a popular dataset that contains
4110 images belonging to 31 classes from three domains:
Amazon (A), Webcam (W), and DSLR (D).

2) Office-Home [34] is a standard benchmark dataset for
domain adaptation containing 15,500 images belonging to
65 categories, forming four domains: Artistic (Art), Clipart
(Cl), Product (Pr), and Real-World (Rw), which represent
artistic depictions for object images, picture collection of
clipart, object images with a clear background, and object
images collected with a regular camera, respectively.

3) DomainNet [35] is a benchmark dataset for large-scale
domain adaptation, which consists of six domains of 345 cat-
egories. For a fair comparison with the previous SSDA meth-
ods, we selected Real (R), Clipart (C), Painting (P), and
Sketch (S) as the four evaluation domains and performed the
following cross-domain evaluations: R <—C (adaptation from
source Real to target Clipart), R<—P, P<-C, C<«-S, S<P,
R<«S, and P<«-R with 126 classes. For each set of cross-
domain experiments, we evaluated classification accuracy in
the target domain with varying cases such as 1-shot, 3-shot,
5-shot, and 10-shot settings, where 1, 3, 5, and 10 are the
number of available labeled target samples, respectively.

4) Visda2017 [42] dataset consists of 55,388 Real images
(R) and 152,397 Synthetic (Syn) images from 12 categories.
Synthetic samples worked as the source domain, and Real
samples were used for the target domains. We randomly
selected three Real images in each of 12 categories for 3-shot
setting to conduct SSDA experiments.

All results for comparison of Office31, Office-Home, and
DomainNet datasets were collected from previous works [26],
[27], and [28] based on ResNet-34 backbone. Except for
results of Visda2017 dataset, we ran them ourselves by using
codes released by authors. |2

A list of domains and classes in benchmark datasets for our
experiments were presented in Table 3 and example images
of datasets are shown in Fig. 4.

5) Implementation details: We adopted AlexNet [36] and
ResNet-34 [37] as the backbone networks for SSDA. The
number of images in each mini-batch were computed by
N x (m + k), where N is the number of classes, m is the num-
ber of samples in each selected class of the source domain,
and k is the labeled target samples in the target domain. For
example, in our experiments, we set N = 10, m = 10, and
k = 3toimplement a 3-shot setting. The indexes of 10 classes
were selected randomly, in each class contains ten labeled
images from the source domain and three labeled images
from the target domain. N and m were maintained, and k
could be adjusted depending on the shot setting. For instance,
the values of k£ could be set at 1, 3, 5, or 10 correspond-
ing to 1-shot, 3-shot, 5-shot, and 10-shot settings, respec-
tively. In addition, the k labeled target images in each class
were fixed during training. We used the Stochastic Gradient

1 https://github.com/VisionLearningGroup/SSDA_MME
Zhttps://github.com/TKKim93/APE
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FIGURE 6. Visualization of source features with t-SNE [39]. (a) showed
source features extracted by supervision learning on the labeled source
data, and (b) illustrated the reproduced source distribution on the target
domain by using the mapping function.

Descent (SGD) optimizer. The learning rate was computed
by using the following formula: = (19/((1 + 10p)°*73)),
where no = 0.01 is an initial learning rate, p = [0, 1] was
the training progress. It was adjusted during the stochastic
gradient descent (SGD) as following the strategy used in [15].
The weight decay was set as 0.0005, the momentum was 0.9.
A in (10) was set as 0.1. All implementations were done in
PyTorch [38] and on a GeForce RTX3090 GPU.

6) Comparison: We compared our proposed method with
seven recent approaches: S+T [24], DANN [15], CDAN [20],
ENT [25], MME [26], APE [27], and BiAT [28]. For fair
comparison, DANN and CDAN were modified to train on
the labeled source, limited labeled target, and unlabeled target
samples.

B. RESULT ANALYSIS
1) Results on Office-31 and Office-Home: Tables 4 and
5 reported the results of all methods on Office-31 and
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TABLE 5. Domain adaptation results (accuracy %) for 12 scenarios on 3-shot settings on Office-Home dataset.

Net Method | R-C R—»P R—A P—R P—-C

P—~A A—-P A—-C A—-R C—»R C—A C—P MEAN

S+T 46 667 417 57.8  44.4
DANN | 472 667 466  58.1 44.4
CDAN | 418 699 432 536 358
AlexNet ENT 44.9 70.4 47.1 60.3 412
MME 512 730 503 61.6 472
APE 519 746 512 616 479
Ours 538 755 549 653  49.2

36.1 57.6 38.8 57.0 54.3 37.5 579 50.0
36.1 572 39.8 56.6 54.3 38.6 579 50.3
32.0 56.3 34.5 535 49.3 27.9 56.2 46.2
34.6 60.7 37.8 60.5 58.0 31.8 63.4 50.9
40.7 63.9 43.8 61.4 59.9 44.7 64.7 55.2
42.1 65.5 44.5 60.9 58.1 443 64.8 55.6
44.2 67.7 46.5 64.4 60.8 46.8 66.2 57.9

S+T 55.7 80.8 67.8 73.1 53.8
DANN 57.3 75.5 65.2 69.2 51.8
CDAN 61.4 80.7 67.1 76.8 58.1
ResNet-34 ENT 62.6 85.7 70.2 79.9 60.5
MME 64.6 85.5 713 80.1 64.6
APE 66.4 86.2 734 82.0 65.2
Ours 69.8 88.1 75.6 82.1 67.1

63.5 73.1 54.0 74.2 68.3 57.6 723 66.2
51.8 68.3 54.7 73.8 67.1 55.1 67.5 63.5
61.4 74.1 59.2 74.1 70.7 60.5 74.5 68.2
63.9 79.5 61.3 79.1 76.4 64.7 79.1 71.9
65.5 79.0 63.6 79.7 76.6 67.2 79.3 73.1
66.1 81.1 63.9 80.2 76.8 66.6 79.9 74.0
71.5 82.6 66.3 80.1 774 69.2 80.8 759

TABLE 6. Domain adaptation results (accuracy %) for 7 scenarios on 1-shot and 3-shot settings on DomainNet dataset.

Net Method R—C R—P P—C C—S S—P R—S P—R MEAN
1-shot 3-shot 1-shot 3-shot I-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot
S+T 433 471 424 450 401 449 336 364 357 384 291 333 558 587 | 40.0 434

DANN 433 461 416 438 391 410 359 365 369 389 325 334 536 573 | 404 424

CDAN 431 462 414 444 393 436 328 364 331 389 291 324 559 573 | 392 427

AlexNet ENT 370 455 356 426 268 404 189 31.1 151 296 180 296 522 600 | 29.1 398
MME 489 556 48.0 490 467 517 363 394 394 430 333 379 568 60.7 | 442 482

APE 477 546 490 505 469 521 385 426 385 422 338 387 575 614 | 446 489

BiAT 542 586 492 506 440 520 377 419 396 421 372 420 569 588 | 455 494

Ours 56.1 614 562 58.6 533 605 445 484 494 534 437 475 660 67.6 | 52.7 56.8

S+T 556 600 60.6 622 568 594 508 550 560 595 463 501 71.8 739 | 569 60.0

DANN 582 59.8 614 628 563 596 528 554 574 599 522 549 703 722 | 584 60.7

CDAN 650 690 649 673 637 684 531 578 634 653 545 590 732 785 | 625 665

ResNet-34 ENT 652 710 659 692 654 711 546 600 59.7 621 521 61.1 750 786 | 62.6 67.6
MME 700 722 677 697 690 717 563 618 648 668 610 619 761 785 | 664 68.9

APE 704 766 708 721 729 767 567 63.1 645 661 630 678 766 794 | 67.6 71.7

BiAT 73.0 749 680 688 716 746 579 615 639 675 585 621 710 78.6 | 67.1 69.7

Ours 753 770 740 750 743 770 658 695 730 733 675 692 817 833 | 731 749

TABLE 7. Domain adaptation results (accuracy %) for 7 scenarios on 5-shot and 10-shot settings on DomainNet dataset.

Net Method R—C R—P P—C C—S S—P R—S P—R MEAN
Sshot  10-shot  S-shot  10-shot  S-shot  10shot  Sshot  10-shot  S-shot  10-shot  S-shot  10-shot  Sshot  10-shot | S-shot  10-shot
S+T 645 685 631 664 642 692 592 648 604 642 562 60.7 757 773 | 633 673
DANN 63.7 700 629 645 605 640 550 569 595 607 558 605 726 759 | 614 64.6
CDAN 680 693 650 653 655 646 580 575 628 61.6 584 602 748 770 | 646 65.1
ResNet-34 ENT 711 790 710 729 757 780 619 689 662 684 646 681 81.1 826 | 71.1 740
MME 755 771 704 719 740 763 650 670 682 697 655 678 799 812 | 712 73.0
APE 717 798 73.0 751 769 789 670 705 714 736 688 70.8 805 829 | 73.6 768
Ours 784 826 762 776 780 823 715 745 741 767 709 73.0 839 868 | 761 79.1

Office-Home, respectively. The proposed method showed
the best performance in all the scenarios. On the Office-
31 dataset, considering the results in 1-shot as well as
3-shot settings, our method also reported outstanding per-
formance when using AlexNet backbone. On Office-Home
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dataset, the average classification accuracy on the tar-
get domain of our method was higher than MME and
APE, ie., 2.7% and 2.3% with AlexNet backbone and
2.8% and 1.9% with ResNet-34 backbone in the 3-shot
setting.
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TABLE 8. Domain adaptation results (accuracy %) for 3-shot setting on Visda2017 dataset from Synthetic to Real.

Net Method | Plane Bicycle Bus Car  Horse Knife Motorcycle Person Plant Skboard Train Truck | MEAN
S+T 86.0 55.6 624 55.0 60.6 55.5 79.1 52.2 68.1 59.9 82.2 38.0 62.9
ENT 90.2 54.4 72.5 76.1 86.3 95.5 89.1 76.4 84.8 47.9 87.7 7.1 72.3
ResNet-34 MME 87.3 65.1 740 721 83.2 89.8 93.0 78.2 90.8 70.5 87.0 34.0 71.1
APE 94.9 68.8 874 81.1 91.7 86.4 88.6 80.1 91.7 81.4 82.1 6.5 78.4
Ours 97.3 85.7 87.1 750 964 89.0 94.3 85.3 95.6 87.9 89.8 57.4 86.7
80 80 ; ;
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80 FIGURE 8. Ablation study for the adaptation from Real to Clipart on the
DomainNet dataset.
~ 75t To prove the efficiency of our proposed method for vari-
X .. .
< ous few-shot cases, we additionally conducted experiments
§ in 5-shot and 10-shot settings with the ResNet-34 backbone.
Y . . .
3 709 As can be observed in Table 7, compared with APE, which
< is the SOTA method for SSDA, our method improved perfor-
mances by 2.5% and 2.3% in 5-shot and 10-shot cases. With
the same settings, the proposed method provided higher mean
651 accuracy than S+T, up to 12.8% and 11.8%, respectively.

0.4 0.6 08 09 1.0

7 at final step
(®)
FIGURE 7. (a) The target classification accuracy depended on threshold

values in (8). (b) Experiments found the optimal threshold value in case
Real to Clipart on the DomainNet dataset under the 3-shot setting.

2) Results on DomainNet. Table 6 presented the clas-
sification accuracy of the proposed and benchmark meth-
ods on DomainNet dataset for 1-shot and 3-shot settings.
In experiments using ResNet-34 as the backbone network,
the mean accuracy of our method in 1-shot and 3-shot settings
was higher than S4T, i.e., 16.2% and 14.9%, respectively.
Compared with APE, our method obtained notable accuracy
improvements in 1-shot and 3-shot settings. In experiments
using the AlexNet backbone, our method reported that the
average classification accuracy on the target domain was
higher than BiAT, up to 7.2% and 7.6%, respectively, in 1-shot
and 3-shot settings.
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3) Results on Visda2017: We extensively evaluated the
proposed method on Visda2017 dataset. The detailed com-
parison results of our method and the state-of-the-art SSDA
methods were listed in Table 8. The proposed method
achieved the best mean accuracy, 86.7%, and gained 8.3%
better than APE 28]. The S+T [24] showed the lowest results
among the existing SSDA methods because the model of ST
was trained without using the unlabeled target data. In con-
trast, other methods tried to exploit the information from the
target domain via the unlabeled target data. The classification
performance of ENT [25] was lower than MME [26] because
MME operated with minimization and maximization entropy
terms of the unlabeled target data while ENT simply used
only the minimum entropy regularization on the unlabeled
target data.

C. FEATURE VISUALIZATION

In Fig. 5, we showed the extracted features of source and
target domains with t-SNE [39] on DomainNet dataset with
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a scenario P to R using the ResNet-34 backbone. The left-
side figures visualized the results of the distribution of source
features. A different color was used for denoting each class.
The middle images showed the output features on the target
data. Then, the features of the source and target domains were
aligned to measure the gap between them to evaluate the
efficiency of adaption methods. They were displayed in the
right-side figures. The red color represented the features of
the source domain while the blue color indicated the features
of the target domain. This figure showed that features of
both domains extracted by our method were well-aligned
compared to other benchmark methods. The extracted results
in the embedding space of two methods, S+T and ENT, were
relatively similar because they used the same strategy to train
their models, which is the cross-entropy loss on the mixed
labeled data of source and target. While our method was suc-
cessful at reproducing a well-organized source distribution
on the target domain through the proposed mapping func-
tion (MP), MME using a minimax entropy-based approach
provided a worse alignment compared with the proposed
method.

Figure 6 (a) showed the well-clustered features of the
source distribution extracted by the feature extractor E7 on the
source data. Figure 6 (b) illustrated the reproduced version
of the source distribution on the target domain when the
same data was extracted by the feature extractor E5. Overall,
it was proven that the proposed mapping function worked
effectively.

D. ABLATION STUDY

1) Sensitiveness of threshold value for pseudo labeling:
During the pseudo labeling in step 2, the correct pseudo labels
for unlabeled target samples can considerably increase the
accuracy of classification. Figures 7 (a) and (b) showed the
results of the adaptation from R to C on the DomainNet
dataset under the 3-shot setting to analyze the sensitivity of
the network performance with varying thresholds 7 in (8) for
the pseudo labeling.

Figure 7 (a) expressed the variation of inference accuracy
depending on different 7s. Figure 7 (b) showed the inference
accuracy at the final training step denoted by a blue dashed
line in Fig. 7 (a) to find the optimal . In Fig. 7 (a), when the
7 is too small, such as T = 0.3 ~ 0.6, the inference accuracy
changed negligibly or even decreased, as the model suffered
from a negative effect due to incorrect pseudo labels. When
T was set to 0.94 or 0.98, the pseudo labels used for training
could be chosen very strictly, leading to the classifier ignoring
useful information. As shown in Fig. 7 (b), the final t value
was set to 0.9, indicated by a red dashed line. Furthermore,
in Fig. 7 (a), the inference accuracy increased steadily with
T = 0.9, while other cases started to decrease. However,
we limited the number of iterations for ablation studies to fair
comparison with the previous works.

2) Impact of each component on the target learner: In
this portion, we analyzed the impact of components applied
in our framework, including the domain adaptation module
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TABLE 9. Ablation study to analyze the impact of each component on the
inference accuracy (%) of the target domain in the case of R<C on the
DomainNet dataset.

# Iterations Components
BL+DA BL+DA+SL BL+SL+MP BL+DA+SL+MP
2,000 64.21 67.21 72.64 73.01
4,000 64.77 67.717 73.93 75.10
6,000 64.87 67.87 74.83 75.91
8,000 65.74 68.74 75.27 75.93
10,000 65.60 68.60 75.70 76.40
12,000 65.63 68.65 76.00 76.60
14,000 66.00 68.98 76.02 76.74
16,000 66.10 69.12 76.03 76.76
18,000 66.50 69.49 76.13 76.80
20,000 66.00 69.02 76.26 77.06

(DA, section III. C. 1), self-training (ST, section III. D),
and the proposed mapping function (MP, section III. C. 2).
The baseline (BL) was built by adding a feature extrac-
tor to the MME [26] architecture without the above three
components. The results of various scenarios were displayed
in Fig. 8, in which we studied the tendency of change of
the target classification accuracy. Therefore, we could eval-
uate the impact of each component in the proposed frame-
work. First, we analyzed the impact of DA on the baseline
framework. In this case, the cost function was computed as
the sum of (1), (2), (3), and (9). In this figure, the perfor-
mance of the baseline with the domain adaptation module
showed poor classification accuracy; just over 65%. This
is lower than the result reported in MME. However, when
we used SL, the loss function was identified by (1), (2),
(3), (8), and (9). The classification accuracy on the target
domain improved up to over 69%. This is easy to understand
because the SL could support the proposed network to exploit
the useful information effectively from the unlabeled target
samples by establishing the relationship between labeled tar-
get samples and unlabeled target samples. Only when the
MP was applied, the classification performance improved
significantly. This is because the proposed MP successfully
imitated the well-established source distribution built on the
high-density labeled samples to the target domain as illus-
trated in Fig. 5 (d) and Fig. 6 (a). Thus, the inference accuracy
when the baseline was combined with (ST+MP, cost function
calculated by (1), (3), (8), (6), and (9)) and (DA+ST+MP,
cost function computed by (1), (2), (3), (8), (6), and (9)) on
DomainNet reached over 76% and over 77%, respectively,
after 20,000 iterations. In this case, the baseline integrated
with (DA+ST+MP) reported that its classification accuracy
was slightly higher than the case of the baseline integrated
with (ST+MP). This proved that the proposed method could
achieve high performance without an adaptation module. The
detailed results were provided in Table 9, which presented
that the classification accuracy in the target domain increased
steadily with the proposed MP.
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FIGURE 9. Visualization of the confusion matrix for different methods. These experiments were implemented on Visda2017 dataset, based on
ResNet-34 backbone. The results were obtained from task Synthetic to Real. Figures (a), (b), (c), (d) and (e) displayed the confusion matrix visualization

of S+T [24], ENT [25], MME [26], APE [27], and Our method, respectively.

3) The confusion matrix visualization analysis: Figures 9
(a)-(e) displayed the confusion matrix of the different SSDA
methods. As shown in Fig. 9, the existing SSDA methods
caused the intra-class problem seriously. Specifically, in the
ENT [25] and APE [27] methods, the inference accuracy of
the Truck class was very low. The model of these methods was
confused for the representations among Truck, Bus, and Car
classes because they contained many similar representations.

On the contrary, the accuracies of inference results on
the Truck class of S4+T [24] and MME [26] methods
were improved. Because S+T was proposed to reduce the
intra-class variation problem, while MME utilized the advan-
tages of the minimax strategy on the entropy of unlabeled
target samples, however, their target classification accuracy
was limited. This is because S+4T ignored the unlabeled
target information during training, and MME had the bias
learning problem. The proposed method achieved the highest
classification performance. It demonstrated that the proposed
mapping function and dual feature extractor worked effec-
tively to mitigate the bias learning and accumulated error in
the single network.

The feature visualization in Fig. 5 and the confusion
matrix visualization in Fig. 9 demonstrated that the proposed
method achieved the class feature discriminability on the tar-
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get domain. By using dual feature extractors, it could mitigate
accumulated errors in the single network due to bias selection.
In addition, the proposed mapping function was successful
in reproducing the well-organized source distribution on the
target domain. Therefore, it boosted the target classification
results.

V. CONCLUSION

In this work, we developed a new structure with dual fea-
ture extractors to capture discriminative features on source
and target domains, respectively. Specifically, a feature was
trained with high-density samples on the source domain to
establish a well-organized distribution. Then, it was con-
nected to the target domain, which is trained using a few
target samples, by the class-wise mapping function to recon-
struct the well-organized source distribution in the embed-
ding space on the target domain. Experiment results on the
cross-domain dataset verified that the embedding space of
source and target domain generated by our proposed method
was well aligned comparing to several previous domain adap-
tation methods. Furthermore, the inference accuracy in the
target domain was improved considerably compared with the
benchmark methods.
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