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ABSTRACT Electricity theft has been a major concern to the secure operation of power systems and
the interests of power companies. Due to the different methods and types of electricity theft behaviors,
it is difficult to determine the suspicion levels of consumers in the research of electricity theft detection.
An electricity theft detection method based on stacked autoencoder (SAE) and the undersampling and
re-sampling based random forest (UaRe-RF) algorithm is proposed in this work to formulate appropriate
strategies for the practical electricity theft detection requirements of the power company. In the proposed
method, the supervised SAE is first trained to extract electricity consumption features that are more adaptable
to the classification algorithm for electricity theft detection. Then, the UaRe-RF algorithm is used to establish
the class-balanced subsets and determine the suspicion level of each electricity theft user. Finally, two cases
of different datasets of electricity consumers are studied for demonstrating the effectiveness of the proposed
method, and the results show that higher classification accuracy and more targeted detection strategies can
be achieved through the proposed method.

INDEX TERMS Electricity theft, class imbalance, suspicion level, feature extraction, machine learning,
random forest.

NOTATIONS AND ABBREVIATIONS
NOTATIONS
LAE Loss function in the reconstruction process.
N Number of users.
xi Electricity vector of user i.
x̃i Output vector of AE reconstructed from xi.
L2 Constant in LAE.
m Dimension of feature vectors in the hidden

layer of AE.
w Weight vector in the encoding process.
F Set of feature vectors.
LSAE The overall loss of SAE.
Ntr Number of users in the training set.
Xp Normal users in the training set.
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Xq Electricity theft users in the training set.
S Number of combined subsets.
Nr Number of base classifiers in RF.
Hi RF classifier.
Xor Combination set.
Xre Resampled set.
Hf Final classifier integrated from Hi.
αi Ensemble weight of RF.
θ Classification threshold.
racj Accuracy of RF classifier.
R1 Recall rate.
R2 Precision rate.
R3 ROC.
NTP Number of TP users in the classification result.
NFN Number of FN users in the classification result.
NTN Number of TN users in the classification result.
NFP Number of FP users in the classification result.
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E Electricity matrix of input users.
d Time length of input electricity vector.
ρ+ Suspicion level of electricity theft samples.
ρ− Possibility of normal samples.

ABBREVIATIONS
AE Autoencoder.
AMI Advanced measurement infrastructure.
BRF Balanced random forest.
CFSFDP The clustering technique by fast search and

find of density peaks.
DS-I Dataset from the Irish CER Smart

Metering Project.
DS-II Dataset of special transformer users.
ET Electricity theft users.
FN False negative.
FP False positive.
FPR False positive rate.
GSM Gateway smart meter.
MIC Maximum information coefficient.
MIU Monitoring and inspection unit.
NTL Non-technical loss.
NU Normal users.
RF Random forest.
ROC Receiver operating characteristic curve.
SAE Stacked autoencoder.
SVM Support vector machine.
Target-I The first detection target.
Target-II The second detection target.
Target-III The third detection target.
TN True negative.
TP True positive.
TPR True positive rate.
TSM Terminal smart meter.
UaRe-RF Undersampling and re-sampling based

random forest.

I. INTRODUCTION
Electricity theft is a type of malicious behavior that electricity
consumers pay fewer charges than the normal electricity
consumption by illegal means. Electricity theft has become
the main part of non-technical loss (NTL) and a major
concern to the secure operation of power systems as well
as the interests of power companies [1]. In recent years,
the loss caused by electricity theft in the world has exceeded
89.3 billion US dollars, including 58.7 billion US dollars
in developing countries, where the top three are India
(16.2 billion US dollars), Brazil (10.5 billion US dollars),
and Russia (5.1 billion US dollars) [2]. According to the
World Bank, electricity theft has caused more than 25% of
India’s power supply losses, 16% in Brazil, 6% in China
and the United States, and 5% in Australia [3], respectively.
To reduce NTL, power supply companies need to take
the necessary measures to detect electricity theft behaviors.
However, the traditional means need expensive manpower in

the on-the-spot inspection of electricity meters of consumers,
and only a small part of electricity theft cases can be detected
successfully [4].

To detect electricity theft more effectively, in the past
decades, researchers from various countries have proposed
different detection methods, which can be divided into
three types: state estimation-based, game theory-based,
and machine learning algorithm-based ones [5]. For the
state estimation-based method, the operation data in the
distribution network collected by advanced measurement
infrastructure (AMI) [6], [7], wireless sensor, and other
equipment are used to detect the operation status of the
system to determine the abnormality in the power sys-
tems [8]–[13]. In [8], a detection method of electricity theft
is proposed based on illegal branch impedance identification.
The terminal smart meter (TSM) sends high-frequency and
low-voltage signals to the gateway smart meter (GSM), and
the meter value modification and electricity theft behaviors
around the meter are detected based on the transmission
time. The high frequency and integrity of data acquisition
are required to ensure the accuracy of this method. Thus
it can only be applied to the areas with perfect smart grid
infrastructure construction, and there is a risk of invasion
of user privacy. In [12], the electricity theft behaviors are
identified by comparing the difference between the power
supply load of the distribution transformer and the total load
based on a central monitoring and inspection unit (MIU). The
relationship between the user load and NTL is judged through
the sequential power-off operation to determine the electricity
theft users.

For the game theory-basedmethod, the problem of electric-
ity theft can be regarded as a game model of electricity theft
users, normal users, and distribution companies [14], [15].
In the game model, the distribution companies need to deter-
mine the construction cost of AMIs to improve the accuracy
of electricity theft detection, the normal users need to choose
the reasonable electricity purchase and consumption mode
to achieve the optimal electricity price, and the electricity
theft users need to consider the electricity theft benefits and
punishment risks. The optimal AMIs deployment scheme is
achieved by constructing the benefit function of electricity
theft users, normal users, and distribution companies, then
the optimal strategy of the game model is solved to combat
electricity theft effectively.

The detection technology of electricity theft based on
machine learning does not rely on the information about the
power grid model and electricity theft means. It only uses
the data set of electricity theft samples and historical power
consumption data to train the detector to find the electricity
theft behaviors and abnormal electricity consumption. The
technology makes use of widely collected smart meter data
without additional monitoring or control equipment, so the
expensive manpower costs can be reduced. The principle
of several artificial intelligence methods (such as fuzzy
algorithm, neural network, and optimal path forest) used in
NTL detection are discussed and the main challenges (such
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as class imbalance, evaluation indexes, feature description,
data quality, and algorithm portability) of applying artificial
intelligence method are proposed in [16], [17].

So far, much research work on machine learning-based
electricity theft detection methods has been presented.
In [18]–[25], different kinds of combined machine learning
algorithms are used to improve the accuracy in the detection
of electricity theft. In [18], a combined method based on
a two-way flow of information and energy is proposed to
determine the suspicion ranks of most types of electricity
thefts. The maximum information coefficient (MIC) is used
to detect the electricity theft that appears normal in power
consumption curves by analyzing the correlation between
NTL and a certain electricity consumption behavior of users.
The clustering technique by fast search and find of density
peaks (CFSFDP) algorithm is suitable for detecting electric-
ity theft with arbitrary shapes of load profiles. Combining the
advantages of both methods, the users with higher suspicion
degrees are finally determined as the electricity theft users.
In [19], a three-stage multi-view stacking ensemble machine
learning algorithm is proposed to analyze the electricity
theft problem. The power consumption data are divided into
different features based on hierarchical time series feature
extraction methods. Through the integration of multiple
classification algorithms of the meta-model, the accuracy
of electricity theft detection is improved and the computing
time is reduced. A combined model of the decision tree
and support vector machine (SVM) algorithm is proposed
in [20]. This model considers different levels of electricity
theft behaviors (e.g., transmission, distribution, and user
terminals), and takes the data processed by the decision
tree as the input for SVM to realize the real-time detection
of electricity theft at all levels of power systems. Two-
dimensional electricity data are taken as input in [21],
and a kind of wide and deep CNN model is trained
to identify the non-periodic electricity theft and periodic
normal power consumption. In [22], the relational denoising
autoencoder is implemented to derive features and their
associations in the high-dimensional imbalanced data of
users, which helps improve the performance for electricity
theft detection by maintaining the presence of features’
associations. As a kind of spatiotemporal deep learning
approaches, the stacked autoencoder (SAE) outperforms
conventional machine learning approaches on electricity theft
detection, which is evaluated in an IEEE 123-bus test feeder
in [23]. The random forest (RF) algorithm integrates multiple
decision trees to obtain higher classification accuracy than
a single classifier. The RF model is trained in [24], [25]
based on the obtained features to speculate the possible
ways of stealing the abnormal data, which provides technical
reference for on-site investigation of electricity theft.

In [26]–[30], some new or improved methods are proposed
to implement the detection of electricity theft for specific
application scenarios. Aiming at detecting malicious con-
sumers that report fake or abnormal electricity consumption
in AMI, an electricity theft detection scheme with load

monitoring and billing for AMI networks considering
privacy-preserving is proposed in [26]. The convolutional
neural network model is trained by masking fine-grained
power consumption data to detect electricity theft users.
A time-efficient NTL detection algorithm is proposed in [27]
by solving the linear system of equations that describe
the honesty of energy consumers. In [28], a parallelized
method of encoding procedure and rule engine calculation
is used to simplify the electricity consumption data without
compromising the data quality, which helps improve the
efficiency of electricity theft detection. In [29], the influence
of noise in the electricity consumption data on the electricity
theft detection results is focused on to make a distinction
between special power consumption and abnormal power
consumption, and the Bayesian detection rate is proposed to
evaluate the accuracy in the different scenes of electricity
theft detection comprehensively. In [30], a gradient boosting
theft detector algorithm based on gradient boosting classifiers
is proposed to weight the extracted features according
to the importance for the electricity theft detection, and
the complexity for classifying the electricity theft users is
reduced.

It can be seen from the above literature review that most of
the existing studies use different machine learning algorithms
to extract time-series features to analyze the possibility of
electricity theft behavior. However, there is still a research
gap in the current research on electricity theft detection.
First, many studies using classification algorithms have not
focused on the problem of class imbalance (i.e., the number
of electricity theft users is far less than the number of
normal users), which could lead to a bad detection result
that the electricity theft users are classified as the normal
users incorrectly. Second, most of the existing studies only
focus on comparing the output results with the actual labels of
users, but ignoring the analysis of the suspicion level of each
electricity theft user, which makes it difficult to determine
the detection priority and the electricity theft users to be
inspected in the actual detection process.

To improve the classification accuracy of the normal and
electricity theft users, and formulate reasonable detection
strategies to determine the detection priority for the electricity
theft users, an electricity theft detection method based on
SAE and the undersampling and re-sampling based random
forest (UaRe-RF) algorithm is proposed in this work. First,
the problem of class imbalance is mitigated by establishing
subsets containing the normal users and the electricity theft
users of similar proportions and integrating the classification
result of each subset based on the proposed UaRe-RF
algorithm, which not only ensures that the electricity theft
users can be correctly detected, but also reduces the
misclassification of normal users. Second, the proposed
method analyses the suspicion levels of different electricity
theft users, which refer to the possibilities of electricity
theft (the suspicion level of a consumer is higher, the
possibility that this consumer is an electricity theft user
is higher). The detection priority can be flexibly adjusted
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according to different targets in electricity theft inspection,
which improves the flexibility and practicability of the
method in practical engineering application. The results
of the smart meter datasets from the Irish CER Smart
Metering Project [31] and special transformer users in the
distribution network of a certain area in China show that
the electricity theft detection method proposed in this work
can achieve a high accuracy rate in the detection results of
different proportions of electricity theft users. Furthermore,
the distribution of the suspicion levels is consistent with the
actual situation, which helps to improve the detection priority
of the electricity theft users with high suspicion levels and to
reduce the workload of the actual inspection.

The main contributions of the proposed method are
concluded as follows.

1) The features of the electricity consumption data are
extracted by the supervised SAE, which is trained
by stacking each autoencoder (AE) and adopting the
supervised classification layer. The time complexity of
the proposed algorithm is reduced because the feature
adaptability is improved for the classification between
the electricity theft users and the normal users.

2) A data sampling method for the extracted electricity
features is proposed to establish subsets containing the
normal users and the electricity theft users of similar
proportions, which mitigates the problem of class
imbalance and reduces the risk of misclassification in
electricity theft detection.

3) The RF algorithm is adopted as the sub-classifier
for each subset of electricity features, then the final
model for electricity theft detection is established by
integrating each sub-classifier with the corresponding
weight. The accuracy of electricity theft detection is
improved by integrating the classification result of each
sub-classifier, and the detection priority can be adjusted
flexibly based on the suspicion levels of each electricity
theft user.

FIGURE 1. Overview of this paper.

The overview of this paper is shown in Fig. 1, and the rest
of this work is organized as follows. The stacked autoencoder
algorithm to extract electricity consumption features is

introduced in Section II. The classification algorithm for
electricity theft detection based on UaRe-RF is presented in
Section III. The overall electricity theft detection model is
given in Section IV. Two cases are presented in Section V.
Conclusions are given in Section VI.

II. STACKED AUTOENCODER BASED ELECTRICITY
CONSUMPTION FEATURE EXTRACTION ALGORITHM
Electricity theft behaviors are often different from normal
behaviors in electricity consumption features due to abnormal
meter measurements. It is important to extract electricity
consumption features with good discrimination between
the electricity theft users and the normal users, which
is guaranteed through the large-scale dataset with high
completeness and the feature extraction algorithm with
good performance. In the field of machine learning, SAE
effectively reduces the difficulty in the parameter training
process by adopting layer by layer stacking and parameter
fine-tuning means [32], [33], and shows better performance
in feature extraction than the traditional neural network.

FIGURE 2. Structure of AE with electricity vectors as input.

A. STRUCTURE AND TRAINING PROCESS OF
AUTOENCODER
The basic unit of SAE is an autoencoder (AE) which is a
three-layer neural network structure (i.e., an input layer, a
hidden layer, and an output layer), and the training process
of AE is relatively simple [34]. The structure of AE is shown
in Fig. 2, and the training process of AE consists of two
processes: encoding and decoding. In the encoding process,
the input of AE firstly is mapped to the hidden layer F= {f1,
f2, . . . , fN}, which is represented as

f i = s(ω · xi + b), fi ∈ Rm (1)

where the electricity consumption data acquired from meters
of different users are set as X= {x1, x2, . . . , xN}, xi ∈ Rd ; N
is the number of users and xi is the electricity vector of user i
with dimension d (the time length of the acquired electricity
data); ω and b are the weight and deviation vector of the
encoding formula respectively; s are the activation functions,
such as sigmoid and tanh; m is the dimension of fi reduced
from d .

In the decoding process, F is mapped to the output layer
X̃ = {x̃1, x̃2, · · ·, x̃N }, which can be represented by

x̃i = s(ω̃ · f i + b̃), x̃i ∈ Rd (2)
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where ω̃ and b̃ are the weight and deviation vector of the
decoding formula respectively, and d is the dimension of X̃
that is reconstructed from F.

On the premise of reconstructing the electricity vector
in the input layer as much as possible in the output layer,
the dimension reduction data after encoding in the hidden
layer are extracted as the features of the input electricity
consumption data. The loss function LAE in the reconstruction
process is defined as

LAE =
1
N

N∑
i=1

‖xi − x̃i‖2 +
L2
2m
‖ω‖2 (3)

where N is the number of users; xi is the electricity vector
of user i; x̃i is the output vector reconstructed from xi; L2 is
a constant to adjust the weight of the norm term; m is the
dimension of feature vectors in the hidden layer; w is the
weight vector in the encoding process. The first term of LAE
is the reconstruction error between the input vector and the
output vector, and the second term is the L2 norm to reduce
the overfitting problem in the reconstruction process.

The training process of AE ends when the loss function
LAE in the reconstruction processmeets the requirements, and
the set of feature vectorsF= {f1, f2, . . . , fN} is extracted from
AE, where fi is the feature vector compressed from xi.

B. ELECTRICITY CONSUMPTION FEATURE EXTRACTION
BASED ON STACKED AUTOENCODER
The SAE is established by cutting out the output layer
of each AE and stacking the hidden layer of the former
AE as the input layer of the latter AE. For a large-scale
user dataset with high-dimensional electricity consumption
data, the features extracted by a single AE are shallow and
have low discrimination for electricity theft detection, so the
cooperation of multiple AEs should be considered to fully
extract the input features.

FIGURE 3. The training process of SAE for electricity feature extraction.

The training process of SAE for electricity consumption
feature extraction is shown in Fig. 3, which includes layer-by-
layer training and overall fine-tuning [35], [36]. The collected
electricity vector of each user is taken as the input to train the
first AE, then the next AE is stacked until the output of the

hidden layer in the last AE meets the dimension requirement.
The overall loss of SAE LSAE is represented as

LSAE = 1−
∏

(1− LAE) (4)

After all the trained AEs are stacked layer by layer, it is
necessary to fine-tune the parameters of SAE to make the
output of electricity consumption features after stackingmore
adaptable for the task of electricity theft detection. In the fine-
tuning process, a training set is established with the original
electricity vectors of users and the corresponding label vector
(normal users or electricity theft users) as the input, and a
softmax classification layer is added after the last AE layer.
The output feature vectors of the last AE and the label vector
of the training set are taken as the input for the softmax
layer to train the overall structure, so the process of feature
extraction is combinedwith the information of user type in the
supervised fine-tuning process, which makes the final output
of electricity consumption features in SAE more adaptable to
classify the electricity theft users and the normal users.

III. UaRe-RF BASED ELECTRICITY THEFT
DETECTION ALGORITHM
The electricity theft users can be detected from the abnormal
electricity consumption features that are different from
normal users. Take the electricity theft users and normal
users as two labels, and the electricity theft detection can be
regarded as a binary classification problem. For this kind of
problem, the random forest algorithm in ensemble learning
has shown good practicability by constructing multiple
classifiers and integrating the results of each classifier.
Furthermore, more attention should be paid to the fact that the
number of electricity theft users is generally far less than that
of normal users, so it is necessary to deal with the problem
of class imbalance before the detection of electricity theft.
Based on the above two points, the UaRe-RF based electricity
theft detection algorithm is proposed in this work to mitigate
the problem of class imbalance and improve the accuracy of
electricity theft detection. First, the random undersampling
and re-sampling methods are adopted to establish class
balanced classification subsets. Then the RF algorithm is used
to train each subset. Finally, the voting method is used to
ensemble the results of each RF classifier to determine the
suspicion levels and detect electricity theft users.

A. CLASS IMBALANCE PROBLEM IN ELECTRICITY
THEFT DETECTION
The electricity theft detection is faced with the problem of
class imbalance for the reason that the number of electricity
theft users is generally far less than the normal users in
the actual distribution systems. If the original data set is
classified directly, the algorithm tends to classify electricity
theft users as normal users. To deal with the problem
of class imbalance, methods such as undersampling for
majority samples, oversampling for minority samples, and
cost sensitivity learning are presented.
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For electricity theft detection, the undersampling method
can effectively reduce the training time by selecting some
normal users to construct a smaller but class balanced dataset.
However, many samples of normal users are discarded
and only limited features are learned for electricity theft
detection. The oversampling method generates electricity
theft samples to balance the two classes of samples. However,
the training time of the larger dataset is increased and the
inappropriate generation methods of electricity theft samples
have a negative impact on the detection of electricity theft.
The electricity theft users are set greater weights in the
cost sensitivity learning. However, the weight setting method
tends to be subjective, and the accuracy of electricity theft
detection cannot be guaranteed.

To mitigate the problem of class imbalance and fully
learn the electricity consumption features, the undersampling
method is combined with the ensemble learning algo-
rithm [37]–[40]. In [37], the majority samples are divided
into several subsets independently, and the size of each
subset is equal to that of the minority samples. On the one
hand, the time complexity is greatly improved because of
the increased subsets when the proportion of electricity theft
users is too low. On the other hand, the same minority
samples are used in each classifier, so the diversity of
classifiers is relatively low and it is easy to be overfitted in
the training process. The undersampling method is combined
with the AdaBoost [38] and the RF algorithm in the
EasyEnsemble [39] and the balanced random forest (BRF)
algorithm [40]. The training time is acceptable in the two
proposed algorithms, but the problem of low diversity is still
not solved due to the same processing method for minority
samples as in [37].

B. ELECTRICITY THEFT DETECTION BASED ON UaRe-RF
ALGORITHM
The UaRe-RF based electricity theft detection algorithm
is proposed in this work to mitigate the problem of class
imbalance. An initial combination set is firstly established
in UaRe-RF based on dividing the majority of samples into
subsets with the same size as the minority samples. Then,
each combination subset is re-sampled and taken as the
input of each classifier. Finally, all the trained classifiers
are integrated into the electricity theft detection model.
The classifier adopted in the proposed algorithm is RF,
whose training process for electricity theft detection is
shown in Fig. 4. RF integrates multiple decision trees to
obtain higher classification accuracy than a single classifier.
The classification performance of RF is closely related to
the performance of the decision tree and the diversity of
input training subsets, which ensure the accuracy and the
generalization ability of the ensemble classifier.

The whole training process of UaRe-RF is shown in Fig. 5.
The undersampling and re-sampling method is used to
establish the class-balanced subsets in the proposed UaRe-RF
algorithm. In the undersampling process, each class-balanced
subset is established by selecting the samples randomly in the

FIGURE 4. The training process of RF for electricity theft detection.

group of normal users, and the number of normal users that
are selected is equal to the number of electricity theft users.
The undersampling process ends when all the normal users
are selected out. In the re-sampling process, the samples in
each subset are selected again through the bootstrap method,
which helps improve the diversity of feature attributes and
achieve a better training effectiveness of the random forest
classifier. The training set with Ntr users is divided into
normal users Xp and electricity theft users Xq (|Xq| < |Xp|).
There are S combined subsets and Nr base classifiers in the
RF classifier Hi (i = 1, 2, . . . , S). The training process of
UaRe-RF is as follows:

Step 1: Undersample theXp randomlywithout replacement
to get Xp,1, Xp,2, . . . ,Xp,S , |Xp,i| = |Xq| and (Xp,1 + Xp,2 +

· · · + Xp,S ) = Xp.
Step 2: Establish the initial combination set

Xor = [(Xp,1 + Xq), (Xp,2 + Xq), . . . , (Xp,S + Xq)].
Step 3: Resample each initial subset in Xor to get the

resampled set Xre through the bootstrap method.
Step 4: Take the S resampled subsets in Xre as the inputs

of each RF classifier, and the training result of Hi can be
represented as

Hi = sgn(
Nr∑
j=1

hi,j(x)) (5)

where hi,j(x) is the training result of the decision tree j in the
RF classifier i;Nr is the number of decision trees inHi; sgn(x)
is the signum function, sgn(x)= 1 if x > 0 and sgn(x)=−1 if
x < 0.
The trained RF classifiers are ensembled to get the final

classifier Hf as

Hf = sgn(
S∑
i=1

αiHi − θ ) (6)

where αi is the ensemble weight of each RF classifier and θ
is a classification threshold.

A 10-fold cross-validation method is used to determine the
accuracy racj (j = 1, 2, . . . , 10) of each RF classifier. The
ensemble weight αi of classifier Hi is determined as follows.

αi =
1
10

10∑
j=1

racj (7)

For UaRe-RF based electricity theft detection algorithm,
the original training set is divided into S subsets after
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FIGURE 5. The training process of the UaRe-RF algorithm for electricity theft detection.

undersampling and re-sampling, which are used as the
inputs to train RF classifiers. Thus, all the electricity
consumption features of normal users are trained from the
initial combination setXor established by undersampling, and
the overfitting problem caused by the same minority samples
in each RF classifier is alleviated by the resampling method.
The time complexity of UaRe-RF is reduced for the reason
that each RF in this method can be trained parallelly, and
the training time cost by undersampling and re-sampling
can be ignored compared with that of the RF algorithm.
Because of the strong adaptability of the RF algorithm, each
sub-classifier can achieve high classification accuracy and
the diversity of each input subset can be guaranteed by re-
sampling. Therefore, after the sub-classifiers are ensembled,
the accuracy of electricity theft detection is improved.

C. CLASSIFICATION INDEXES
To evaluate the classification performance of the proposed
method in this work, three classification indexes are selected
based on the true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) in the confusion
matrix (taking the electricity theft samples as the positive
class).

1) R1: R1 represents the recall rate to evaluate the
completeness of electricity theft samples in detection results.
A larger R1 means that more real electricity theft users are
correctly detected in the classification result and fewer real
electricity theft users are misclassified as normal users.

R1 =
NTP

NTP + NFN
(8)

where NTP and NFN are the numbers of TP and FN,
respectively.

2) R2: R2 represents the precision rate to evaluate the
influence of the misclassified normal samples (FP) on the
detection of electricity theft users. A greater R2 means that
fewer actual normal users are misclassified as electricity
theft users in the classification result. Due to the class
imbalance between positive and negative classes, the number
of TP and FP would be quite different. It cannot accurately
express the relative numerical relationship between normal
and electricity theft users when the number of TP and FP is

directly calculated. Therefore, the ratio of TP and FP in the
positive class and negative class (denoted as rTP and rFP) is
respectively used to determine R2 as follows.

R2 =
rTP

rTP + rFP
rTP =

NTP

NTP + NFN

rFP =
NFP

NFP + NTN

(9)

where NTN and NFP are the numbers of TN and FP,
respectively.

3) R3: R3 is the area under the receiver operating
characteristic curve (ROC), which takes the false positive
rate (FPR) as the x-axis and the true positive rate (TPR) as
the y-axis. In general, a larger R3 represents a better overall
performance of the classifier for the higher true positive rate
and the lower false positive rate.

IV. THE PROPOSED ELECTRICITY THEFT DETECTION
METHOD IN ENGINEERING APPLICATION
The flowchart of the proposed electricity theft detection
method based on the SAE and UaRe-RF algorithms is
presented in Fig. 6, and the key steps in engineering
application are described as follows.

1) Take the collected electricity data of users to be detected
as the input, and extract the electricity consumption features
in the training process of SAE.

Collect the electricity data of N users (the time length is d)
and establish the input electricity matrix E ∈ RN×d as

E =


E1,1 E1,2 · · · E1,d
E2,1 E2,2 · · · E2,d
...

...
. . .

...

EN ,1 EN ,2 · · · EN ,d

 (10)

where Ei,j is the j-th electricity value in the electricity records
of the i-th user.

In the training process of SAE, each AE is trained layer
by layer and the stacking process is terminated when the last
AEmeets the requirement of LSAE. The output of compressed
electricity features and the user labels are taken as the input
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FIGURE 6. Flowchart of the proposed electricity theft detection method.

of the softmax classification layer, and the parameters of
SAE are fine-tuned to improve the adaptability of the output
electricity features for electricity theft detection. When the
accuracy requirement is satisfied, the fine-tuning process is
finished, and the output of SAE is taken as the final electricity
feature matrix.

2) Establish the class balanced subsets with the
extracted electricity features as input, and integrate each
trained RF to get the final classifier for electricity theft
detection.

A sample reconstruction method based on random under-
sampling and re-sampling is adopted for the normal user
samples to establish the class balanced subsets (i.e., the num-
ber of normal users and electricity theft users are relatively
balanced). The sub-classifier RF is trained by the electricity
features in each subset, and the classification accuracy of
each RF in cross-validation is taken as the ensemble weight
to determine the integrated classifier for electricity theft
detection.

3) Classify the electricity theft users and the normal users,
and formulate the flexible detection strategies for practical
requirements based on the suspicion levels of electricity theft
users.

In the practical engineering application, the proposed
method not only classifies the electricity theft users and the
normal users by mitigating the class imbalance problem,
but also determines the suspicion level of each potential
electricity theft user, which provides a more reasonable
reference and basis for the actual electricity theft inspection.
The strategies of electricity theft detection can be formulated
based on the distribution of suspicion levels according
to different inspection targets, which helps reduce the
workload and improve the efficiency in the actual electricity

theft inspection. The classification performance for periodic
electricity theft detection mainly depends on the difference
of the potential electricity consumption features between the
normal and the electricity theft users. However, the time
of electricity theft and normal electricity consumption
of non-periodic electricity theft users is difficult to be
distinguished because of its non-periodic electricity theft
behavior. A feasible method for non-periodic electricity theft
detection is to establish a long-term observation strategy
and learn the difference of electricity consumption features
between the normal and the electricity theft period of the user
by the proposed model.

V. CASE STUDIES
The proposed electricity theft detection model is simulated
using the software Spyder, and the programing language is
Python (Version 3.7). The simulation results are visualized
by Matlab 2019b. The experimental environment is running
on Intel (R) Xeon (R) Gold 5117 CPU @ 2.00 GHz,
having 64GB RAM and the graphics processing unit (Nvidia
GeForce RTX 2080 Ti, 11 GB video memory).

A. ORIGINAL DATASETS
The original datasets include the electricity consumption
data in the smart meter dataset from the Irish CER Smart
Metering Project [31] (denoted as DS-I) and the actual
electricity consumption data of special transformer users in
the distribution network of a certain area in China (denoted as
DS-II). TheDS-I can be used to remodel the proposedmethod
by readers, which helps verify the generality of the proposed
model. The DS-II helps verify the accuracy of electricity theft
detection and the flexibility in the actual application case.
It can be seen that the two datasets are used to analyze and
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verify the different application effectiveness of the proposed
model, however, it does not mean that the proposed model
can only perform well in the two cases.

In DS-I, there are 4225 households, 485 small and
medium-sized enterprises, and 1735 users of other types with
535 days of electricity consumption data and the acquisition
interval is 30 minutes. To unify the user types and collection
periods, this work selects the electricity consumption data
of 7 days (i.e., 336 in dimension) with 1800 households to
form the original data set. Since all users in DS-I can be
considered as normal users, this work uses the principles
in [29] to generate samples of electricity theft users, which
are represented in the appendix.

FIGURE 7. Weekly electricity consumption curves of normal and
electricity theft users.

The weekly electricity consumption curves of five types of
electricity theft users and five typical normal users are shown
in Fig. 7 respectively.

DS-II contains 50 electricity theft users who have been
checked correctly and about 500 normal special transformer
users with about 200 days of electricity consumption
data. The acquisition interval is 15 minutes. In this work,
the electricity consumption data in 7 days (i.e., 672 in
dimension) of 450 normal users and 50 electricity theft users
are selected to form the input data set.

To analyze the effectiveness of the proposed model on
different levels of class imbalance, four different proportions
of electricity theft users are set as 5%, 10%, 15%, and 20%,
respectively. The number of electricity theft (denoted as ET)

TABLE 1. Input settings of DS-I and DS-II.

TABLE 2. The main parameters of algorithms.

and normal users (denoted as NU) in the training set and test
set of DS-I and DS-II are shown in Table 1.

The main parameters manually set for SAE and the UaRe-
RF algorithm are mainly listed in Table 2.

B. FEATURE EXTRACTION AND CLASSIFICATION FOR
ELECTRICITY THEFT DETECTION
1) FEATURE EXTRACTION PROCESS
The training process of SAE mainly includes the training of
each AE, layer by layer stacking, and supervised fine-tuning.

The reconstruction loss LAE of each AE and the LSAE of
SAE are considered in the training of AE to determine the
output dimension of each layer of AE to stack the next layer.
In the process of stacking, the total reconstruction loss is not
higher than 1%.WhenDS-I is taken as input, the dimension is
reduced to 80 from the first encoder with LAE = 0.0655. The
dimension of the output of the first AE is reduced to 16 in
the second encoder with LAE = 0.0238. The LSAE is obtained
as 0.0877 and meets the requirement.

After the stacking process of SAE layer by layer,
the softmax layer is added to build the whole neural
network, and the training set data labels are used as an
additional input to conduct the supervised fine-tuning process
of SAE.

After the parameters of the whole neural network are fine-
tuned, input the training set and test set respectively, and 16-
dimensional electricity consumption features can be extracted
from both DS-I and DS-II.

2) CLASSIFICATION PROCESS
After undersampling is performed randomly for normal
users, the initial combination sets are established and re-
sampled respectively to obtain the relatively class balanced
subsets.
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FIGURE 8. Performance of the methods in different electricity theft proportions in DS-I.

FIGURE 9. Performance of the methods in different electricity theft proportions in DS-II.

Taking DS-I as an example, the proportion of electricity
theft users is 10% and s is 9. Finally, the weights of s RFs are
α = [0.112, 0.112, 0.112, 0.112, 0.110, 0.109, 0.109, 0.109,
0.115]. The principle of RF for binary classification problems
is to determine the possibility of each input sample, whose
range is from 0 to 1. The proposedUaRe-RFmodel takes each
RF as the sub-classifier, and the suspicion level of each user
is determined by the combination of the output classification
possibility of each RF. Suppose that the possibilities of
electricity theft and normal samples returned in each RF
classifier are ρ+i and ρ−i = 1 − ρ+i , so the ensembled

possibilities of two classes are defined as ρ+ =
s∑
i=1
αiρ
+

i and

ρ− =
s∑
i=1
αiρ
−

i , and the suspicion level of electricity theft

users is ρ+. The range of suspicion level is from 0 to 1, and
the user is more likely to be detected as the electricity theft
user if its suspicion level is closer to 1.

C. CLASSIFICATION PERFORMANCE OF THE PROPOSED
ELECTRICITY THEFT DETECTION METHOD AND THE
COMPARISONS
To verify the effectiveness of the method proposed in
this work for the electricity theft detection, the proposed
method is compared with other related methods. The feature
extraction and classification algorithms adopted in each
comparison are shown in Table. 3.

TABLE 3. The related methods for electricity theft detection in
comparisons.

It can be seen in Table 3 that: the supervised SAE proposed
in this work is compared with Method 1 to verify the function
of the supervised fine-tuning process for feature extraction
in SAE; the necessity of mitigating the problem of class
imbalance is verified by comparing the proposedmethodwith
Method 2; the proposed UaRe-RF algorithm is compared
with the existing ensemble learning algorithms that consider
the class imbalance problem in Methods 3 and 4 to verify the
higher accuracy in electricity theft detection.

The classification threshold θ is set as 0.5, which means
a sample will be regarded as an electricity theft user if
its suspicion level is greater than 0.5; otherwise, it will
be regarded as a normal user. For the different proportions
of electricity theft samples, the statistics of classification
indexes associated with different methods in DS-I and
DS-II are shown in Figs. 8 and 9, respectively.

As can be seen from Figs. 8 and 9, Method 2 performs
better than other methods w.r.t. the index R2 for the reason
that RF does not consider the problem of class imbalance,

VOLUME 9, 2021 124053



G. Lin et al.: Electricity Theft Detection Based on SAE and UaRe-RF Algorithm

FIGURE 10. Trends of R1 and R2 with the increased classification threshold.

so it tends to classify all samples as normal users with
few normal users that are classified as electricity users
incorrectly.

Other methods (i.e., Methods 1, 3, and 4) that consider the
process of class imbalance perform better w.r.t. the index R1
than Method 2 (i.e., more electricity theft users are detected
correctly), but more normal users are mistakenly classified as
electricity theft users in them, so Methods 1, 3, and 4 perform
worse than the proposed method in this work w.r.t. R2.

As R3 is a comprehensive evaluation index that is related
to both R1 and R2, it can be seen that the method proposed
in this work has the best performance w.r.t. R3 for the reason
that it performs well w.r.t. R1 and especially R2. Compared
with Method 1 (unsupervised SAE), the adaptability of the
extracted electricity consumption features to UaRe-RF can
be improved by adding a supervised fine-tuning training
process to SAE, thus misclassifications of normal users
are reduced and more electricity theft users are classified
correctly.

D. DISTRIBUTION OF SUSPICION LEVELS AND DETECTION
STRATEGY FOR DS-II
This section analyzes the influence of the change in
classification threshold w.r.t. R1 and R2, then formulates
specific strategies for actual detection work based on the
distribution of suspicion levels in DS-II.

1) CLASSIFICATION PERFORMANCE WITH THE CHANGE OF
THRESHOLD
As shown in Fig. 10, when the classification threshold
increases from 0.1 to 0.9, the R1 gradually decreases with
the decreased number of detected electricity theft users, and

the R2 gradually increases with the decreased number of
normal users detected incorrectly under different electricity
theft proportions. When the threshold is lower, R2 is lower
too for the reason that although some electricity theft users
are constantly detected, more normal users are incorrectly
classified as electricity theft users.

To sum up, it is necessary to increase the threshold
appropriately when focusing on the detection of electricity
theft users with a high suspicion level. At the same time,
the efficiency of electricity theft detection is higher, and the
workload is reduced whenmore attention is paid to users with
higher suspicion levels.

2) FORMULATION OF DETECTION STRATEGIES
It can be seen from the previous section that the trend of
R1 and R2 varies with the classification threshold. Therefore,
in the actual detection work, it is necessary to select a
reasonable range of suspicion levels to determine the key
electricity theft users considering the specific inspection
purposes. The distributions of suspicion levels under different
electricity theft proportions are shown in Fig. 11. In the
different suspicion intervals, the histograms represent the
respective proportions of normal and electricity theft users,
and the line graphs represent the proportion of electricity theft
users to all users in this interval.

It can be seen from Fig. 11 that the suspicion levels of the
most normal users are distributed in (0.1,0.5], which indicates
a low electricity theft possibility. In the distribution of high
suspicion levels, the proportion of normal users is small, but
it is reasonable to suspect that they are actual electricity theft
users.
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TABLE 4. Ranges of suspicion levels for target-I and target-II.

FIGURE 11. Distribution of suspicion levels in different proportions.

When the proportion of electricity theft is low (e.g., 5% or
10%), the suspicion levels of some electricity theft users are
distributed in (0.1,0.4], which makes it difficult to detect in
the actual inspection; the others are distributed in (0.7,0.9]
and the possibility of electricity theft is high. When the
proportion of electricity theft is high (e.g., 15% or 20%),
the suspicion levels of electricity theft users are higher
overall, which are generally distributed in (0.5,1.0).

For specific detection targets (denoted as Target-I,
Target-II, and Target-III) in detection work, the optimal
detection strategies are made as follows:

1) Target-I: the actual work pays more attention to the
number of electricity theft users correctly detected, and this
target sets R1 ≥ 80%, that is, at least 80% of the electricity
theft users are detected correctly.

The ranges of suspicion levels to be detected are shown
in Table 4 to achieve Target-I, and there are at least 80% of
electricity theft users that can be detected correctly.

2) Target-II: the actual work pays more attention to the
efficiency of the detection process, and this target sets
R2≥ 80%, that is, the actual normal users incorrectly detected
are not more than 20%.

The ranges of suspicion levels to be detected are shown
in Table 4 to achieve Target-II, and there are no more than
20% of normal users that are detected incorrectly.

3) Target-III: the actual work only concerns the suspicion
levels of electricity theft behavior in all users. A normal user
with a high suspicion level is still regarded as an electricity
theft user who has not been detected before.

For this target, the range of suspicion levels is (0.9,1), and
there are 5, 1, 0, and 5 normal users that need to be detected
whether there is an electricity theft problem in the proportion
of 5%, 10%, 15%, and 20%, respectively.

E. SUMMARY OF CASE STUDIES
The summary concluded from the results in Sections V-C and
V-D is concluded as follows:

First, as it can be seen from Figs. 8 and 9, the proposed
method has the best performance in R3 and performs well in
R1 and R2 compared with other methods. The adaptability
of the extracted electricity consumption features to UaRe-RF
can be improved by adding a supervised fine-tuning training
process to SAE, and the proposed data sampling method
for the extracted electricity features mitigates the problem
of class imbalance and reduces the risk of misclassification
in electricity theft detection. Therefore, misclassifications of
normal users are reduced and more electricity theft users are
classified correctly based on the proposed method.

Second, as it can be seen from Figs. 10 and 11,
the R1 and R2 change differently when the classification
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threshold increases from 0.1 to 0.9. It is necessary to
increase the threshold appropriately when focusing on the
detection of electricity theft users with a high suspicion
level. Furthermore, the strategies of electricity theft detection
can be formulated based on the distribution of suspicion
levels according to different inspection targets, which helps
reduce the workload and improve the efficiency in the actual
electricity theft inspection.

VI. CONCLUSION
To improve the accuracy in electricity theft detection and
further improve the detection priority of the electricity theft
users with high suspicion levels, an electricity theft detection
method is proposed in this work based on SAE and UaRe-
RF algorithm. The results of two types of data sets show
that the proposed method has a higher accuracy rate in
different electricity theft proportions compared with other
related methods by mitigating the problem of class imbalance
and adding the fine-tuning process in SAE. Furthermore,
reasonable strategies are formulated for specific detection
purposes based on the distribution of suspicion levels, and
the key electricity theft users are considered with a higher
detection priority, thus the workload is reduced as well.

In further research, the proposed method will take more
types of electrical data (e.g., current, voltage, and power
factor) as the input to verify the robustness and accuracy.
In addition, the proposed model will be used in two-
dimensional scenarios to provide an auxiliary reference for
the classification of electricity theft users and malfunctioned
AMI owners (i.e., the difference of electricity consumption
of different users in the same period can be modeled to
analyze the features of abnormal power consumption, and
the difference of electricity consumption of the same user in
different periods can be modeled to locate the start time and
duration of the abnormal power consumption).

APPENDIX
The five principles for the generation of the electricity theft
samples in DS-I are represented as

y1(t) = α · x(t),
α = rand(0.1, 0.8)

y2(t) =

{
0, t ∈ (t1, t2)
x(t), t ∈ [1, t1] ∪ [t2,T ]

y3(t) = β(t) · x(t),
β(t) = rand(0.1, 0.8)

y4(t) = β(t) ·
1
T

T∑
t=1

x(t)

y5(t) =
1
T

T∑
t=1

x(t)

(A1)

where x(t) is the electricity value of a normal user at time
t; y1(t)-y5(t) are the different kinds of generated electricity
value of electricity theft; rand(0.1, 0.8) is a function that

returns a random number from 0.1 to 0.8; T is the time length
of daily electricity series; t1 and t2 are the time between the
start and end time at a day.
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