
Received August 14, 2021, accepted August 31, 2021, date of publication September 6, 2021, date of current version September 15,
2021.

Digital Object Identifier 10.1109/ACCESS.2021.3110707

A Robust Device-to-Device Continuous
Authentication Protocol for the
Internet of Things
ARWA BADHIB , SUHAIR ALSHEHRI , AND ASMA CHERIF
Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Corresponding author: Arwa Badhib (adhib@stu.kau.edu.sa)

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant
No. (DG-10-612-1441). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

ABSTRACT The Internet of Things (IoT) is a heterogeneous environment that connects billions of devices.
Thus, it is a significantly high-value target for attackers and suffers from several threats, especially imper-
sonation attacks during the session. Moreover, the denial of service attack (DoS) threatens IoT environments,
as it affects the availability and energy of communicating devices. Continuous authentication solves session
hijacking since it checks user legitimacy during the session. Several continuous authentication schemes were
proposed to authenticate users to IoT devices, while few works addressed device-to-device authentication.
Therefore, it is essential to authenticate devices because if one device gets compromised, then the whole
system is at risk. Continuous authentication between devices differs from user-to-device authentication
since it cannot rely on biometrics and passwords. This research proposes a fast and secure device-to-
device continuous authentication protocol that relies on devices’ features (token, battery, and location),
and mitigates DoS attacks using shadow IDs and emergency keys. Moreover, it takes the sensor movement
into account while preserving privacy. To evaluate the robustness and validate the security of the proposed
protocol, we conducted informal and formal analyses using Scyther. In addition, we tested its performance
to establish computation costs relative to the system counterparts. The results show the protocol is robust
against security threats, incurring reasonable computational costs.

INDEX TERMS Continuous authentication, device-to-device, DoS, IoT, privacy, security.

I. INTRODUCTION
The Internet of Things (IoT) is the next generation in com-
munication devices. It is also a network that combines a
large number of devices, including sensors, radio-frequency
identification (RFID), actuators, etc. The aim of this tech-
nology is to provide better services for humans by enabling
smart homes, smart healthcare, smart industries, and smart
cities [1]. Making human lives easier, smartwatches moni-
tor our movement and blood pressure and mobile devices
manage our plans/times and events, while lights manage our
electricity, and so on. According to Gartner’s report, almost
80 percent of organizations and companies now use the IoT to
manage their requirements [2]. The main concept behind IoT
technology is not only to connect inter-network components
to the Internet but also to connect non-IP components (lights,
fans, washing machines, televisions), so that they can collect

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Maaz Rehan .

and exchange data. According to estimations, the market for
IoT devices is expanding rapidly, and is currently expected to
reach around 75 billion by 2025 [3].

Despite the expansion and variety of IoT applications,
and its capacity to improve human life, major security and
privacy issues remain to be resolved. As IoT devices are
constrained in terms ofmemory, CPU, battery, and power, it is
impossible for them to secure themselves against attacks [4].
As a result, they can be readily compromised; for example,
the Mirai botnet attack in 2016. This attack compromised
millions of IoT devices, to perform a DoS attack resulting
in damage to critical servers, such as Amazon, Twitter, Net-
flix, and New York Times [5]. Two additional DoS attacks
have been performed since Mirai: Hajime and Reaper. These
attacks involved exploitation of a large number of IoT devices
that mostly used default passwords, rendering them easy
for attackers to compromise [6]. The IoT is a remarkable
target for attackers, as in the last three years, 20 percent of
organizations have discovered attacks via IoT devices [2].

124768
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0003-4864-1491
https://orcid.org/0000-0003-4011-2173
https://orcid.org/0000-0003-3875-074X
https://orcid.org/0000-0003-1869-2757

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

Enforcing security via IoT devices imposes several require-
ments; i.e., confidentiality, availability, integrity, and authen-
tication [7]. In this research, we focus on authentication for
security, as it allows only authorized users/devices to access
the system. Authentication acts as a gatekeeper protecting
systems from intruders and incursions by strangers. Authen-
tication refers to processes for verifying the identity of the
claimer, using identifiers or credentials [8]. These identi-
fiers can be something the user knows: ID number, pass-
words, secure question, etc. or something the user possesses,
e.g., token, ID card, etc. or the user’s biometric, such as: iris,
fingerprint, voice, etc. These credentials or identifiers need
to be unique, easy to collect, store, simple and acceptable to
the user [9]. Users can use one or more of these identifiers to
prove his/her legitimacy.

IoT communicates a large number of various devices,
so one of the most important key aspects here is to ensure
IoT security as a means of authenticating communication
devices [10]. Device authentication is just as important as
user authentication. It ensures all devices for communicating
are trusted, and can communicate and share resources safely.
It is noteworthy that if any device is compromised by an
attacker, then the entire system will be in danger, resulting
in catastrophic damage. For example, an attacker can control
devices, the network or the system; he can also access critical
information and privilege escalation by performing a chain
attack, as happened recently in the case of the SolarWinds
supply chain attack, which caused other systems (FireEye and
others) to become infected [11], [12].

Authentication of IoT devices incurs several challenges,
since they have limited capabilities in terms of both soft-
ware and hardware. Additionally, the heterogeneous nature
of the IoT environment renders traditional authentication
techniques inapplicable. Thus, new techniques must be
developed to match IoT characteristics [13]. Recently, sev-
eral researchers have proposed lightweight authentication
schemes for IoT. Many of these solutions employ static
authentication, which verifies the user/device just once at
the beginning of each session. This type of authentication
is vulnerable to certain attacks, such as session hijacking
because it checks the user only at the beginning of each
session. Accordingly, an attacker may interrupt and steal a
legitimate session by acting as a legitimate user. To illustrate
this, consider a smart home containing sensors designed to
collect data about the house’s condition (i.e., temperature,
electricity usage, camera data, etc.) to be sent directly to the
gateway for storage in the cloud server. For each session, sen-
sors are authenticated by the gateway, but a serious problem
arises if an attacker steals this valid session and impersonates
a legitimate user. In this case, all the information and priv-
ileged services can then be accessed by the attacker. As a
result, the attacker might try to engage in several harmful
actions, such as opening the door lock, spying using a camera,
manipulating electricity usage, etc.

To overcome problems related to static authentication,
continuous authentication has been introduced. Continuous

authentication will periodically check the legitimacy of the
user/device during the session, preventing impersonation at
any time during the session [14]. Additionally, it ensures rapid
authentication of the large body of data transmitted between
devices over a short period; so instead of re-authenticating
the devices each time prior to re-transmission, continuous
authentication is then used to speed up the authentication
process.

Several authors proposed continuous authentication, and
mainly focused on authenticating user-to-device (U2D),
e.g., [15]–[18], etc. Therefore, this research focuses on con-
tinuous authentication between devices referred to as device-
to-device (D2D), where devices deal with and communicate
with each other in the IoT environment. D2D covers several
applications, such as: smart farming, smart cities, smart grids,
etc. [19]. Thus, D2D authentication has become a major issue
that needs to be taken into consideration [20]. The majority
of the current D2D authentication techniques support static
authentication, which may lead to some problems as stated
previously. In D2D authentication, the system deals with
devices; thus, the authentication mechanisms vary from the
users’ authentication. Thus, strategies like biometric, mem-
orable patterns, passwords, etc. are insufficient [21]. One
way to authenticate devices is to use some of their features
or contextual information to confirm their legitimacy. The
device’s features should be carefully selected to improve
the authentication process. Moreover, the use of multiple
features or contextual information to authenticate users would
increase the reliability and security of the authentication
process [18].

Furthermore, the IoT consists of a large number of
devices and sensors. The majority of these sensors can move
freely; i.e., wearable sensors, monitoring patient sensors,
vehicle sensors, etc. Critical environments (e.g., medical,
governments, financial facilities) use IoT devices that might
otherwise be misused by authorized users. For instance,
a Covid-19 patient recommending applying social distancing
might break guidelines and spread the virus. Using awearable
device like a non-removable bracelets would ensure patients
do not leave designated quarantine areas while allowing free
movement within a specified region. Meanwhile, it is impor-
tant to preserve a user’s privacy (identity and location).

The main contributions of this research are:
• We design a D2D continuous authentication protocol,
that utilizes devices’ features (i.e. battery capacity, loca-
tion, token) to continuously verify devices during the
session.

• We balance between security and IoT constraints by
using lightweight computations (HMAC, hash, XOR),
as IoT devices have limited software and hardware
capabilities.

• We mitigate DoS attacks, by using a set of shadow
IDs and emergency keys to prevent any synchronization
loss between devices. Furthermore, we take the gateway
unavailability into consideration to enhance system’s
availability.

VOLUME 9, 2021 124769

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

• We define a movement model to ensure a secure move-
ment for system devices, besides preserving their pri-
vacy (identity and location).

• We conduct formal and informal security analysis to
prove the effectiveness and robustness of the proposed
model using Scyther. We also compare it with its com-
petitors. The results show our protocol performs well in
achieving all the essential functionalities, and is robust
against the defined attacks.

The remainder of the paper is organized as follows:
section II, presents authentication schemes for the IoT includ-
ing both static and continuous. In section III, the proposed
model is described including the architectural design and
communication protocol. Section IV presents the mitigation
of the DoS attack. Section V provides how the protocol
handles sensors movement. Section VI tests the protocol’s
robustness by providing security and a performance analysis.
In section VII, discussion and results are provided while
comparing the proposed protocol with its competitors, and
finally section VIII concludes the research.

II. RELATED WORK
The IoT is an open environment, comprising a heterogeneous
number of devices that communicate with each other. This
open environment is vulnerable to different security threats;
as a result authentication schemes must be applied to commu-
nicate with these devices. In this section, we present several
previous research that has provided authentication schemes
for the IoT. These schemes are categorized by static and
continuous authentication.

A. STATIC AUTHENTICATION
Gope and Hwang [22] proposed a lightweight D2D authen-
tication protocol for IoT distributed Wireless Sensor Net-
work (WSN). This scheme achieves privacy by providing
anonymity and untraceability for both location and identity.
It considers the sensor’s movement. This solution can be
applied to RFID systems and healthcare environments. The
protocol prevents several attacks, such as: DoS, cloning,
impersonating and replay attacks. However, it is vulnerable to
man-in-the-middle attacks, since there is no key agreement.
Additionally, the key for this protocol is not secure, because
it is just XORed with the random value without providing any
cryptographic mechanisms [23].

Amin et al. [24] proposed a lightweight authentication pro-
tocol for IoT in the cloud. It provides anonymity to protect
the privacy of users. This protocol uses the username, pass-
word and smartcard to authenticate users. Zhou et al. [25]
demonstrated that Amin et al. [24] protocol is susceptible
to user tracking and off-line guessing attacks. As a result,
they improved the previous protocol by providing user
untraceability and auditability. However, both schemes [24]
and [25] still suffer from a single point of failure, have high
computations in the cloud [11] and fail to provide mutual
authentication [26].

Kim and Lee [27] proposed an authentication and autho-
rization framework for the IoT environment, which is locally
centralized and globally distributed. This framework uses
open-source software called Auth [28], which can be located
in edge devices as a way to authorize local registered IoT
devices. Additionally, these Auths have to manage trusted
relationships among each other globally. All the credentials
and access control policies of local IoT devices are stored
in the Auth. If a device in one Auth wants to communicate
with a device in another Auth, both Auths must participate
to authorize these devices. This scheme prevents from DoS
attack because it uses the globally trusted relationship among
Auths [29]. Nevertheless, the process of initialization is still
high, as is the problem of dealing with mobile devices’ autho-
rization. It relies upon symmetric encryption, which makes
the computation cost high.

Several research works were proposed to authenticate
devices in RFID systems. Gope et al. [30] presented an
authentication protocol for RFID based systems used in smart
cities. This work improves upon previous work presented
in [22] for RFID systems. It provides user anonymity and
untraceability. This scheme was developed to solve the prob-
lem of synchronization loss. Additionally, this protocol pro-
vides secure localization if the server asks the tag for its
own location. However, it does not prevent man-in-themiddle
attack and fails to prevent a collision attack when two tags
have the same track sequence number [31]. Another RFID
protocol was proposed by Safkhan and Vasilakos [32] to
authenticate devices in telecare medicine information sys-
tems (TMIS). It is a lightweight scheme based on imple-
menting hash function, XOR and concatenation operations
to authenticate devices. It provides mutual authentication,
synchronization and prevents from replay attacks. On the
other side, both the tag and the reader depend on their IDs in
order to generate secret keys. However, these IDs are constant
and not updated after each process. Thus, the solution does
not provide backward and forward secrecy as the attacker
can gain the ID of the devices, then sniff other values from
the current session to find the previous and future secret
keys [33]. Also, this protocol does not provide anonymity and
untraceability.

All the previous techniques are static. In the next section,
we are going to discuss continuous authentication techniques.

B. CONTINUOUS AUTHENTICATION
Bamasag and Youcef-Toumi [16] presented a U2D continu-
ous authentication protocol. This protocol employs Shamir’s
secret sharing [34] integrated with time-bound data, in order
to continuously authenticate users. To perform the authentica-
tion process, both the verifier and the claimer have to register
to a trusted authority and obtain their secret. The portions of
this secret are referred to as shares and are generated using
Shamir’s secret key, these shares act as tokens, so the verifier
can authenticate the claimer using them. Time is employed
in this scheme such that every share is tied to a specific
time frame and revealed accordingly. This protocol provides

124770 VOLUME 9, 2021

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

secure communication when sending consecutive messages;
however, the computation cost over a finite field is high
and the storage cost on the claimer side is also high [35].
Additionally, it is a one-way authentication process, rather
than a mutual one.

Nespoli et al. [36] proposed a framework for the IoT envi-
ronment, that provides continuous authentication and autho-
rization. This framework comprises three main ontologies:
person, IoT device and location. The decisions are made
based on two policies, i.e. authentication, and authorization
policies. According to the user’s authentication policy, he/she
will attain the authorization policy to access devices and
locations. Another framework for smart homes is presented
by Ashibani et al. [18]. It provides continuous authentication
based on contextual information. This contextual information
is used to validate users continuously during the session.
Based on doing so, it assigns access and security levels for the
user. However, both frameworks [18] and [36] require large
datasets to achieve higher accuracy.

Several research works provide U2D continuous authen-
tication based on their users biometric (biometric authenti-
cation). Peris-Lopez et al. [17] presented an authentication
scheme, that continuously verifies the user using Electro-
CardioGramECG signals (ECG). They built their model to
address three types of attackers: blind, known and unknown.
This scheme lacks depth when dealing with different user
states, such as walking, training, running, etc. and also fails
to preserve the user’s privacy. Another scheme, proposed
by Yeh et al. [15], provides biometric authentication. This
scheme provides continuous authentication based on measur-
ing the user’s plantar pressure. It utilizes a wearable device
to collect foot pressure data and classify users with machine
learning. Although this biometric offers a means to uniquely
identify every user, it requires each user to wear customized
shoes to deliver accurate results. Additionally, human noises
affect the results. Moreover, Ekiz et al. [37] proposed a con-
tinuous authentication scheme based on heart rate variabil-
ity (HRV) extracted features. The HRV is collected using
a wrist-worn smartband to continuously authenticate users
during the session, after the user enters his/her password or
fingerprint. It prevents from session hijacking and spoofing
attacks. However, this scheme needs a large amount of trained
data to have accurate results. Additionally, the results can
be affected by noises and also depend on the quality of the
wrist band; for example, sport straps give better outcomes
than other straps.

For D2D continuous authentication, we observed two
works proposed by Wang et al. [38] and Chuang et al. [39].
Wang et al. [38] suggested a continuous authentication
scheme that authenticates edge devices in the cloud
server. It uses Electromagnetic radiation (EMR) to conduct
continuous authentication between devices. We can con-
ceptualize these EMR signals as unique device fingerprints
for identification purposes. This mechanism uses an elliptic
curve and the hash function to secure the authentication
process. It is a one-way authentication process, such that the

edge devices do not authenticate the cloud server. Noises can
interfere with EMR signals generating incorrect outputs.

Chuang et al. [39] presented aD2D lightweight continuous
authentication protocol, which employs the dynamic feature
of IoT devices (battery) using a token technique. Continuous
authentication happens over a specific time frame. Once this
period ends, the devices need to relaunch a static authenti-
cation process. This scheme employs lightweight functions,
such as: HMAC and hash to secure the authentication process.
The performance in terms of computation costs for this proto-
col is relatively better than other techniques that use encryp-
tion. However, it does not provide backward secrecy, and nor
does it prevent DoS attacks from happening. Furthermore,
the secret key for the sensor remains the same, rendering it
vulnerable in cases where an attacker gains the key using a
memory dump or any other process [40]. It is also vulnerable
to an impersonation attack.

Table 1, summarizes the advantages and limitations of the
previously discussed schemes.

Discussing existing research around authentication
schemes and realizing their limitations inspired us to look for
areas of improvement within this field. Additionally, the work
done in D2D continuous authentication has been limited. As a
result, our aim is to design a D2D continuous authentication
protocol, that overcomes the previous weaknesses, mitigates
DoS and provides privacy as well as ensures security.

III. THE PROPOSED MODEL
The proposed protocol design comprises two major parts; the
architectural design and the protocol design. In the archi-
tectural design, the authentication component resides on fog
nodes, close to the end of the IoT devices, and can achieve
real-time response and reduce latency. In the protocol design,
we provide communication details.

A. ARCHITECTURAL DESIGN
In the architectural design, we focus on distributing an
authentication system on fog nodes and close to the end IoT
devices, to achieve a real-time response and reduce latency.
We propose a three-layered architecture here, as shown
in Figure 1. This is composed of the following layers:

1) Cloud layer: this layer comprises one or many servers.
These servers support other layers for the registration
of devices and the establishment of a secure communi-
cation. Additionally, it allows end users to register and
communicate with the system.

2) Edge layer: the edge layer can be composed of several
sub-layers for better distribution. It contains mainly
the Home IoT server (HIoT), which is responsible for
the region. Each HIoT manages the registration and
authentication of gateways. All HIoT servers need to
register to the cloud to communicate and authenticate
one another. Additionally, this layer contains several
gateways. The gateway is responsible for authenticat-
ing the sensors residing in its region using continuous
authentication.

VOLUME 9, 2021 124771

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

TABLE 1. Advantages/limitations of previous authentication schemes.

3) End devices layer: this layer comprises of sensors and
these sensors are organized in the form of clusters, each
of which is managed by the corresponding gateway.

As shown in Figure 1, the architecture is composed of
several networks, each managed by the HIoT server. Inside
each network there are several clusters each managed by
a gateway. Notice that the authentication is handled by the
gateway with the support of HIoT and relies on the sensor
location. Sensors are allowed to move within the cluster or
from one HIoT to another. For this, we define two movement
policies:

1) Inter-cluster movement: if the sensor moves from one
cluster to another under the same HIoT, the authentica-
tion is handled by the new hosting gateway.

2) Inter-network movement: if the sensor moves from
one HIoT to another, the authentication is handled by
the hosting gateway with the support of the original
HIoT.

B. COMMUNICATION PROTOCOL
In the protocol design, we provide a continuous authenti-
cation protocol to mitigate DoS attacks. This protocol is
principally based on [39] and [30]. Additionally, we added
contextual information of the device; i.e., the location beside
the battery and token proposed in [39], as a way to continu-
ously authenticate devices during the session when sending
sensed data. We also took into consideration the sensors’
movement, anonymity and untraceability.

The proposed protocol is based on a two authentication
process that is both static and continuous:
• Static authentication: In static authentication the gate-
way and sensors mutually authenticate each other at the
beginning of each session.

• Continuous authentication: Continuous authentica-
tion is performed during the authentication period
after which the device needs to relaunch new static
authentication. Unlike static authentication, continuous

124772 VOLUME 9, 2021

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 1. Architectural design example.

authentication is performed during the session using a
token, and devices’ contextual information (e.g., loca-
tion and battery capacity).

The protocol consists of three main phases as shown in
Figure 2: initialization, static, and continuous authentication.

FIGURE 2. Protocol phases.

Our protocol follows the assumptions set out below:

1) Each sensor has one or more batteries.
2) Each sensor can be precisely localized inside and out-

side buildings.
3) Each sensor can perform lightweight computations,

such as: generating random numbers and performing
hash functions.

4) Sensors are of type class-2 and beyond to be able to
establish secure communication with a gateway.1

5) The gateways andHIoT servers are secure and scalable.

1Sensors have several classes, which are classified according to their
processing andmemory capabilities. Classes 0 and 1 are restricted inmemory
and code which makes the establishment of a secure communication in the
initialization phase hard [41]. However, it is worth noting that there are some
solutions to overcome this problem [42].

6) The gateways and HIoT servers have sufficient space to
store information related to the sensors they manage.

In addition to the support for continuous authentication,
the proposed protocol takes sensor movement into account.
Indeed, it allows for the authentication of moving sensors that
transit from one cluster to another, or from one network to
another.Moreover, the protocol provides a robustmechanism,
as a means to recover after a synchronization loss that might
occur following a DoS attack. The notations used in the
sequel are declared in Table 2.

We discuss in the following the authentication phases
namely initialization, static and continuous authentication.

1) INITIALIZATION PHASE
In this phase, both sensor and gateway need to set up some
important parameters through a secure channel as illustrated
in Figure 3. The steps of this phase are discussed in what
follows.

1) The sensor sends its own parameters. This phase starts
with the sensor sending its ID, battery, and location
information to the gateway.

2) The gateway receives sensor’s parameters and performs
the following steps:
• Once the gateway receives the request, it checks
if the sensor’s location is within its range, other-
wise, the gateway terminates the request. Then the
gateway stores the sensor’s location as the initial
location (IL), defines the sensor movement model
(see section V) and stores a secure range (SR) for
that sensor.

• After that, the gateway generates a secret value
SKSN . Furthermore, it calculates the estimated

VOLUME 9, 2021 124773

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 3. Initialization phase.

daily average battery (EBC) based on the informa-
tion received from the sensor [39].

• The gateway also generates a set of unlinkable
values, called shadow-IDs (SHID), each has a cor-
responding Kemg. This set of (SHID,Kemg) pairs is
sent to the sensor to be used in the case of losing
synchronization (see section IV-A).

• Another important step handled by the gateway is
the generation of a random track sequence number
(Trseq). The Trseq allows the prevention of replay
attacks. It also speeds up the authentication and is
used to negotiate a new SKSN after a successful
static authentication phase.

• The gateway stores the most recent Trseq and sends
it to the sensor. It stores in its database all the values
related to the sensor with its ID and sets the status
of the sensor to ‘‘active’’ which allows the gateway
to know the sensor is alive.
Each sensor may be either active or passive. In the
passive case, all the sensor’s related information is
deleted because the status remains unchanged for
a predefined period of time. The status flag has
the advantage of efficiently managing the memory
space of the gateway.

• The gateway defines and stores an authentication
period (T) for each sensor, so after this period,
the sensor needs to relaunch a new static authen-
tication session.

3) The gateway sends back important parameters to the
sensor. At the end, it will send to the sensor via a secure
channel {SKSN , Trseq, IDHIoT , IDGW , set of (SHID,
Kemg)}. The IDHIoT is the HIoT ID and the IDGW is
the gateway ID, that the sensor is connected to.

In this phase, the gateway has to send the previous infor-
mation to the HIoT server so that they are stored remotely.
This step is crucial to correctly handle the authentication
process in case the sensor moves under another cluster
or HIoT.

2) STATIC AUTHENTICATION PHASE
After the initialization phase, the static authentication phase
comes. In this phase both the gateway and the sensor mutually

authenticate each other. The gateway sends a new Trseq to
the sensor in order to negotiate a new SKSN . Notice that
generating a new secret key SKSN frequently prevents from
a memory dump attack that may allow the attacker to steal
the secret key and provides backward secrecy. Additionally,
they both gateway and sensor negotiate a token, which is used
in the continuous authentication phase during T .
The gateway retrieves the initial location (IL) and secure

range (SR), to compute the authorized movement (AMvt),
which is used to check whether the sensor resides into its
allowed location. Moreover, the gateway computes the esti-
mated remaining battery capacity threshold (BCT) [39], also
used to check the correctness of the remaining battery capac-
ity sent by the sensor and thus better enforcing the security.
The authentication steps are presented in Figure 4.

The communication between the sensor and gateway pro-
ceeds as follows.

a: SENSOR MESSAGE PREPARATION
The sensor message preparation contains three main steps,
in order to sendMSG1 to the gateway to start the static phase:
1) First the sensor generates a random number v, gets the

value of the current battery cb plus the current location
value cl, and extracts SKSN , Trseq from its storage to
mask the battery and location values as follows:
• mb = cb⊕ H (SKSN ⊕ Trseq)
• ml = cl ⊕ H (SKSN ⊕ Trseq)

2) Then the sensor computes the value X = v⊕H (cb||cl),
in order to mask v since it is used to negotiate the
token for the next phase and thus should be securely
exchanged. It also computes M1 = H [(v||IDSN) ⊕
H (SKSN)]. At the end, it computes AID to preserve the
privacy of the sensor, andM2 to ensure the integrity of
the message while transmission, as follows:
• AIDSN = H (IDSN ||SKSN ||Trseq)
• M2 = HMACSKSN [AIDSN ,X ,M1,mb,ml,
IDGW , IDHIoT]

3) Finally, the sensor sends the resulting message
MSG1(AIDSN ,mb,ml,X ,M1,M2, IDGW , IDHIoT)
that contains all the values required for authentication
to the gateway.

124774 VOLUME 9, 2021

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 4. Static authentication phase.

b: GATEWAY MESSAGE RECEPTION
Once the gateway receives themessageMSG1 from the sensor
it performs the following steps:

1) First, it checks IDGW to make sure that the sensor is
within the cluster.

2) The gateway derives the ID from the AID of the sensor
by generating AID′SN = H (IDSN ||SKSN ||Trseq) for the
identities of the stored sensors. If there is a match, then
the Trseq is recent and the authentication process will
continue, otherwise the session is aborted. 2

3) The gateway retrieves the corresponding SKSN and
computes M ′2 = HMACSKSN [AIDSN ,X ,M1,mb,ml,
IDGW , IDHIoT],
to check the message integrity.

4) The gateway also computes the sensor current location
cl ′ = ml ⊕ H (SKSN ⊕ Trseq) and checks if it is
within its range, in order to prevent any outsider mali-
cious sensor from entering and pretending to be in the
system.

5) Similarly, the gateway computes cb′ = mb⊕H (SKSN⊕
Trseq), the resulting values cb′,and cl ′ are used to com-
pute v′ = X ⊕ H (cb′||cl ′). Then M ′1 is computed, if it
is equal to the received messageM1, then all the values
(cb′, cl ′, v′) are correct.

2Note that in this step the Trseq will speed the authentication process since
if it’s not recent the session will be aborted and no need to continue.

c: GATEWAY MESSAGE PREPARATION
After verifying all these values, the gateway retrieves
EBC,T , IL and SR from its database.EBC and T are required
to compute the BCT for the sensor [39]. Additionally, IL
and SR are required to compute the authorized movement for
the sensor (AMvt). The gateway then stores the BCT ,AMvt
to be used later in the continuous authentication phase. The
gateway sends MSG2 to the sensor to mutually authenticate
each other and to negotiate the token, the steps for preparing
MSG2 are:
1) The gateway assigns rb = cb′, generates two random

numbers n1 and w, then masks w to be secure, because
it is used in token negotiation. It calculates Y = w ⊕
H (SKSN ⊕n1) and computes the token TKSN = H (w⊕
v′ ⊕ SKSN).

2) The gateway generates a new Trseqnew to be used
in the next authentication process and to compute
a new secret key SKSNnew . This new track number
will be masked to be hidden during transmission,
Trseq = Trseqnew ⊕ H (SKSN ||IDSN ||n1). The gateway
computes the new secret key SKSNnew , M3, and M4 as
follows:
• SKSNnew = H (SKSN ||IDSN ||Trseqnew)
• M3 = H [(TKSN ||IDSN ||Trseqnew)⊕ H (SKSN)]
• M4 = HMACSKSN [Y ,M3, n1,Trseq]

3) Finally, it sets the current time to ts and m to w.

VOLUME 9, 2021 124775

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

TABLE 2. Notations.

Once previous values are calculated, the gateway sends the
messageMSG2 = {M3,M4,Y , n1,Trseq} that contains all the
values to the sensor node to negotiate the token, new secret
and update the track number.

d: SENSOR MESSAGE RECEPTION
Once the sensor receivesMSG2, it proceeds as follows:
1) The sensor uses SKSN and computes M ′4 =

HMACSKSN [Y ,M3, n1,Trseq] to ensure the integrity of
the received message, if it is equal to the received M4,
then the values are not changed. After that, the sensor
computes: w′ = Y ⊕ H (SKSN ⊕ n1), to compute the
token TKSN = H (w′ ⊕ v⊕ SKSN).

2) The sensor updates Trseq with the new value by com-
puting Tr ′seqnew = Trseq ⊕ H (SKSN ||IDSN ||n1) and

computesM ′3. If it is equivalent to the receivedM3, then
the computed TKSN and new Tr ′seqnew are correct. As a
result, the authentication process is successful.

3) At the end, the sensor sets m = w′, updates SKSN with
the new value SKSNnew = H (SKSN ||IDSN ||Tr ′seqnew) and
stores TKSN to be used in the continuous authentication
phase.

The continuous authentication process is illustrated in the
next section.

3) CONTINUOUS AUTHENTICATION PHASE
After a successful static authentication phase, the continu-
ous authentication is be performed during a period time T .
We recall that at the end of the static authentication the sensor
has stored the values TKSN , BCT andAMvt to be used in this
phase during authentication time T .

First, the sensor sends the sensed data plus the verification
values to the gateway. Then, the gateway derives the sensor’s
ID from the AID and checks the validity of T as well as the
reasonability of cb and cl. Finally, it sends an acknowledge-
ment ACK back to the sensor based on T , either to relaunch
a new static phase or to continue sending data.

The continuous authentication phase is illustrated in
figure 5 and proceeds as follows.

a: SENSOR MESSAGE PREPARATION
In order to start the continuous authentication phase, the sen-
sor sends themessageMSGC1 to the gateway. The preparation
of this message is performed as follows:

1) First, the sensor generates a new random number r2
and extracts both recent values of the location and
the battery cl, cb. Then, it calculates their respective
masked values mb and ml to be sent securely by using
the stored TKSN as follows:
• mb = cb⊕ H [TKSN ||(m⊕ r2)]
• ml = cl ⊕ H [TKSN ||(m⊕ r2)]

2) The sensor also gets the sensed data sd and masks
it ms = sd ⊕ H ((TKSN ⊕ m)||r2), m being a value
calculated during the static authentication phase and
stored in both gateway and sensor that is continuously
changed during the continuous authentication phase.

3) Next, the sensor computes the AID to preserve privacy
and M5 to ensure message integrity as follows:
• AIDSN = H (IDSN ||TKSN ||r2)
• M5 = HMACTKSN [AIDSN ,mb,ml,ms, r2]

Finally, the sensor sends the message MSGC1 to the
gateway.

b: GATEWAY MESSAGE RECEPTION
Once the gateway receives MSGC1, the following steps are
performed:

1) The gateway derives the ID from the sensor’s AID to
get TKSN , BCT and AMvt from its database.

2) It sets tc = current timestamp, then computes (tc − ts)
to decide whether the static authentication should be

124776 VOLUME 9, 2021

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 5. Continuous authentication phase.

relaunched (i.e. the result is greater than T) or not.
There are two cases:
• If (tc − ts > T), then the gateway computes
cb′ = mb ⊕ H [TKSN ||(m ⊕ r2)], as well as Y1 =
(m||TKSN) ⊕ H [(TKSN ⊕ r2)||m] and ACK =

H [(m⊕ cb′)||(cb′ ⊕ r2)||(m||TKSN)].
After that, Y1 and ACK are sent to the sensor to
relaunch the static authentication.

• Otherwise, if (tc − ts) is still in the T range, then
the gateway does the following:
First, it computes cb′ similarly, as well as cl ′ =
ml⊕H [TKSN ||(m⊕r2)] and sd ′ = ms⊕H ((TKSN⊕
m)||r2). After computing cl ′ the gateway checks if
the value is in a valid range, otherwise it terminates
the session.
Second, it verifies and checks the following three
values, if any of them is false then session will be
aborted:
– M ′5 = HMACTKSN [AIDSN ,mb,ml,ms, r2] and

should be equal toM5.
– The remaining battery value cb′ should be rea-

sonable (i.e. (BCT ≤ cb′ ≤ rb)).
– The location cl ′ should be allowed by the gate-

way i.e. between the initial location and the
authorized movement (AMvt ≤ cl ′ ≤ IL).

Third, if the previous conditions are satisfied, then
the sensor is authenticated. As a result, the gateway
updates the value of rb = cb′ to be used for the next
battery check and generates a random number n2,
to be used for computing Y1 and ACK as follows:
– Y1 = n2 ⊕ H ((TKSN ⊕ r2)||m)
– ACK = H [(m⊕ cb′)||(n2 ⊕ r2)||(m⊕ TKSN)]

At the end, before sending MSGC2 the gateway sets
m = n2.

c: SENSOR MESSAGE RECEPTION
When the senor receives MSGC2, it calculates n′2 = Y1 ⊕
H ((TKSN ⊕ r2)||m)). If it results to {m||TKSN} i.e. the con-
tinuous phase has expired, then the sensor relaunches a new
static authentication phase. Otherwise, it sets m to n′2 and the
continuous authentication phase is maintained. In both case,
the ACK should be verified.

IV. MITIGATING THE DOS ATTACK
The main goal of a DoS attack is to violate the availability
of the system. In IoT environments, a DoS attack can be
performed in several ways (jamming, flooding, desynchro-
nization, etc.) [43]. Additionally, the advent of IoT technol-
ogy renders devices vulnerable to DoS attacks, according to
the 2020 McAfee report, DoS is ranked among the top ten

VOLUME 9, 2021 124777

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

attacks [44]. In this section, we propose two cases to mitigate
DoS attack, while continuously authenticating users. The first
is conceived to face attacks arising from malicious behavior,
which lead to synchronization loss between the gateway and
the sensor. The second is to address gateway unavailability,
so that it cannot provide its services to the sensors it governs.

A. RECOVERING FROM SYNCHRONIZATION LOSS
In this protocol, we take into consideration the synchroniza-
tion loss since we need to update the key between the sensor
and gateway after each successful authentication phase and
ensure forward secrecy. In this case, the gatewaymight update
the keywhile the sensor doesn’t. As a result, a DoS attackmay
occur due to the loss in synchronization between the sensor
and gateway [45].

One of the system goals is to protect the system from
DoS attacks. That’s why we intend to use a set of emergency
key and pseudo-identity pairs proposed in [30] to overcome
this problem. In our protocol, this pseudo-identity is known
as Shadow IDs (SHID) [22]. These are unlinkable IDs that
are generated in the gateway and sent to the sensor in the
initialization phase. The emergency key (Kemg) is used to
replace the secret key if there is any loss in communication.

Each (SHID,Kemg) is a one-time identity. It is used when
the sensor loses synchronization with the gateway and does
not receive a new track sequence number. The goal of the
(SHID,Kemg) is to prevent the DoS attack that can happen
when we have key-update. However, additional steps should
be performed when makes the gateway unavailable wherein
sensors can be authenticated by the nearest gateway [29].

In the static authentication phase (see Section III-B2),
the gateway generates a new Trseq after each successful
authentication process, in order to negotiate a new secret key
between the sensor and the gateway. If there is a connection
loss between the parties, the gateway will update with new
values, while the sensor cannot. For this reason, we use the
shadow IDs and emergency keys [30] to inform the gateway
that there is a problem (i.e., the sensor does not receive these
new values). This pair is used only once then both the sensor
and gateway must delete the used pair. Figure 6 illustrates the
steps of recovery from synchronization loss and proceeds as
follows.

1) SENSOR MESSAGE PREPARATION
First, if the sensor has not received MSG2 for a specific
period (defined by admin), it will use one of the pairs of
(SHID,Kemg) from the set that is stored in the sensor and
was generated by the gateway in the initialization phase.
Then, the sensor assigns AID = SHID and computes M1 =

HMACKemg [AIDSN , IDGW , IDHIoT]. Then the sensor sends
MSG1R to the gateway.

2) GATEWAY MESSAGE RECEPTION
Once the gateway receives MSG1R, it checks whether the
IDGW matches its own. If yes, then it derives the ID of the
SN from AID. If the gateway finds that there is a match

with one of the SHID, i.e. then it deduces the sensor has
lost the communication. Thus, the gateway retrieves the
Kemg that is related to this SHID. Next, it computes M ′1 =
HMACKemg [AIDSN , IDGW , IDHIoT]. If it matchesM1, then the
message has not been changed during transmission.

3) GATEWAY MESSAGE PREPARATION
Then, the gateway generates random n1, generates a new
Trseqnew and masks this new track number as the following,
Trseq = Trseqnew ⊕ H (Kemg||IDSN ||n1). After that it com-

putes the new secret key as SKSNnew = H (Kemg||IDSN ||
Trseqnew), and computes M2 and M3, M2 = H [(Kemg||IDSN ||
Trseqnew) ⊕ H (Kemg)], M3 = HMACKemg[M2, n1,Trseq].
Finally, the gateway sendsMSG2R to the sensor.

4) SENSOR MESSAGE RECEPTION
Once the sensor receives MSG2R, it computes M ′3 =

HMACKemg [M2, n1,Trseq] and compares it with the received
M3 to check the integrity of the message. Then, the sensor
extracts the new Trseqnew from the masked value by comput-
ing: Tr ′seqnew = Trseq ⊕ H (Kemg||IDSN ||n1). Next, the sensor
computes M ′2 = H [(Kemg||IDSN ||Tr ′seqnew) ⊕ H (Kemg)] and
compares it with the receivedM2 to ensure the correctness of
Trseqnew . Afterwards, the sensor computes the new secret key
SKSNnew in the same way as the gateway. Finally, the sensor
updates the values and performs a new static authentication
phase with these new values. Notice that since (SHID,Kemg)
are used only once, if the sensor needs another set of shadows
then it can send a request to the gateway for a new set [45].

B. GATEWAY FAILURE
In this section, we present our solution for dealing with
gateway unavailability consisting of authenticating sensors
by the nearest gateway.

Figure 7 identifies the steps in the recovery process. If gate-
way (GW1) fails due to DoS, the sensors it governs will be
authenticated via the nearest gateway (GW2). GW2 requires
access to all the information related to these sensors from the
HIoT. Certain constraints need to be taken into consideration
here:
• The sensors covered by the failed gateway should be in
the wireless coverage range of the recovery gateway.

• If more than one recovery gateway is available, then the
selection decision rests on several factors (i.e., nearest,
less cost, less overloaded).

Next, we describe the recovery process in detail. First we
explain how sensors can detect failure. Then, we discuss the
recovery process.

1) FAILURE DETECTION
During the period when the gateway is unavailable, the sen-
sors can detect failure via the following process:

1) First, the sensor sends a regular request MSG1, to start
a static authentication.

2) Then, it waits for a specific period (defined by admin).
If it does not receive a response from the gateway,

124778 VOLUME 9, 2021

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 6. Recovering from synchronization loss.

FIGURE 7. Recover from gateway failure.

it sends a pair of (SHID, Kemg) (using the same steps
in the recovery process).

3) If the sensor still receives no response from the gate-
way. It sends another pair. After several consecutive

(SHID, Kemg), the sensor will detect there is a problem
with the related gateway.

At this point, the sensor then begins broadcasting to look
for the nearest gateway to begin the recovery process.

2) RECOVERY PROCESS
After sensors have detected a failure and found the nearest
gateway, they can be authenticated via the recovery gateway,
with assistance from the HIoT server. Figure 8 illustrates
the steps in failure detection by SNR, and the procedure
for communication with gateway GW2 with help from the
HIoT. However, we need to consider the movement model
for each sensor, since we need to consider two types: static
and dynamic. Static sensors are not allowed to move, while
dynamic sensors can move and have three categories: intra-
cluster(move inside the cluster), intra-HIoT (move between
gateways inside the HIoT), and intra-network (move between
different networks). For further information about these
movement models, check section V.

As shown in step 3 Figure 8, the SNR sends an authenti-
cation request to GW2. Then, the GW2 determines that if the
received IDGWRec does notmatch its own, then it should check
the received IDHIoTRec. If the HIoT ID matches that to which
it is related, it asks the HIoT server for SNR information to
authenticate it.

VOLUME 9, 2021 124779

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 8. Recover process steps.

Once GW2 receives all the information related to the sen-
sor, it performs the following steps:
• First, it checks the sensor’s model movement, which is
specified and stored in the initialization phase for each
sensor. For each movement model, there are two types:
static and dynamic. Both will be explained.
1) If the sensor is static, then the gateway checks

the initial location (IL), which is specified in the
initialization phase. It can be compared with the
received location (ml). If both values are the same,
this ensures the gateway can authenticate the sen-
sor securely and continue the process.

2) If the sensor is dynamic, we then consider two
sub-cases:
a) Intra-cluster sensor: in this case, the gateway

checks the secure range of the sensor (SR). The
SR is specified in the initialization phase. If the
received masked location ml, is within SR,
then the gateway can authenticate the sensor
securely.

b) Intra-HIoT and Intra-network: for this case,
the gateway authenticates directly. As these
sensors are allowed to move freely between
clusters, the authentication process is similar
to that for the inter-cluster movement (check
section V-A).

• After this, both can start a continuous authentica-
tion process during time T until the original gateway
recovers.

V. SENSOR MOVEMENT
Since the IoT devices can move easily, it is vital to
define the specific procedures that handle this feature by
re-authenticating devices when they move from one area to
another.

Our architectural design allows for two main types of
movement:
• Inter-cluster movement: refers to the movement of sen-
sor from one cluster to another, and between different
gateways under the same HIoT.

• Inter-network: refers to movement between different
HIoTs.

To manage the movement of sensors in a flexible way,
we assume a sensor can be either static or dynamic. A static
sensor is not allowed to move. This applies to certain IoT
medical devices such as room thermostats and humidity con-
trollers. As for dynamic sensors, we can define the following
movement models:
• Intra-cluster movement model: the sensor is allowed to
move within a specific gateway and in a defined secure
range (SR). For instance, this model applies for the
sensors within a surgical robot and sensors determining
anesthetic levels during surgery.

• Intra-HIoT movement model: here the sensor can move
between different clusters in a specific HIoT within
a defined SR. This may be the case with smart beds
that contain pressure and heartbeat sensors, designed to
monitor the patient’s condition.

• Intra-network movement model: the sensor is free to
move between different clusters and between different
HIoTs. For example smart badges that assist in locating
medical personnel and in providing balanced resource
allocation around the hospital.

A. INTER-CLUSTER MOVEMENT
Both intra-HIoT and intra-network models allow sensors to
move between clusters. In both instances, sensors are handled
with the same HIoT. Thus, it is the responsibility of the
current gateway to authenticate a moving sensor with support
from the corresponding HIoT.

Figure 9 provides an example of an inter-cluster movement
model. Here, sensor (SNR) moves from one cluster to another
under the same HIoT. Thus, SNR has to communicate with
the new gateway to become authenticated. The authentica-
tion procedure is then conducted according to the following
steps:

1) The gateway checks the received IDGWRec. If these
do not match its own, then it checks the received
IDHIoTRec. Since both gateways come under the same
HIoT, the match passes.

2) The gateway sends a request to the HIoT that contains
the AID of SNR plus the IDGW .

3) The HIoT checks the IDGW and searches for sensors
under a specific gateway, then extracts the SNR ID from

124780 VOLUME 9, 2021

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 9. Inter-cluster movement.

the AID, and retrieves all the related data to return it
to the gateway to continue the authentication process.

4) The gateway updates the initial location (IL), with the
masked location ml received from the SNR in MSG1.

5) The gateway sends MSG2 and commences the contin-
uous authentication phase.

B. INTER-NETWORK MOVEMENT
The inter-networkmovement allows the sensor tomove freely
between different gateways belonging to different HIoTs.
This movement is permitted only for sensors with an intra-
network model. The visited gateway then has the responsibil-
ity of authenticating the moving sensor with the assistance of
the original HIoT. This process is illustrated in Figure 10.

In this figure, the sensor SNR is moving from one net-
work to another (from building 1 to building 2) between the
different HIoTs. Consequently, the gateway in building 2 is
responsible for the authentication process. The process pro-
ceeds as follows. First, the new gateway sends a request to the
original sensor HIoT to bring its related data. Once SNR sends
MSG1 to the gateway, the latter checks to establish whether
the sensor gateway and HIoT identifiers align with its own
values. If they do not match, then the gateway sends a request
to HIoT 2. This request contains {SNRAID, IDGW , IDHIoT }.
Note that if the sensor’s movement model is not on the
intra-network, then the gateway rejects the connection and
terminates the session, because the sensor is not authorized
to move between different HIoTs. When HIoT 2 receives
the sensor request and determines that the sensor belongs to
HIoT 1, it sends a request containing {IDGW , SNR,AID} to
the corresponding HIoT here 1. Once HIoT 1 receives the
request, it fetches the sensor related information from the
specific gateway and extracts the ID from AID, and then
sends the related data to HIoT 2. The latter then forwards

this response to its gateway. Finally, the gateway performs the
required computations, sends MSG2 to SNR and implements
the continuous authentication phase.

VI. SECURITY AND PERFORMANCE ANALYSIS
This section evaluates the security and performance of the
proposed protocol. The security analysis is conducted to
demonstrate that this protocol is robust and able to prevent
security threats. We used Scyther to verify the robustness of
the protocol. Additionally, we evaluated performance effi-
ciency in terms of communication and computation cost.

A. INFORMAL SECURITY ANALYSIS
In this section, we provide an informal security analysis of
the proposed protocol. We discuss several functionalities,
such as mutual authentication, anonymity, forward/backward
secrecy, etc. and illustrate how they are supported by the
proposed protocol. Furthermore, we prove that our protocol
is robust against multiple types of attacks.

1) MUTUAL AUTHENTICATION
Mutual authentication implies both communication parties
must authenticate each other. This functionality is essential
to deliver security to any IoT system [46].

In the static phase, the gateway validates the sensors by
verifying values AIDSN and M2. If the gateway computes
M ′2 and established that it is equivalent to the received M2,
then the sensor is deemed valid. Additionally, if the gateway
derives the sensor’s ID from the received AIDSN , it then
also validates the sensor. Both the sensor and gateway verify
that they can communicate with valid devices because values
SKSN and Trseq are secret. In contrast, the sensor validates the
gateway using M4, since M4 employs the secret key SKSN .

VOLUME 9, 2021 124781

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 10. Inter-network movement.

If the sensor computes M ′4 and finds it matches the received
value, this means that the gateway is valid.

Furthermore, in a case of synchronization loss, the gate-
way authenticates the sensor with AIDSN = SHID and M1.
If the computedM ′1 matches the receivedM1, and the AIDSN
matches one of the SHIDs, then the gateway validates the
sensor. It is worth noting that the unused pair (SHID,Kemg) is
shared only between the parties and used only once. Regard-
ing the sensor; it authenticates the gateway usingM3 because
this value uses Kemg as a key in the HMAC.
In the continuous authentication phase,M5 and AIDSN are

used by the gateway to validate the sensor because M5 uses
the token TKSN as a key for the HMAC, which is only known
to the communication parties. Additionally, if the gateway
derives the sensor’s ID from the AIDSN , it also verifies the
sensor to be valid. Conversely, the sensor validates the gate-
way by ACK . In the end, in each phase, the communicating
parties can mutually authenticate each other.

2) ANONYMITY
Our protocol provides both privacy and untraceability.
Indeed, the sensors use one-time anonymous IDs to mask
their original IDs and preserve their privacy. Additionally,
freshly generated randoms Trseq and r2, ensure no two mes-
sages sent by the same sensor use the same identity across
both phases (static and continuous), which also guarantees
untraceability. Moreover, in the recovery phase, the sensor
used a one-time SHID as an AID, preserving privacy and
making it hard to trace.

3) FORWARD SECRECY
Forward secrecy indicates that if an adversary compromises
the secret key for the current session (or the long-term

key), then they will not be able to derive previous session’s
keys [47].

In the static authentication phase, if the attacker com-
promises the recent secret key SKSN he will want to learn
the SKSN for the previous sessions. However, he will not
be able to do that, because after each successful session,
both the sensor and the gateway compute a new secret key
SKSNnew = H (SKSN ||IDSN ||Trseqnew). To retrieve the old ses-
sions, the attacker must know the previously generated Trseq
and SKSN , which cannot be extracted because the hash is a
one-way function. The attacker is thus unable to derive any
previously SKSN simply by knowing the current secret key.

In the continuous authentication phase, the token TKSN
provides forward secrecy. If the adversary knows the current
TKSN for the sensor and gateway via computing TKSN =
H (w⊕ v⊕ SKSN), he cannot derive the past tokens. Indeed,
to do so he would need to know the previous w and v, which
are impossible to derive as they are computed using a one-
way hash function. Finally, we conclude from this that the
proposed protocol provides forward secrecy.

4) BACKWARD SECRECY
Any security protocol needs to achieve backward secrecy
to protect future sessions or communication [31]. Backward
secrecy ensures that even if the attacker gains the secret ses-
sion key, he will not be in a position to compromise the future
session keys [48]. The proposed protocol ensures backward
secrecy in both phases.

In the static phase, if the attacker compromises the current
SKSN , he might gain some information about the current
session. However, he cannot extract any information about
future sessions because the SKSN frequently changes after
each session, and uses the Trseq, which is secure and freshly

124782 VOLUME 9, 2021

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

generated every time. The same applies with continuous
authentication, and the new token TKSN , which is generated
for all sensed data using secure values generated by both the
sensor and the gateway. As a result, an attacker cannot extract
any future TKSN by compromising the current TKSN .

5) AVAILABILITY
Availability is one of the most important security objectives,
that must be achieved. It is essential in IoT environments,
because it ensures timely access to system’s resources, espe-
cially for critical systems such as medical applications [13].
To ensure availability in our proposed protocol, we consider
two cases when gateway becomes unavailable to the sensor:

1) If the gateway updates its values and the sensor does
not: problems may occur resulting in synchronization
loss [30]. In the proposed protocol, we solved this prob-
lem by employing a set of shadow IDs and emergency
keys (SHID,Kemg) to recover from this failure.

2) The gateway becomes unavailable during a DoS attack:
in this case, the sensors detect its unavailability by
sending consecutive (SHID,Kemg) pairs. If there is no
response from the gateway then the sensors can be
authenticated by the nearest gateway.

6) SECURE LOCALIZATION
In the proposed protocol, we used the location beside the bat-
tery, as well as the token, to verify the sensor during the
continuous phase. Additionally, the location is used in the
static phase to ensure the sensor is located in the secure range
of the gateway. Consequently, we made sure to secure the
location values by masking them in the static and continuous
phases to prevent any location from becoming compromised.
The ml is masked as the following:

Static: ml = cl ⊕ H (SKSN ⊕ Trseq),
Continuous: ml = cl ⊕ H [TKSN ||(m⊕ r2)].
Moreover, if someone tries to disrupt the masked valueml,

this would not be accepted by the gateway. As theM2 value is
used to ensure the integrity of all the sent values includingml.

7) DATA INTEGRITY
One of the most important security requirements here is data
integrity. This is for security when the data is being sent
through an insecure channel [49]. Integrity ensures the data
is received free from any modification during transmission.
In this protocol, we used HMAC to guarantee integrity.

In the static phase, we used M2 and M4 with the secret
key SKSN to ensure the data is received without modification.
An adversary cannotmodify these two values because he does
not know the secret key SKSN . The gateway will verify these
values by computing M ′2, M

′

4, and testing equality with the
received value.

The same takes place in the continuous authentication
phase, using the valuesM5 and ACK , which are secured using
TKSN . If an attacker wished to tamper with these values,
he would need the TKSN , which is secure. Additionally, for

the recovery phaseM1 andM3 ensure integrity, since theKemg
is secure.

8) MAN-IN-THE-MIDDLE ATTACK
In the man-in-the-middle attack, the attacker intercepts the
messages between two communicating nodes and secretly
relays or alters these messages. The nodes are unaware of
any interception and believe they are communicatingwith one
another [49]. In the proposed protocol, if an attacker wanted
to perform man-in-the-middle, he would need to know the
SKSN , the current location cl, and the current battery cb.
Knowledge of these values is not possible simply by eaves-
dropping since the SKSN is secure, and the other values are
masked by ml and mb.

An attacker cannot perform the attack as part of the recov-
ery process, since he needs to know the value of Kemg. How-
ever, this value is secure and known only to the sensor and the
gateway. In the continuous authentication phase, this is the
same as the static case. However, here the attacker requires
the TKSN , cl, cb and sd , which are secured with ml,mb,ms.
Additionally, the TKSN is secure, and the attacker cannot
then modify any of the following messages. Accordingly, this
protocol prevents the man-in-the-middle attack.

9) IMPERSONATION ATTACK
The attacker in this case tries to masquerade as a legal
device [26]. The attacker needs to fake the message MSG1,
with a valid Trseq and secret key SKSN . The adversary cannot
masquerade in the case of this message, because neither Trseq
nor SKSN is known. The same is also true for the contin-
uous authentication phase, in which the attacker needs the
token to fake MSGC1, but the token is secure and changes
frequently.

During the recovery phase, the attacker needsKemg to serve
as a legitimate device, but Kemg is secret, and the attacker is
unable to fakeMSG1R.

Additionally, the sensor provides its secure location (using
masked location) to the gateway. This prevents malicious
devices from pretending to be legal devices inside the gate-
way’s secure range.

10) REPLAY ATTACK
Replay attacks involve an attacker trying to intercept a session
and choose messages to send in subsequent sessions [30].
In our protocol, we use Trseq, fresh random numbers, and
SHID to prevent such an attack. In the static phase, the sensor
uses the recent Trseq sent by the gateway. If an adversary
wishes to send an old message from a previous session, then
the gateway will terminate the session because the Trseq is not
fresh. Also, the gateway will generate a new random when
sending the message to the sensor. During recovery, both a
one-time SHID and a freshly generated random n2 prevent
a replay attack. Similarly, in the continuous authentication
phase, when the sensor and gateway generate randoms and
use themwithM5 andACK both sides can ensure themessage
is fresh.

VOLUME 9, 2021 124783

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

11) DoS ATTACK
Our protocol recovers from synchronization loss, which can
be caused by a DoS attack [45]. It recovers from this loss
by a pair of (SHID,Kemg) to recover from the DoS attack.
Additionally, if the gateway has failed, the related sensors can
be authenticated via the nearest gateway.

12) USER TRACKING ATTACK
In the static and continuous phase, all the messages from the
sensor have a different AID. As a result, the attacker cannot
track any device using the AID, as it changes frequently. The
SHID is only used once, in the recovery process, thus it is
hard to track a device.

13) SESSION HIJACKING
Session hijacking refers to an attacker trying to steal a legiti-
mate session, pretending to be a legitimate user or device [50].
To prevent this attack, the gateway continuously checks the
sensor’s legitimacy during the session while sending the
data, using three elements (the token, location, and battery).
This continuous authentication process prevents any session
hijacking.

Table 3, provides a summary of all the security functionali-
ties as well as the prevented attacks and how they are achieved
by the proposed protocol.

B. FORMAL SECURITY ANALYSIS
In this section, we evaluate the security robustness of the
proposed protocol using Scyther. Scyther is an analytical tool
used to verify security protocols [51]. Scyther [51] is also an
automatic tool that can be used for analyzing and verifying
security protocols developed using Python. Scyther can be
used to check whether a given security protocol is likely to
prove robust against multi-protocol attacks [52]. It uses Secu-
rity Protocol Description Language (SPDL) to describe mes-
sages, roles, and security parameters. Scyther can be used to
verify a protocol by implementing an unbounded or bounded
number of roles and sessions [53]. It also has a graphical
user interface and represents any attacks found using graphs.
The claims in Scyther can be either defined by the user or
automatically by the tool. Additionally, it uses the Dolev-Yao
as an adversary model. This is one of the commonly used
models, and is presented in [54]. The adversary in this model
can control the network between the communication parties.
The adversary can intercept messages, learn content, create
newmessages, and delete. He/She can also expose agents and
compromise their secrets [55].

To implement the proposed protocol, we used Scyther
(Compromise-0.9.2), which provides various adversary
compromise models [56]. It extended the Dolev-Yao
adversary model to a more powerful adversary model
with additional compromising capabilities for long-term and
short-term data [56]. This version supports the following
settings in addition to the Dolev-Yao:

TABLE 3. Informal security analysis summary.

• Key compromise impersonation (KCI): This allows
the attacker to compromise the long-term key of
agents.

• Testing perfect forward secrecy (PFS) and weak forward
secrecy (wPFS): These options allow the user to test if
the protocol provides forward secrecy. If the claim of
the data remains (Secret) after choosing the after (PFS)
option, then the protocol provides forward secrecy. Oth-
erwise, the user can test the protocol using aftercor-
rect (wPFS) to determine if the protocol provides weak
forward secrecy (the claim of the data after using this
option will remain secret).

• Adversaries can reveal states and sessions: These
options allow an attacker to compromise short-term data,
such as states, randoms, and sessions.

Using Scyther, we test all the protocol phases (static, con-
tinuous, and recovery). It is worth noting that Scyther has
some limitations in terms of its syntax, as it does not support
conditions inside the code (e.g., if-else statements). Accord-
ingly, we provided two different codes for the continuous
authentication phase, as follows.
• state 1: corresponds to a case where time T expires, and a
new static authentication phase needs to be relaunched.

124784 VOLUME 9, 2021

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 11. The SPDL code for static phase.

• state 2: corresponds to the case wherein time T is within
the range during the continuous phase.

First, we tested the security for the static authentication
phase. The SPDL code in Scyther for this phase is shown
in Figure 11.

The results show no attacks are present in this phase.
As shown in Figure 12, the following claims can be verified
to check the protocol’s robustness.
• The claim (Secret) proves the secrecy of the following
values (SKSN , TKSN , v,w, Trseqnew , SKSNnew). Indeed,
preserving the secrecy of these values guarantees con-
fidentiality and prevents several attacks arising (see
section VI-A).

• The claims (Alive, Niagree, Nisynch) ensure the authen-
ticity of the protocol, by testing the aliveness of roles
using (Alive). In addition, this requires testing the agree-
ment of values using (Niagree) and ensuring the syn-
chronization of messages using (Nisynch). Furthermore,
the claim (Nisynch) proves the protocol prevents replay
attack and provides mutual authentication.

• The (commit) claim verifies that our protocol prevents an
impersonation attack. This proves the proposed protocol
is secure.

• The (match) is used to check the validity of HMAC
values (M2, M4)

We also tested the continuous authentication phase for
state 1 and state 2. The SPDL code for both states are pre-
sented in Figures 13 and 14 respectively.

The results for the SPDL codes are shown in
Figures 15a and 15b, respectively. They prove the continuous

authentication phase is secure and was not compromised by
attacks. The claims tested are discussed below.
• The claim (Secret) is used to test the location secrecy
of the location, battery, sensed data, and token, and it
was found that all values are secure. This proves the data
is confident, and the protocol can prevent the defined
attacks (see section VI-A).

• We verify all the authentication claims by verifying the
agreement for values, the aliveness of roles, and the
synchronization of messages (Niagree, Alive, Nisynch).
The synchronization using (Nisynch) also proves the
protocol providesmutual authentication and prevents the
replay attack.

• The commitment is verified using the (Commit) claim.
• The (match) is used to check the validity of the HMAC
values (ACK , M5).

Furthermore, we tested the security of the recovery process
using Scyther. The results are shown in Figure 16, which
proves there are no attacks. In this case, we verified the
secrecy of the emergency key, the new track number, and the
new secret key. We also checked the aliveness of the roles and
the synchronization in this phase.

C. PERFORMANCE ANALYSIS
In this section, we evaluated the performance of the proposed
protocol in terms of computation and communication costs.

1) COMPUTATION COST
We compute the costs of the operations used in the presented
protocol, which consists of two authentication phases: static

VOLUME 9, 2021 124785

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 12. Static phase verification.

and continuous. The proposed protocol utilizes HMAC, hash,
generate randoms, concatenation, and XOR operation. The
concatenation and XOR computation costs are less than those
of other operations [24], so we decide to ignore the time
devoted to these two. To compute the time consumption for
the operations hash, HMAC, generating randoms, we use the
terms TH , THMAC , and TRN , respectively.

After computing the time consumption for our protocol,
we found that our protocol consumes 3TRN+23TH+4THMAC
during the static, 1TRN+9TH+1THMAC during the continuous
phase (state 1) and 2TRN + 11TH + 2THMAC) during the
continuous phase (state 2).

2) COMMUNICATION COST
We compute the communication cost by calculating the num-
ber of bits that transfer during the authentication process [19].
We assume the lengths of secrets (SKSN ,TKSN), random
numbers (w, v, n1, n2, r1, r2,Trseq,) and IDs (both gateway
and HIoT) are all 128 bits. To compute the total numbers of
transferred bits, we assume two conditions:
• Condition1: if the SHA-1 hash function is used, then the
hash digest produced is 160 bits.

• Condition2: if the SHA-2 (256) hash function is used,
then the hash digest produced is 256 bits.

For both conditions we compute the communication costs
for the protocol phases (static and continuous). The results
of our protocol in terms of transferred bits are 3,072 using
SHA-1 and 4,864 using SHA-2 (256). Our protocol provides
reasonable communication cost according to the security it
provides.

VII. DISCUSSION AND RESULTS
In this section, we discuss the results of our pro-
posed protocol and compare it with its competitors,

namely [30], [39], [57] and [58]. All these schemes are
D2D lightweight protocols. [39] is the only D2D continuous
authentication protocol that we found, so we decided to com-
pare with static RFID authentication protocols.

The comparative analysis is based on:

• The computation cost.
• The communication cost.
• Several authentication requirements defined for the IoT
environment.

• Several security properties, including prevented attacks,
to evaluate the protocol’s robustness.

A. COMPUTATION COST
We compared our protocol against its counterparts based
on the computation cost in terms of TH , THMAC , TRN (see
section VI-C1), and TECC (elliptic curve multiplication). The
elliptic curve computation time has been applied to the com-
parison as it is used in [57] and its extension [58] to exchange
the secret key used to encrypt the transferred data.

Table 4 contains a computation cost comparison
between our protocol, Chuang et al. [39], Gope et al. [30],
Naeem et al. [57], and Izza et al. [58]. Note that, for [39] we
choose to compare with the extended version of this protocol
because it computes the anonymous ID in this version.

As apparent from Table 4, our proposed protocol has more
hashes in the static authentication. However, it is more secure
than its competitors (see Table 8). Naeem et al. [57] proto-
col has the least number of hashes and near elliptic curve
cost from [58], but it suffers from many security issues (see
Table 8) and this protocol is only between the tag and the
reader (i.e., no server included). Additionally, Izza et al. [58]
is an improvement and extension to the previous protocol [57]
that authenticates tag, reader and server. However, this proto-
col also contains several security threats. Note that for both
works [57] and [58], these costs are only for session key
authentication. Indeed, there are additional costs for transfer-
ring the data using symmetric key encryption with the agreed
keywhich is costly. On the other hand, our protocol sends data
during the continuous authentication phase with a minimum
cost. Determining the proper balance between security and
practicality is essential when designing an authentication
protocol [25]. The additional hash functions used in our
proposed protocol improve security and maintain practicality
in terms of the computation power required. In the continuous
authentication phase, our proposed protocol has almost the
same hash functions as [39] present in both states, while
providing recovery from DoS attack and preventing more
attacks than [39].

B. COMMUNICATION COST
The comparison is done in terms of the number of transferred
bits during the authentication procedure. It is worth noting
that the lengths of secrets, randoms and tokens are 128 bits.
According to [58], the estimated length of the timestamp and
the elliptic curve output are 32 and 256 bits, respectively.

124786 VOLUME 9, 2021

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 13. The SPDL code for continuous phase state 1.

TABLE 4. Computation costs comparison.

We compare our protocol costs (see VI-C2) with the com-
munication costs of the competitor protocols. For condition1
(SHA-1), we provide communication costs in Table 5 and
compare our protocol with that of competitors [30], [39], [57]
and [58].

From Table 5, it is evident that [30] has the highest compu-
tation cost, although it does not provide continuous authen-
tication. In contrast, [57] has the lowest cost, but it does not
provide continuous authentication and it is vulnerable to sev-
eral attacks (see Table 8). Reference [58] which extends [57],
achieves more reasonable communication cost for the authen-
tication process with better security. Our proposed protocol
and [39] both provide continuous and static authentication.
As shown in the table, the communication cost of our protocol
is slightly higher than in [39]. However, it is also more robust,
since it prevents all known attacks while existing schemes are
still vulnerable to threats. Figure 17a, presents a comparison
graph detailing communication costs in term of bits for the
static and continuous authentication using SHA-1.

Next, we provide the communication cost for condition2
(i.e., in case SHA-2 (256) is used for the hash operation).

The proposed solution cost andwhen comparing them to [30],
[39], [57], and [58] is provided in Table 6.

TABLE 5. Communication costs for condition1 (SHA-1).

TABLE 6. Communication costs for condition2 (SHA-2(256)).

VOLUME 9, 2021 124787

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 14. The SPDL code for continuous phase state 2.

From Table 6 it can be seen that our protocol has a slightly
higher cost than [30]. However, [30] does not provide contin-
uous authentication, so it is vulnerable to session hijacking.
Our protocol ensures security by providing backward and
forward secrecy, also preventing known attacks to which
other protocols are vulnerable. Both [57] and [58] have the
minimum cost, but they are still vulnerable to several attacks
(see Table 8). It is important to refer that the cost considered
for [57] and [58] is only for the authentication process, and
there are additional high costs for transferring data using
encryption with the agreed session key. Figure 17b shows a
comparison graph for communication costs in term of bits
for static and continuous authentication using SHA-2 (256).
In the next section, we compare the proposed protocol with
that produced by competitors; focusing on authentication
requirements and security properties.

C. AUTHENTICATION REQUIREMENTS
We compared our protocol with its counterparts against sev-
eral authentication requirements for IoT (see Table 7).

TABLE 7. Results of authentication requirements comparison.

From Table 7, we can observe that [39] and our proto-
col satisfy all the requirements defined, whereas [30], [57]
and [58] do not provide continuous authentication. All the
protocols in Table 7 are D2D since the authentication pro-
cess is between devices. These schemes except [57] are
distributed (i.e., use edge computing), and preserve users’
identity (anonymity), as well as details about devices’ move-
ment or location (untraceability). In terms of performance
(i.e., computation cost), our protocol and [39] use HMAC;
thus, they have a medium cost, while [30] uses hash only,
incurring a low cost (i.e., hash gives high performance).
In contrast the protocols [57] and [58] have low performance
because they use encryption. Furthermore, these two RFID
schemes demand high storage and computation cost [59].

D. SECURITY PROPERTIES
We evaluate the robustness of each protocol to counter sev-
eral attacks, determining whether they provide backward and
forward secrecy. Table 8, provides a comparison of the works
to check their security strength.

The results of our comparison show our protocol is robust
against different types of attacks, and that it mitigates DoS
attacks, providing both forward and backward secrecy. The
protocol in [39] does not provide backward secrecy, because
it uses only one secret key SKSN for all static authentica-
tion sessions; however, in our protocol, the SKSN is updated
after each successful session. Thus, our protocol prevents
all future sessions from being compromised, even in cases
where the attacker has stolen the current secret key SKSN .
Additionally, the protocol in [39] does not prevent imper-
sonation [40] and does not consider mitigating DoS attacks.

124788 VOLUME 9, 2021

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 15. Continuous phase verification.

TABLE 8. Security analysis comparison.

For Chuang et al.’s protocol [39], forward secrecy is only
provided for partially in the token TKSN (continuous phase).
As we stated previously, the secret key SKSN is unchange-
able, and so it does not provide forward secrecy for the
secret (static phase). Moreover, we can observe that TKSN
only provides weak forward secrecy. To explain this; the
attacker who gains the secret key SKSN can reveal the secret
values that form the token (v and w), but can then only
compromise the token for the sessions that he has actively
revealed.

The other protocol, as presented in [30] does not pre-
vent man-in-the-middle attack [23] or session hijacking.
Additionally, the secret key is sent only by XOR using a
random number, and this makes it relatively easily compro-
mised when performing several attacks. The secret should

FIGURE 16. Recovery phase verification.

be transmitted securely, such as when using hash or other
safety mechanisms. In addition, it prevents only DoS in
cases of synchronization loss between devices, and it does
not consider cases where there is a DoS attack against the
database server or gateway. On the other hand, the protocols
[57], [58] do not mitigate DoS attacks and are vulnerable to
session hijacking, whereas [58] provides only weak forward
secrecy. Moreover, the scheme proposed in [57] suffers from
several security threats as the attacker can pretend to be a
legitimate reader and extract the tag’s secret identity so the
attacker then can impersonate, track, identify and localize the
device.

VOLUME 9, 2021 124789

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

FIGURE 17. Comparing communication cost for SHA-1 and SHA-2(256).

VIII. CONCLUSION
IoT powerful impact stems from the interconnectivity
between devices. In order to secure this infrastructure,
these devices must be secure and trusted. In this research,
we designed an edge-based device-to-device continuous
authentication protocol for IoT. The protocol utilizes device’s
features (i.e. token, battery and location) to continuously
authenticate each other, while taking into consideration the
hardware and software limitations of IoT devices by using
lightweight cryptography functions, such as hash andHMAC.
It also preserves the privacy of communicated devices using
anonymity and untraceability. Additionally, it takes into
account different movement models for IoT devices and
defines a secure allowed area for each moving sensor. To mit-
igate a DoS attack causing temporary synchronization loss,
the protocol relies on the use of emergency keys and shadow
IDs to re-initiate communication between sensors and gate-
ways. In case of permanent gateway failure, sensors can be
authenticated by the nearest gateway.

To prove the robustness and efficiency of the proposed
protocol, we provided both formal and informal security anal-
yses, and measured the communication costs of the suggested
model. The formal analysis was conducted using Scyther to
demonstrate the robustness of our protocol against several
different attacks.

IoT security is still in its early phase. For future improve-
ments, we intend to extend the proposed protocol by
(i) exploring and considering more contextual information in
addition to the battery and location to enhance the security;
(ii) taking the authentication process between the HIoT server
and the gateways into consideration to mitigate DoS attacks
that cause HIoT failure; and (iii) using machine learning to
detect and prevent DoS threats.

ACKNOWLEDGMENT
This project was funded by the Deanship of Scientific
Research (DSR) at King Abdulaziz University, Jeddah, under
the grant No. (DG-10-612-1441). The authors, therefore,
gratefully acknowledge the DSR technical and financial
support.

REFERENCES
[1] T. Nandy, M. Y. I. B. Idris, R. M. Noor, L. M. Kiah, L. S. Lun,

N. B. A. Juma’at, I. Ahmedy, N. A. Ghani, and S. Bhattacharyya, ‘‘Review
on security of Internet of Things authenticationmechanism,’’ IEEE Access,
vol. 7, pp. 151054–151089, 2019.

[2] Information Risk Research Team, ‘‘IoT security primer: Challenges
and emerging practices,’’ Gartner, Stamford, CT, USA, Tech. Rep.
G00355851, Jul. 2018. Accessed: Sep. 12, 2020. [Online]. Available:
https://www.gartner.com/en/documents/3869271/iot-security-primer-
challenges-and-emerging-practices

[3] P. K. Chouhan, S. McClean, and M. Shackleton, ‘‘Situation assessment
to secure IoT applications,’’ in Proc. 5th Int. Conf. Internet Things, Syst.,
Manage. Secur., Oct. 2018, pp. 70–77.

[4] M. H. Ashik, M. M. S. Maswood, and A. G. Alharbi, ‘‘Designing a
fog-cloud architecture using blockchain and analyzing security improve-
ments,’’ in Proc. Int. Conf. Electr., Commun., Comput. Eng. (ICECCE),
Jun. 2020, pp. 1–6.

[5] S. Behal, K. Kumar, and M. Sachdeva, ‘‘Characterizing DDoS attacks
and flash events: Review, research gaps and future directions,’’ Com-
put. Sci. Rev., vol. 25, pp. 101–114, Aug. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1574013717300941

[6] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar,
‘‘A survey on IoT security: Application areas, security threats, and solution
architectures,’’ IEEE Access, vol. 7, pp. 82721–82743, 2019.

[7] M.M.Hossain,M. Fotouhi, andR.Hasan, ‘‘Towards an analysis of security
issues, challenges, and open problems in the Internet of Things,’’ in Proc.
IEEE World Congr. Services, Jun. 2015, pp. 21–28.

[8] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and
M. Guizani, ‘‘A survey of machine and deep learning methods for Internet
of Things (IoT) security,’’ IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 1646–1685, 3rd Quart., 2020.

[9] R. Clarke, ‘‘Human identification in information systems,’’ Inf. Technol.
People, vol. 7, no. 4, pp. 6–37, Dec. 1994.

[10] R. Falk and S. Fries, ‘‘Advanced device authentication: Bringing multi-
factor authentication and continuous authentication to the Internet of
Things,’’ in Proc. 1st Int. Conf. Cyber-Technol. Cyber-Syst., 2016,
pp. 69–74.

[11] M. El-Hajj, A. Fadlallah, M. Chamoun, and A. Serhrouchni, ‘‘A survey of
Internet of Things (IoT) authentication schemes,’’ Sensors, vol. 19, no. 5,
p. 1141, Mar. 2019. [Online]. Available: https://www.mdpi.com/1424-
8220/19/5/1141

[12] P. M. S. Sánchez, A. H. Celdrán, L. F. Maimó, G. M. Pérez, and G. Wang,
‘‘Securing smart offices through an intelligent and multi-device contin-
uous authentication system,’’ in Smart City Informatization, G. Wang,
A. El Saddik, X. Lai, G. Martinez Perez, and K.-K. R. Choo, Eds.
Singapore: Springer, 2019, pp. 73–85.

[13] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani,
‘‘Demystifying IoT security: An exhaustive survey on IoT vulnerabil-
ities and a first empirical look on Internet-scale IoT exploitations,’’
IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2702–2733, 3rd Quart.,
2019.

124790 VOLUME 9, 2021

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

[14] L. Gonzalez-Manzano, J. M. D. Fuentes, and A. Ribagorda, ‘‘Leveraging
user-related Internet of Things for continuous authentication: A survey,’’
ACM Comput. Surv., vol. 52, no. 3, pp. 53:1–53:38, Jun. 2019, doi:
10.1145/3314023.

[15] K.-H. Yeh, C. Su, W. Chiu, and L. Zhou, ‘‘I walk, therefore i am: Contin-
uous user authentication with plantar biometrics,’’ IEEE Commun. Mag.,
vol. 56, no. 2, pp. 150–157, Feb. 2018.

[16] O. O. Bamasag andK. Youcef-Toumi, ‘‘Towards continuous authentication
in Internet of Things based on secret sharing scheme,’’ in Proc. Workshop
Embedded Syst. Secur. (WESS). New York, NY, USA: ACM, Oct. 2015,
pp. 1:1–1:8, doi: 10.1145/2818362.2818363.

[17] P. Peris-Lopez, L. González-Manzano, C. Camara, and J. M. de Fuentes,
‘‘Effect of attacker characterization in ECG-based continuous authen-
tication mechanisms for Internet of Things,’’ Future Gener. Comput.
Syst., vol. 81, pp. 67–77, Apr. 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167739X17300407

[18] Y. Ashibani, D. Kauling, and Q. H. Mahmoud, ‘‘Design and implementa-
tion of a contextual-based continuous authentication framework for smart
homes,’’ Appl. Syst. Innov., vol. 2, no. 1, pp. 1–20, 2019. [Online]. Avail-
able: http://www.mdpi.com/2571-5577/2/1/4

[19] E. Lara, L. Aguilar, M. A. Sanchez, and J. A. García, ‘‘Lightweight
authentication protocol for M2M communications of resource-constrained
devices in industrial Internet of Things,’’ Sensors, vol. 20, no. 2, p. 501,
Jan. 2020.

[20] Z. A. Alizai, N. F. Tareen, and I. Jadoon, ‘‘Improved IoT device authenti-
cation scheme using device capability and digital signatures,’’ in Proc. Int.
Conf. Appl. Eng. Math. (ICAEM), Sep. 2018, pp. 1–5.

[21] K. M. Renuka, S. Kumari, D. Zhao, and L. Li, ‘‘Design of a
secure password-based authentication scheme for M2M networks in IoT
enabled cyber-physical systems,’’ IEEE Access, vol. 7, pp. 51014–51027,
2019.

[22] P. Gope and T. Hwang, ‘‘Untraceable sensor movement in distributed
IoT infrastructure,’’ IEEE Sensors J., vol. 15, no. 9, pp. 5340–5348,
Sep. 2015.

[23] K.-H. Yeh, ‘‘BSNCare+: A robust IoT-oriented healthcare system
with non-repudiation transactions,’’ Appl. Sci., vol. 6, no. 12, p. 418,
Dec. 2016.

[24] R. Amin, N. Kumar, G. Biswas, R. Iqbal, and V. Chang, ‘‘A light
weight authentication protocol for IoT-enabled devices in distributed
Cloud Computing environment,’’ Future Gener. Comput. Syst.,
vol. 78, pp. 1005–1019, Jan. 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167739X1630824X

[25] L. Zhou, X. Li, K.-H. Yeh, C. Su, and W. Chiu, ‘‘Lightweight IoT-
based authentication scheme in cloud computing circumstance,’’ Future
Gener. Comput. Syst., vol. 91, pp. 244–251, Feb. 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X18307878

[26] R. Martínez-Peláez, H. Toral-Cruz, J. R. Parra-Michel, V. García,
L. J. Mena, V. G. Félix, and A. Ochoa-Brust, ‘‘An enhanced lightweight
IoT-based authentication scheme in cloud computing circumstances,’’
Sensors, vol. 19, no. 9, p. 2098, May 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/9/2098

[27] H. Kim and E. A. Lee, ‘‘Authentication and authorization for the Internet
of Things,’’ IT Prof., vol. 19, no. 5, pp. 27–33, 2017.

[28] H. Kim, A. Wasicek, B. Mehne, and E. A. Lee, ‘‘A secure network archi-
tecture for the Internet of Things based on local authorization entities,’’ in
Proc. IEEE 4th Int. Conf. Future Internet Things Cloud (FiCloud), Vienna,
Austria, Aug. 2016, pp. 114–122.

[29] H. Kim, E. Kang, D. Broman, and E. A. Lee, ‘‘An architectural mechanism
for resilient IoT services,’’ in Proc. 1st ACM Workshop Internet Safe
Things, Nov. 2017, pp. 8–13.

[30] P. Gope, R. Amin, S. K. H. Islam, N. Kumar, and V. K. Bhalla,
‘‘Lightweight and privacy-preserving RFID authentication scheme
for distributed IoT infrastructure with secure localization services
for smart city environment,’’ Future Gener. Comput. Syst., vol. 83,
pp. 629–637, Jun. 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167739X17313043

[31] K. ul Hassan, A. Ghani, S. Chaudhry, S. Shamshirband, S. Ghayyur,
E. Salwana, and A.Morsavi, ‘‘Securing IoT-based RFID systems: A robust
authentication protocol using symmetric cryptography,’’ Sensors, vol. 19,
pp. 1–21, Jul. 2019.

[32] M. Safkhani and A. Vasilakos, ‘‘A new secure authentication protocol for
telecare medicine information system and smart campus,’’ IEEE Access,
vol. 7, pp. 23514–23526, 2019.

[33] F. Zhu, ‘‘SecMAP: A secure RFID mutual authentication protocol
for healthcare systems,’’ IEEE Access, vol. 8, pp. 192192–192205,
2020.

[34] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979, doi: 10.1145/359168.359176.

[35] M. El-Hajj, M. Chamoun, A. Fadlallah, and A. Serhrouchni, ‘‘Analysis of
authentication techniques in Internet of Things (IoT),’’ in Proc. 1st Cyber
Secur. Netw. Conf. (CSNet), Oct. 2017, pp. 1–3.

[36] P. Nespoli, M. Zago, A. H. Celdran, M. G. Perez, F. G. Marmol, and
F. J. G. Clernente, ‘‘A dynamic continuous authentication framework in
IoT-enabled environments,’’ in Proc. 5th Int. Conf. Internet Things, Syst.,
Manage. Secur., Oct. 2018, pp. 131–138.

[37] D. Ekiz, Y. S. Can, Y. C. Dardagan, and C. Ersoy, ‘‘Can a smartband be used
for continuous implicit authentication in real life,’’ IEEE Access, vol. 8,
pp. 59402–59411, 2020.

[38] J. Wang, M. Ni, F. Wu, S. Liu, J. Qin, and R. Zhu, ‘‘Electromagnetic radia-
tion based continuous authentication in edge computing enabled Internet of
Things,’’ J. Syst. Archit., vol. 96, pp. 53–61, Jun. 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1383762118304491

[39] Y.-H. Chuang, N.-W. Lo, C.-Y. Yang, and S.-W. Tang, ‘‘A lightweight
continuous authentication protocol for the Internet of Things,’’
Sensors, vol. 18, no. 4, pp. 1–26, 2018. [Online]. Available:
http://www.mdpi.com/1424-8220/18/4/1104

[40] S. Sathyadevan, K. Achuthan, R. Doss, and L. Pan, ‘‘Protean authen-
tication scheme—A time-bound dynamic KeyGen authentication tech-
nique for IoT edge nodes in outdoor deployments,’’ IEEE Access, vol. 7,
pp. 92419–92435, 2019.

[41] C. Bormann, M. Ersue, and A. Keranen, Terminology for Constrained-
Node Networks, document IETF, RFC 7228, May 2015. [Online]. Avail-
able: https://www.rfc-editor.org/rfc/rfc7228.txt

[42] J. King and A. I. Awad, ‘‘A distributed security mechanism for resource-
constrained IoT devices,’’ Informatica, vol. 40, no. 1, pp. 133–143,
2016.

[43] A. D. Wood and J. A. Stankovic, ‘‘Denial of service in sensor networks,’’
Computer, vol. 35, no. 10, pp. 54–62, Oct. 2002.

[44] McAfee, ‘‘McAfee labs threats report,’’ McAfee, Santa Clara, CA, USA,
McAfee ATR Threats Rep. 11.20, Nov. 2020.

[45] P. Gope, J. Lee, and T. Q. S. Quek, ‘‘Resilience of dos attacks in designing
anonymous user authentication protocol for wireless sensor networks,’’
IEEE Sensors J., vol. 17, no. 2, pp. 498–503, Jan. 2017.

[46] L. Zheng, C. Song, N. Cao, Z. Li, W. Zhou, J. Chen, and L. Meng, ‘‘A new
mutual authentication protocol in mobile RFID for smart campus,’’ IEEE
Access, vol. 6, pp. 60996–61005, 2018.

[47] D. Park, C. Boyd, and S.-J. Moon, ‘‘Forward secrecy and its applica-
tion to future mobile communications security,’’ in Public Key Cryptog-
raphy, H. Imai and Y. Zheng, Eds. Berlin, Germany: Springer, 2000,
pp. 433–445.

[48] A. F. Baig, K. M. U. Hassan, A. Ghani, S. A. Chaudhry, I. Khan, and
M. U. Ashraf, ‘‘A lightweight and secure two factor anonymous authen-
tication protocol for global mobility networks,’’ PLoS ONE, vol. 13, no. 4,
pp. 1–21, Apr. 2018, doi: 10.1371/journal.pone.0196061.

[49] R. Melki, H. N. Noura, and A. Chehab, ‘‘Lightweight multi-factor mutual
authentication protocol for IoT devices,’’ Int. J. Inf. Secur., vol. 19, no. 6,
pp. 679–694, Dec. 2019, doi: 10.1007/s10207-019-00484-5.

[50] Q. Hu, B. Du, K. Markantonakis, and G. P. Hancke, ‘‘A session hijack-
ing attack against a device-assisted physical-layer key agreement,’’ IEEE
Trans. Ind. Informat., vol. 16, no. 1, pp. 691–702, Jan. 2020.

[51] C. J. F. Cremers, ‘‘The scyther tool: Verification, falsification, and
analysis of security protocols,’’ in Computer Aided Verification,
A. Gupta and S. Malik, Eds. Berlin, Germany: Springer, 2008,
pp. 414–418.

[52] M. Kompara, S. H. Islam, and M. Hölbl, ‘‘A robust and efficient
mutual authentication and key agreement scheme with untraceability for
WBANs,’’ Comput. Netw., vol. 148, pp. 196–213, Jan. 2019.

[53] J. Huang and C.-T. Huang, ‘‘Design and verification of secure mutual
authentication protocols for mobile multihop relay WiMAX networks
against rogue base/relay stations,’’ J. Electr. Comput. Eng., vol. 2016,
pp. 1–12, Sep. 2016.

[54] D. Dolev and A. C. Yao, ‘‘On the security of public key protocols,’’ IEEE
Trans. Inf. Theory, vol. IT-29, no. 2, pp. 198–208, Mar. 1983.

[55] C. Cremers and S. Mauw, Operational Semantics and Verification of
Security Protocols. Berlin, Germany: Springer, Jan. 2012.

VOLUME 9, 2021 124791

http://dx.doi.org/10.1145/3314023
http://dx.doi.org/10.1145/2818362.2818363
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1371/journal.pone.0196061
http://dx.doi.org/10.1007/s10207-019-00484-5

A. Badhib et al.: Robust Device-to-Device Continuous Authentication Protocol for IoT

[56] D. Basin and C. Cremers, ‘‘Modeling and analyzing security in the pres-
ence of compromising adversaries,’’ in Computer Security—ESORICS
2010, D. Gritzalis, B. Preneel, andM. Theoharidou, Eds. Berlin, Germany:
Springer, 2010, pp. 340–356.

[57] M. Naeem, S. Chaudhry, K. Mahmood, M. Karuppiah, and S. Kumari,
‘‘A scalable and secure rfid mutual authentication protocol using
ecc for Internet of Things,’’ Int. J. Commun. Syst., vol. 33, p. 13,
Jan. 2019.

[58] S. Izza, M. Benssalah, and K. Drouiche, ‘‘An enhanced scalable
and secure RFID authentication protocol for WBAN within an IoT
environment,’’ J. Inf. Secur. Appl., vol. 58, May 2021, Art. no. 102705.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2214212620308516

[59] A. Arslan, S. A. Çolak, and S. Ertürk, ‘‘A secure and privacy friendly ECC
based RFID authentication protocol for practical applications,’’ Wireless
Pers. Commun., vol. 18, pp. 1–39, May 2021.

ARWA BADHIB received the B.S. degree in information technology from
Arab Open University, in 2012. She is currently pursuing the M.S. degree in
information technology with King Abdulaziz University. Her main research
interest includes security and privacy in the Internet of Things.

SUHAIR ALSHEHRI received the Ph.D. degree in computing and infor-
mation sciences from Golisano College of Computing and Information
Sciences, Rochester Institute of Technology, in 2014. She is currently an
Assistant Professor with the Information Technology Department, Faculty
of Computing and Information Technology, King Abdulaziz University.
Her main research interests include security and privacy in computer and
information systems and applied cryptography.

ASMA CHERIF received the M.S. and Ph.D. degrees in computer science
from Lorraine University, France, in 2008 and 2012, respectively. She is
currently anAssociate Professor with the Faculty of Computing and Informa-
tion Technology, King Abdulaziz University, Saudi Arabia. She conducted
her research at Loria, the French research laboratory. Her current research
interests include access control in distributed systems and collaborative
applications, cloud/edge computing, smart systems, and the Internet of
Things.

124792 VOLUME 9, 2021

