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ABSTRACT Microgrids are one important lever to increase power system resilience and to tightly integrate
renewable energies at the same time. Commonly, an optimization-based proactive scheduling controls assets
in advance in a cost-effective way and ensures that contingencies may be successfully mitigated. However,
often strong simplifications are introduced to manage the high computational complexity of scheduling,
which can adversely impact fault mitigation. To consider essential phenomena such as power flow limitations
and low-level control capabilities in detail, a novel hybrid scheduling approach is presented that integrates
mathematical programming and arbitrary nonlinear constraint models via decision trees. A detailed case
study compares the newmethod to an extended hybrid scheduling approach from literature. It is demonstrated
that hybrid optimization can efficiently solve proactive resilient scheduling problems and that the tree-based
algorithm provides a feasible solution, even in case the reference algorithm fails. Details on the convergence
of both algorithms give further insights into the working principles and show that the novel method
quickly finds a feasible solution that is successively improved afterwards. By the novel combination of
highly-developed solvers for both mathematical programming and detailed asset models it is expected that
this study further supports the operation of power systems and reduces costly reserve requirements.

INDEX TERMS Energy management system, heuristic optimization, hybrid optimization, microgrid
scheduling, power system resilience, proactive resilient scheduling.

NOMENCLATURE
DEDICATED INDICES AND SETS
DG Set of controllable Distributed Generators

(DGs).
LD Set of volatile loads and energy sources.
ST, IG Set of storage and inverter-based plants.
LI, BS Set of all lines and buses .
T, t Set and Index of time instants.
l, a, b Index of loads, DG, and storage units,

respectively.
SC, s Set and index of scenarios.
V Set of violated constraints.

VARIABLES
Ex Generic vector of all model variables.
ExC Candidate solution of the scheduling prob-

lem.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shafi K. Khadem.

pDGa,t Active power scheduled for DG a at time t .
oDGa,t Operational status of DG a at time t .
pNDGt Nominal power of all scheduled DGs at

time t .
pCHGb,t Charged active power of storage b at time t .
pDCHb,t Discharged active power of storage b at

time t .
eSTb,t Energy stored in b after time step t .
oCHGb,t Charging mode of storage b at time t .
pBUYt Active power bought from the main grid at

time t .
pSELLt Active power sold to the main grid at time t .
oSELLt Main grid transfer direction at time t .
cTOTt Total operating costs at time t .
oSTAi,t Startup indicator of asset i at time t .
pUPt Scheduled up-spinning reserve at time t .
pMinUP Minimal up-spinning reserve.
oMinUP
t Minimal up-spinning reserve indicator at

time t .
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oTRi i-th auxiliary variable to encode tree con-
straints.

Pvi,t,s, Q
v
i,t,s Total active/reactive power of asset i at

time t and in scenario s, having type v ∈
{DG,ST,PV,WT}.

Si,t,s Total apparent power of asset i at t in s.
Ui,t,s Voltage at bus i at time t and scenario s .
Ii,t,s Current in line i at time t and scenario s .
ṽ Normalized counterpart of variable or

parameter v.

FUNCTIONS
c(Ex) Costs of a schedule Ex.
Eg l(Ex) Set of linear constraint functions.
Eg n(Ex) Set of nonlinear constraint functions.

Eg z,Hh Heuristically defined partition of Egz.
Gz(Ex) Constraint violation level of Egz.
P(e) Probability of event e.
dec(T ) Root decision of subtree T .
left(T ) Active subtree of tree T , iff dec(T )(Ex) ≤ 0.
right(T ) Active subtree of tree T , iff dec(T )(Ex) 
 0.

PARAMETERS AND CONSTANTS
v̄, v Upper and lower limit of variable v.
1T Duration of a single scheduling interval.
pLDl,t Expected active power demand of general-

ized load l at time t .
oCHGb,−1 Initial charging mode of storage b.
µST
b Average round-trip efficiency of storage b.

eSTb,−1 Initial energy in storage b.
eSTb,|T| Energy in storage b at the end of the time

horizon.
oDGa,−1 Initial operational status of DG a.
cDGa Cost of producing one unit of energy in DG

a.
cBUYt Cost of buying one unit of energy at time t .
cSELLt Cost of selling one unit of energy at time t .
pOPa,t Forced operating point of asset i at time t .
nSTAi Number of permitted starts on asset i.
K v
a Droop gain or function of asset a and type v.

M A sufficently large big-M constant.
ε A small but strictly positive constant.

I. INTRODUCTION
Microgrids are considered as one solution to increase power
system resilience, to tightly integrate volatile Renewable
Energy Sources (RES) and to fully leverage the economic
potential of Distributed Energy Resources (DERs) [1].
Although there are other definitions as well, this work fol-
lows [2] and considers microgrids as tightly controlled elec-
trical networks that can be operated in both grid-connected

and islanded mode. Due to the great flexibility that is pro-
vided by many microgrids, considerable potential is given
for a scheduling algorithm to optimize the operation [3].
Resilient scheduling in emergency mode, for instance, often
reduces the impact of a contingency without primarily target-
ing operating costs. In contrast, proactive resilient scheduling
algorithms minimize the normal operation cost while no fail-
ure is observed, but at the same time, they prepare the network
to gracefully degrade in case of contingencies. According to
related work, resilience is considered as the ability to reduce
the impact of potentially harmful events and includes both a
fully robust but also a gracefully degraded operation [4].

A detailed review of proactive scheduling approaches is
published in [4] noting that, although every algorithm fol-
lows an optimization-based methodology, a broad variety of
solution approaches is observed. Common scheduling tech-
niques include mathematical methods (like Mixed Integer
Linear Programming (MILP) formulations) that can be solved
by generic software components and heuristic approaches
such as genetic algorithms [5]. As demonstrated in this
work, the broad variety of approaches directly relates to
the high computational complexity of microgrid scheduling
that leaves room for various specialized methods including
heuristics.

Since control and scheduling decisions can have a consid-
erable impact on the safe operation of a microgrid [6], some
authors included physical constraints such as voltage limits
in their scheduling formulations. Due to the inherently non-
convex nature of physical power flows, mostly linearization
is used to fit the MILP or heuristic optimization techniques
to solve the nonlinear mixed-integer problem [4]. The former
technique can suffer from linearization errors causing overap-
proximation or reduced confidence in the eligibility of results
while the latter approach cannot fully utilize the potential
of highly-developed solvers for mathematical programming
problems. However, literature sparsely indicates under which
circumstances one merit outweighs the other.

Most work formulates the proactive scheduling problem
as one monolithic set of equations without discussing exter-
nal implementations of asset models in detail [4], [7]. For
instance, in [8], a linearized version of the power flow equa-
tions is directly integrated into the scheduling model. Several
studies including [9] using Benders decomposition, are parti-
tioning themodels into subproblems to efficiently solve them.
Although the monolithic formulation and its decomposition
gives full access to details such as derivatives, engineering
efforts of formulating system constraints can be considerably
eased by relying on well-proven and accepted external simu-
lation models [10], [11].

In [10], a security-constrained optimal dispatch approach
is presented that uses a heuristic multi-objective optimization
technique. An external power system simulator and normal-
ized constraint violation levels are used to filter infeasible
candidate solutions. In addition to static voltage and cur-
rent margins, which are also reflected in related works, [10]
includes transient voltage and frequency stability constraints.
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However, the problem formulation is restricted to unit com-
mitment without considering the operational status of DER.

A manual decomposition into an outer multi-objective
problem that manages storage schedules and inner optimiza-
tions scheduling the other resources, both in normal and
emergency operation, is presented in [12]. The nested MILP
problems consider power flows by iteratively updating a
power loss constant, in case the power flow does not indi-
cate any physical constraint violation. In case a violation
is encountered, the whole subproblem including its linear
equations is solved by an optimal power flow solver. Despite
using the external power flow optimization, less emphasis is
put on the complexity of handling nonlinear constraints as
most schedules are assumed to be feasible.

Also [11] described the integration of an external power
system simulator to enforce voltage and current constraints
in resilient scheduling. In contrast to [10], a quadratic-
programming formulation with linear constraints is extended
by constraints derived from a sensitivity analysis on the grid
model. Both, the iterative scheme as well as the structure of
added constraints can also be found in Benders decomposi-
tion as applied in [9]. However, [9] uses (integer) linear pro-
grams that cannot handle the nonlinear power flows in [11],
and both approaches differ in their constraint generation.

Given the interaction of mathematical programming
and the constraint enforcement heuristic, [11] success-
fully demonstrates the application of a hybrid optimization
approach, i.e., a combination of diverse algorithmic compo-
nents [13], in resilient microgrid scheduling. Still, the exter-
nal constraints were only applied in a single time interval of
the multi-period optimization problem. Questions regarding
applicability in multi-period constraints and approximation
errors remain open. Despite the detailed power system mod-
els, the effects of low-level controls such as voltage and
frequency droop on the feasibility of a particular candidate
schedule are hardly covered [10], [11].

A. CONTRIBUTIONS TO MICROGRID SCHEDULING
This work studies the application of external constraint mod-
els in proactive, resilient microgrid scheduling and proposes a
novel hybrid optimizationmethod to solveMILPmodels with
external, nonlinear constraints. A common MILP basis for-
mulation for microgrid scheduling in conjunction with exter-
nal nonlinear constraints is developed. Based on the com-
mon formulation, two scheduling approaches are presented.
The first one addresses the state-of-the-art by extending the
sensitivity-based constraint learning technique of [11] to
multi-period resilience constraints. The second one explores
novel paths in hybrid scheduling by utilizing machine learn-
ing techniques to approximate the constraint surface within
the MILP. To the best of our knowledge, an adapted version
of the constraint synthesis technique in [14] for the first time
iteratively links a stochastic local search and the global MILP
scheduling problem.

A case-study is used to thoughtfully evaluate and compare
both approaches on common ground. In contrast to related

work, the case study demonstrates both the application of
external grid models to formulate constraints and the influ-
ence of low-level controls on the feasibility of schedules.
Further insights into the effects of problem formulation and
decomposition are presented. Following the unavailability of
a universal optimization strategy [15], several cases in which
the sensitivity-based approach fails to deliver good or even
any feasible solutions could be identified. At the same time it
is demonstrated that due to the more powerful approximation
model, the novel scheduling approach can deliver excellent
results, even if the sensitivity-based one fails.

B. ORGANIZATION
This work is organized as follows. In Section II, the prob-
lem of proactive, resilient microgrid scheduling is described
and the formulation of the subsequent study is developed.
Section III utilizes the problem definition to define two
methods of solving the scheduling task including external
resilience constraints. A case study in Section IV compares
the approaches and studies their performance under several
problem variations. In Section V, results are discussed and
finally, Section VI concludes the findings.

II. RESILIENT SCHEDULING PROBLEM FORMULATION
In this study, it is assumed that a proactive, resilient schedul-
ing algorithm centrally computes the set points of all con-
trollable assets based on the current operational status and
the most recent forecasts. In contrast to the related work that
presents a broad variety of different assets including Electric
Vehicles (EVs), micro turbines, and controllable loads [9],
[16], [17], this work focuses on the most generic assets in
order to facilitate performance analysis and comparability.
It is assumed that the microgrid hosts exactly two types
of schedulable assets. The first one groups generic DERs
that can be independently scheduled for each time interval.
The second one comprises Electrical Energy Storages (EESs)
that do have an internal state of charges that depends on
previous scheduling decisions. Furthermore, it is assumed
that the microgrid includes volatile RES, which are providing
basic voltage control capabilities. However, the active power
output and demand of volatile RES and loads, respectively,
are assumed to show a stochastic behavior. For each stochas-
tic quantity, it is assumed that appropriate deterministic fore-
casts are available, but that the realizations are unknown at
scheduling time.

Each scheduling run optimizes the asset set points over
a finite time horizon. Although some authors presented an
iterative scheme that repeats a scheduling operation and only
applies the most recent set points [11], this performance anal-
ysis avoids any bias due to erroneously correlated updates.
Hence, it focuses on one single scheduling run without taking
update mechanisms into account, but it does not prevent the
application in an updating scheme. The proactive algorithm
itself is executed before any contingency is encountered [18].
However, in the presence of general security policies or early
warning signs, the microgrid is actively prepared to sustain
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FIGURE 1. Decomposition of the proactive resilient scheduling problem
into individual linear and nonlinear models.

catastrophic events and to increase power system resilience.
In contrast to robustness, resilience permits a degraded oper-
ation, for instance by shedding noncritical loads, in case of
contingencies. Following the definition of [18], power system
resilience may even be addressed in case the scheduling
algorithm manages to avoid any degraded state at all. Since
scheduling is executed in the preparation phase, it is assumed
that the microgrid is connected to a healthy main grid and that
any countermeasures such as islanding themicrogrids or parts
thereof are conducted by separate emergency mechanisms.
Yet, the scheduling algorithm can influence the performance
of countermeasures for instance, by reserve commitment and
relocation [17].

Fig. 1 gives an overview of the scheduling problem includ-
ing the individual models and highlights the role of hybrid
optimization techniques to solve them. To generalize the opti-
mization procedures, the whole problem is firstly generically
modeled in Section II-A and later refined by the detailed
model in Sections II-B to II-D. Economic aspects are cov-
ered by a single-node MILP formulation and first resilience
aspects are included by the deterministic reserve constraints
in Section II-C. In more detail, a resilient operation is covered
by the grid simulation scenarios in Section II-D that include
detailed effects of failure modes (e.g., line outages) and mit-
igation techniques such as partial islanding.

A. GENERALIZED PROACTIVE SCHEDULING
In order to efficiently solve the problem of finding an optimal
schedule Ex, a decomposition into an objective function c(Ex),
as well as a set of linear constraints Eg l(Ex) and one of nonlinear
constraints Eg n(Ex) is applied. The entire scheduling problem is
defined as finding a schedule Ex that minimizes c(Ex) such that
both (1) and (2) are satisfied.

gli(Ex) ≤ 0 ∀i = 1, . . . , |Eg l| (1)

gni (Ex) ≤ 0 ∀i = 1, . . . , |Eg n| (2)

A shorthand notation Eg ln is used to address all constraints
Eg ln = Eg l ∪ Eg n at once. Note that, according to common
practice, equality constraints are transformed into inequality

constraints, without loss of generality [19]. The objective
function c(Ex) must be in a form such that the subproblem of
minimizing c(Ex) considering constraints (1) can be efficiently
solved bymathematical programming. In particular, the study
focuses on MILP subproblems.

All constraints that should be included in full detail are
subsumed by the nonlinear functions Eg n(Ex). Typical repre-
sentatives include voltage and current constraints consider-
ing the effects of low-level controls on the actual asset set
points. Due to the decomposition, Eg n(Ex) can be computed via
external power system simulations and does not have to be
present in closed form. In practice, evaluating the nonlinear
constraint can even involve external solvers, e.g., to compute
power flows. Consequently, it is assumed that the function
evaluation Eg n(Ex) is computationally intensive and should not
be excessively triggered by a heuristic algorithm. Decompo-
sition of a scheduling problem, as it is implicitly presented in
related work such as [11], involves decisions on either using
a simplified version or including the full complexity of the
physical model. Due to the effort of evaluating and coupling
Eg n(Ex), the coexistence of simplified versions in Eg l(Ex) as well
as detailed counterparts in Eg n(Ex) can further improve the
scheduling performance.

B. MILP BASIS FORMULATION
To facilitate a detailed analysis of the scheduling algo-
rithm, a simple MILP formulation based on a deterministic
power-balance model and insights listed in review [20] is
developed. In practice, stochastic or robust formulations such
as [12] and [8] may be included to account for the inherent
uncertainties in microgrid scheduling. However, a detailed
analysis of suchmodels is well beyond the scope of this work.
The state of each Distributed Generator (DG) unit a ∈ DG

at time t ∈ T is modeled by two variables, the operation
status oDGa,t ∈ B and the scheduled power output pDGa,t ∈ R.
The operating range of each machine is directly constrained
by (3).

pDG
a
· oDGa,t ≤ p

DG
a,t ≤ p̄

DG
a · oDGa,t ∀a ∈ DG, t ∈ T (3)

Similarly, each EES unit b ∈ ST is modeled by an operating
mode oCHGb,t ∈ B indicating whether b is allowed to charge,
as well as the charging and discharging power pCHGb,t , pDCHb,t ∈

R, respectively. Additionally, the usable energy that is stored
in b after the scheduling interval t , i.e., right before t + 1,
is modeled by eSTb,t . A constant round-trip efficiency µST

b is
applied while charging and models all internal losses. Equa-
tions (4) to (6) model the corresponding constraints.

0 ≤ pCHGb,t ≤ p̄
CHG
b · oCHGb,t ∀b ∈ ST, t ∈ T (4)

0 ≤ pDCHb,t ≤ p̄
DCH
b ·

(
1− oCHGb,t

)
∀b ∈ ST, t ∈ T (5)

eSTb,t = eSTb,t−1 +
(
pCHGb,t · µ

ST
b − p

DCH
b,t

)
·1T

∀b ∈ ST, t ∈ T (6)

Although the approach does not exclude multiple Points of
CommonCoupling (PCCs), it is assumed that all PCCs access
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a single market and that power flows in the simplified MILP
formulation are bound by total transfer capabilities. To model
different prices for buying and selling energy, the power
transfer from or to the main grid is split into two variables,
pBUYt ∈ R and pSELLt ∈ R, respectively. The directional
indicator variable oSELLt ∈ B, as well as constraints (7)
and (8) ensure mutual exclusiveness.

0 ≤ pBUYt ≤ p̄BUY ·
(
1− oSELLt

)
∀t ∈ T (7)

0 ≤ pSELLt ≤ p̄SELL · oSELLt ∀t ∈ T (8)

The economic evaluation of a schedule follows a determin-
istic single-node power balance (9) scheme without consid-
ering losses.∑
a∈DG

pDGa,t −
∑
l∈LD

pLDl,t + p
BUY
t − pSELLt

+

∑
b∈ST

(
pDCHb,t − p

CHG
b,t

)
= 0 ∀t ∈ T (9)

Variable day-ahead market prices cBUYt and cSELLt that are
known at scheduling time, as well as the average production
costs cDGa of each DG a determine the operation expenses
cTOTt at each time instant t . Equations (10) and (11) define
the cost function c(Ex) of a schedule Ex. Constraints (3) to (9)
describe the base set of linear constraints Eg l(Ex).

cTOTt = cBUYt · pBUYt − cSELLt · pSELLt

+

∑
a∈DG

cDGa · p
DG
a,t ∀t ∈ T (10)

c(Ex) =
∑
t∈T

cTOTt (11)

C. EXTENDED MILP FORMULATION
Starting from the scheduling basis formulation that focuses
on the most basic model, a set of optional constraints is devel-
oped to study the impact of model complexity on the per-
formance of heuristic approaches. The first set of constraints
limits the operating region of specific assets to incorporate
needs that do not directly follow from technical asset limits.
Practical applications of these additional operating limits p̄OPa,t
and pOP

a,t
include thermal demand of a Combined Heat and

Power (CHP) plant and local reserve policies. Although the
operation constraints are defined on a subset X of assets and
time, X ⊆ DG×T, (12) does not model any interdependence
between assets a and time instants t .

pOP
a,t
≤ pDGa,t ≤ p̄

OP
a,t ∀a, t ∈ X ⊆ DG× T (12)

A set of dynamic constraints that link variables among
instants of time is introduced by restricting the number of
startup and charging operations to avoid excessive wear out.
Similarly, a minimum number of startups may force an asset
into operation. For both, DG and storage units, the auxiliary
variable oSTAi,t ∈ B indicates whether asset i activated its
operation mode at time instant t . Given the indicator con-
straints (13) and (14), the number of startup operations can

be restricted by (15).

oDGa,t − o
DG
a,t−1 ≤ oSTAa,t ≤

1
2

(
1+ oDGa,t − o

DG
a,t−1

)
∀a ∈ DG, t ∈ T (13)

oCHGb,t − o
CHG
b,t−1 ≤ oSTAb,t ≤

1
2

(
1+ oCHGb,t − o

CHG
b,t−1

)
∀b ∈ ST, t ∈ T (14)

nSTAi ≤

∑
t∈T

oSTAi,t ≤ n̄
STA
i ∀i ∈ DG ∪ ST (15)

A linear reserve model is introduced to ensure that critical
loads L ⊂ LD can be supplied in case of main grid failures.
To simplify the discussion, it is assumed that storage units are
grid following devices that are only used for energy arbitrage.
The reservemodel itself consists of threemetrics, the nominal
power of all DGs in the primary reserve, pNDGt ∈ R, the up-
spinning reserve pUPt ∈ R at time t , and the minimum
up-spinning reserve in the entire scheduling horizon pMinUP

∈

R. The modeled metrics can be used to manually enforce
sufficiency or to link external models as shown in Section III.
To study the latter use-case, a verbose formulation that does
not use a relaxed lower-bound of pMinUP was chosen. Con-
straints (16) to (18) consequently model the basic primary
reserve requirements.

pNDGt =

∑
a∈DG

p̄DGa · oDGa,t ∀t ∈ T (16)

pUPt = pNDGt −

∑
l∈LD

pLDl,t

+

∑
b∈ST

(
pDCHb,t − p

CHG
b,t

)
∀t ∈ T (17)

pUP
t
≤ pUPt ≤ p̄

UP
t ∀t ∈ T (18)

To model the minimum spinning reserve on the scheduling
horizon, a set of binary auxiliary variables oMinUP

t ∈ B are
indicating whether the minimum reserve is reached at time t
and constraints (19) to (21) are introduced.

pMinUP
≤ pUPt ∀t ∈ T (19)

pUPt − p
MinUP

≤ M ·
(
1− oMinUP

t

)
∀t ∈ T (20)∑

t∈T
oMinUP
t = 1 (21)

Constant M needs to be chosen such that it exceeds any
left-hand-side value of (20). Note that the nonlinear con-
straints may imply the MILP reserve formulation and there-
fore (13) to (21) are also used to study the effects of redun-
dancies.

D. GRID MODEL AND LOW-LEVEL CONTROLS
In contrast to other publications such as [8] that presented
a linearized form of the static power flow equations, it is
assumed that the grid model is covered by the nonlinear
constraint set Eg n in detail. As long as the constraint function
is computable, the algorithms do not require any specific
model structure and may include balanced and unbalanced
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steady-state models to assess asset loading and voltage limits,
as well as transient models to ensure a stable operation in
case of failures [10]. However, to support a detailed perfor-
mance analysis, grid constraints based on a series of static
power flows are derived. Due to inherent uncertainties, it is
assumed that the grid constraints extend the deterministic for-
mulation of the linear subproblem by considering forecasting
deviations and failure conditions via a set of scenarios SC.
Methods to find a few representative scenarios such as [21],
are, however, beyond the scope of this work and manually
selected boundary-cases are added.

For each scenario s ∈ SC and each time step t , the balanced
AC power flow equations are solved by a Newton-Raphson
algorithm as described in [22]. In addition to the scheduled
active power pDGa,t of each asset a, it is assumed that each
active unit a on island c participates in frequency control
and provides steady-state balancing power according to its
droop gain K f

a and the frequency deviation 1fc,t,s. Note that
1fc,t,s is set such that the active power on each island c
is balanced [22]. The reactive power QDG

a,t,s of each genera-
tor is determined based on a piece-wise linear droop curve
K u
a (Ua,t,s), where Ua,t,s is the voltage at the bus connecting

asset a [23]. Equations (22) and (23) summarize the injected
power for each DG.

PDGa,t,s = pDGa,t + o
DG
a,t · K

f
a ·1fc,t,s ∀a ∈ DG (22)

QDG
a,t,s = oDGa,t · K

u
a (Ua,t,s) ∀a ∈ DG (23)

In contrast to DGs that participate in both primary fre-
quency and voltage control, it is assumed that all inverter-
based DERs IG as given in (24) limit voltage control if the
nominal apparent power S̄ IG

l is exceeded.

QIG
l,t,s =

{
K u
l (Ul,t,s) Sl,t,s ≤ S̄ IG

l

Q̄ IG
l,t,s otherwise

∀l ∈ IG (24)

Given the results of the AC power flow, including the
currents in each line i, Ii,t,s, the apparent power Sa,t,s of all
assets a, and the voltage magnitudeUj,t,s of all buses j, the set
of constraints Eg n can be summarized as (25).

Eg n =


Ii,t,s − Īi i ∈ LI, t ∈ T, s ∈ SC
Sa,t,s − S̄a a ∈ IG ∪ DG, t ∈ T, s ∈ SC
Uj,t,s − Ūj j ∈ BS, t ∈ T, s ∈ SC
U j − Uj,t,s j ∈ BS, t ∈ T, s ∈ SC

 (25)

To increase the expressiveness of the constraint model and
to guide a heuristic procedure, the constraints z can be divided
into several partitions, Eg z,Hh , h ∈ H ∪ {∅}, z ∈ {l, n, ln} of
Egz, to express the heuristic dependence on values of H. For
instance, Eg n,Tt groups all nonlinear constraints that strongly
depend on the state at time instant t or do not show any
such heuristically defined dependency (t = ∅). Without loss
of generality, the external constraints do not expose internal
model variables such as voltage levels and phase angles, that
need to be solved by the optimization procedure. Instead,
nested solvers can be used to efficiently determine the solu-
tion of the constraint model.

FIGURE 2. Component interaction of the hybrid optimization scheme.

III. SCHEDULING SOLVING METHODS
A first intuition on the complexity of solving microgrid
scheduling is given in Appendix A, showing that the prob-
lem is at least weakly NP-hard, by providing a polonomial
time reduction from the Knapsack problem to scheduling.
Although several algorithms are available that solve practical
instances of Knapsack [24], the reduction demonstrates that
in particular the integer states of DG units raise the compu-
tational complexity. Additionally, the nonlinear constraints
Eg n(Ex) may encode arbitrary decision problems that further
rise the computational complexity. Hence, complexity must
be considered to keep practical instances computationally
tractable, for example by using heuristics that approximate
an exact solution and by efficiently using highly-developed
tools such as MILP and power-flow solvers.

The main idea of the problem decomposition presented
in Section II-A is to separate those models that can be
efficiently handled by existing MILP solvers, i.e., c(Ex) and
Eg l(Ex), from those that need to be linearized first. Instead
of requiring a differentiable closed form representation of
Eg n, the heuristic approach samples the nonlinear constraint
function near the linear optimum and iteratively extends Eg l

by a local approximation. Due to the complexity of evalu-
ating Eg n, samples must be drawn efficiently to generate the
MILP constraints. Fig. 2 illustrates the heuristic optimization
scheme.

One may note that the MILP scheduling formulation con-
tains several variables such as pCHGb,t , pDCHb,t , and oCHGb,t that
show a strong interdependence. To reduce the number of vari-
ables when sampling, a normalized representation is intro-
duced. Each schedule is thereby represented by the DG status
oDGa,t , as well as the normalized power output p̃DGa,t , and storage
level ẽSTb,t as defined by (26) and (27), respectively.

p̃DGa,t =
pDGa,t − p

DG
a

p̄DGa − pDG
a

∀a ∈ DG, t ∈ T (26)

ẽSTb,t =
eSTb,t − e

ST
b

ēSTb − e
ST
a
∀b ∈ ST, t ∈ T (27)

To simulate a schedule and to synthesize constraints,
the original MILP variables are obtained by clipping invalid
values (e.g., p̃DGa,t 
 0 in case oDGa,t = 0) to the operation
ranges implied by (3), (4), and (5). Note that the repair
heuristic and the normalization step eliminate some, but not
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all infeasible configurations, for instance in case the extended
reserve requirements (16) to (18) are enabled.

A. SENSITIVITY CONSTRAINT SYNTHESIS
The sensitivity-based method repeatedly extends the MILP
model by local approximations of the nonlinear constraints
until either the candidate solution of the MILP model does
not show constraint violations anymore or the MILP model
becomes infeasible. If the latter applies, no schedule can be
generated. Since the constraint synthesis approach presented
in [11] addresses a single time interval only, nonlinear con-
straints Eg n(Ex) that cover multiple intervals cannot be directly
integrated into the online optimization of the multi-stage
scheduling method. Therefore, the input vector is extended
to the entire scheduling horizon and the sensitivity-based
synthesis is directly integrated into the scheduling problem at
once. Furthermore, the approach in [11] is limited to voltage
and current limits. This work generalizes the methodology to
arbitrary constraints.

In case the candidate solution Ex C of the linear subproblem
turns out to be infeasible andV is the set of violated nonlinear
constraints, the set of MILP constraints (28) is added.

gni (Ex
C)+

∂gni
∂Ex

(Ex C) · (Ex − Ex C)+ ε ≤ 0 ∀i ∈ V (28)

To feature convergence even if Eg n(Ex) or its partial deriva-
tives are affected by numerical inaccuracies, a strictly positive
constant ε is introduced that strengthens the permitted region.
According to [11], ∂Eg

n

∂Ex is numerically approximated in case
the Jacobean is not directly available. For each scheduling
variable x̃i, the sampling control block introduces a small per-
turbation ρ on that variable and samples Eg n(x̃1, . . . , x̃i−1, x̃i+
ρ, x̃i+1, . . . , x̃|Eg n|) anew. For discrete variables, a state change
is enforced.

To contain the number of samples and to reduce numeri-
cal errors, two sampling heuristics are introduced. The first
one skips the perturbation of p̃DGa,t in case the DG is not
operational, i.e., oCHGb,t = 0 and no effect is expected.
The second heuristic uses the partitioning Eg n,Tt with respect
to scheduling time t to skip those variables that most likely do
not influence the outcome of failing constraints. Scheduling
variables at a time instant t are considered if and only if
Eg n,Tt ∩

{
gni |i ∈ V

}
6= ∅ or Eg n,T

∅
∩
{
gni |i ∈ V

}
6= ∅.

After sampling the neighborhood of Ex C, the constraint
synthesis routine approximates (28) via the observed changes
in the output metric. Note that following [11], constraints
from previous iterations are never revoked and that the local
approximation of Eg n(Ex) is not restricted to any particular
neighborhood. Hence, considerable overapproximation may
be observed, in case the adjusted schedule largely deviates
from the candidate solution.

B. TREE-BASED CONSTRAINT APPROXIMATION
An alternative model to approximate Eg n(Ex) as MILP prob-
lem is to encode the decisions implied by (2) as decision
trees. Instead of enforcing local approximations (28) globally,

a divide-and-conquer approach is implemented that recur-
sively splits the set of schedules [25]. The tree structure which
can model even nonconvex sets is then transformed into a
MILP representation by adding new binary variables [14].
The tree-based method uses two mechanisms to find feasible
solutions of the scheduling problem. First, a global MILP
search that includes an approximation of Eg n(Ex) is used to find
initial solutions. Secondly, a stochastic local search is used to
sample Eg n(Ex) near the candidate solution and improve it even
further. Considering all known samples, a new approximation
of the nonlinear constraint function is generated in each
global iteration and replaces previous approximations in the
MILP. Due to the replacement, subsequent global iterations
can further improve the operating costs. In the following
evaluations, two global termination criteria, a static number
of maximum iterations and a threshold on the improvement
rate are applied.
A single decision tree Ti consists of a series of splits that

recursively divide the solution space into feasible and infea-
sible regions [14]. Each binary split on the subtree Tj is based
on a decision dec(Tj) that involves a subset of the scheduling
variables Ex. In order to transform the tree into MILP form,
each split must follow the linear form dec(Tj)(Ex) = EwT

· Ex +
w0 ≤ 0, where Ew and w0 are constant weights. To simplify
the training procedure that generates Ti, the linear form can
be further restricted to decisions that only involve a single
scheduling variable at once.

Each individual nonlinear objective gni may be directly
approximated by a single decision tree Ti. Similar to each
constraint that is added in (28), each tree introduces an over-
head in terms of additional constraints and possibly some
auxiliary variables. To reduce the size of the MILP prob-
lem and the amount of redundant constraints, the heuris-
tic partitioning scheme H is used to consolidate nonlinear
constraints that are likely to share dependencies. For each
partition Eg n,Hh , h ∈ H, a decision tree Th is grown that
approximates the conjunction of each constraint in Eg n,Hh .
Clearly, the conjunction of all classification results in the
forest Th, h ∈ H approximates the entire set of nonlinear
constraints (2).

Similar to approximation of ∂Eg n

∂Ex , a sampling-based
approach is proposed to grow the decision trees Ti without
requiring insights into Eg n(Ex). The sampling control logic now
directly addresses the decision boundary of Eg n(Ex) near the
candidate solution Ex C instead of approximating the Jacobean
at Ex C and deducing the decision boundary in a subsequent
step. Given all samples, a classification tree algorithm such
as C4.5 and CART is deployed to fit the corresponding
trees [25]. Note that in case the hybrid optimization algo-
rithm includes linear, multivariate splits, the corresponding
learning method must support that model as well. To ease
analysis and reduce the complexity of generated splits, this
work uses a CART-based algorithm as implemented in [26]
that does not include multivariate splits. The training algo-
rithm itself recursively divides the set of samples into two
partitions such that the impurity considering feasible and
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infeasible members is minimized according to the Gini
index [25].

The accuracy, size and complexity of generated trees
largely depends on the input features they are trained on. For
instance, a constraint on the total up-spinning reserve, pUPt
may either directly access that variable or approximate it via
all status variables oDGa,t , in case pUPt is not exposed to the
decision tree. To boost the expressiveness and interpretability
of generated trees, additional heuristics beyond the basic state
variables oDGa,t , p

DG
a,t , and e

ST
b,t can be included in the feature set.

For each sample x̃, all features that are exposed to the decision
tree algorithm need to be calculated. Likewise, the MILP
problemmust model corresponding variables in order to auto-
matically transform the decision tree. In this study, the linking
variables oDGa,t , p

DG
a,t , e

ST
b,t , p

CHG
b,t , pDCHb,t , pNDGt , and pMinUP

have been manually selected. An automated feature selection
process that can improve the approximation even further is
considered to be out of scope.

Several classification tree algorithms include pruning steps
that reduce the number of nodes in favor of a less com-
plex and more general decision tree [25]. While for classi-
cal machine-learning use cases, robustness against outliers
and overapproximation plays an important role, hybrid opti-
mization requires a constraint model that reliably excludes
infeasible regions. Since it is assumed that the function Eg n(Ex)
itself, except for some small numeric errors, is deterministic,
no outliers are expected in the training set. Moreover, mis-
classification can prolong convergence in case an infeasible
candidate solution is not excluded. Hence, the algorithm traits
accuracy for simplified trees by excluding any pruning step
that would introduce misclassified training samples.

C. SAMPLING STRATEGY
Arising from the need of drawing samples from Eg n(Ex) effi-
ciently while determining the feasible region near the linear
candidate solution Ex C, a randomized local search strategy is
introduced. Starting from Ex C, samples are generated towards
the next local optimum. In case Ex C is already feasible,
the local search may further refine the optimum and the
local approximation of Eg n(Ex). Otherwise, the search proce-
dure first needs to find samples in the feasible region in
order to subsequently approximate the boundary. Although
it is, in principle, sufficient to approximate the feasibility of
all nonlinear constraints well, without considering the linear
ones, the region of interest largely depends on the linear
subproblem. Hence, the full problem (1) and (2) is considered
for local search and all linear constraints that are not already
implied by the normalized representation x̃ are added to the
constraint set for local search as well.

According to the separation technique described in [19],
the total constraint violation level Gln(Ex) as defined by (29)
is given priority on comparing candidate solutions.

Gz(Ex) =
|Eg z|∑
i=1

min(gzi (Ex), 0), z ∈ {n, l, ln} (29)

In case no precedence on the violation level is observed,
the objective value is taken into account. Local search itera-
tively samples from a neighborhood that contains all sched-
ules deviating by at most n variables from the currently best
local schedule x̃L. In case a better solution is sampled, x̃L is
updated accordingly. To further guide local search, the prob-
ability P(alter x̃i,t ) of altering a single variable x̃i,t at time
instant t is chosen as (30) proportionally to the total violation
level, or the operating cost at that time.

P(alter x̃i,t ) ∝

{
cTOTt (x̃) Gln(x̃) = 0
G ln,T
t (x̃)+ G ln,T

∅
(x̃) otherwise

(30)

The deviation of each selected continuous variable will
be sampled from a centered normal distribution N (0, σ ) and
clipped to the boundaries [0, 1] of each normalized variable.
Starting from a large neighborhood, both, the number of
altered variables n and the standard deviation σ are sys-
tematically decreased to support convergence. As soon as
the moving average number of improvements drops below a
given threshold, the next set of neighborhood parameters is
applied or sampling is stopped.

D. TREE CONSTRAINT SYNTHESIS
Given the decision tree T , the algorithm [14] is extended
to generate a set of, up to an arbitrarily small tolerance
ε, equivalent MILP constraints. A subtree Tj is considered
feasible in case it contains a path to a feasible leaf node.
For each decision dec(Tj) that leads to both feasible sub-
trees, an unbounded binary variable oTRk is introduced that
encodes the outcome in subsequent decisions. Specifically,
oTRk = 1, if Tj is active, dec(Tj)(Ex) ≤ 0, and the left branch
is taken. Given a single tree, the set of previously added
auxiliary variables encodes the active path within that tree
and determines whether a constraint is considered. In case
only one subtree is feasible, given the path to that constraint is
active, it must always be satisfied and no auxiliary variable is
added. Inactive constraints are masked by introducing a large
constantM that exceeds any feasible value of |dec(Tj)(Ex)|.
Algorithm 1 defines the tree constraint synthesis in detail.

Initially, the procedure is called on the entire tree given an
empty masking term v = 0. It recursively adds linear con-
straints until all feasible subtrees are enumerated. In order to
generate MILP constraints, [14] relaxes the strict inequality
dec(T )(Ex) 
 0 to a soft one. However, such a transforma-
tion can include values that the decision tree T classifies
as infeasible and convergence of the hybrid optimization
algorithm can be adversely affected. To support convergence,
this work introduces an ε offset to model strict inequalities
instead of relaxing the decision. In addition, the application
of Algorithm 1 in a closed-loop optimization setup instead of
an open-loop constraint learning task is demonstrated.

IV. CASE STUDY ON SCHEDULING ALGORITHMS
From a design point of view, both methods for solving
the nonlinear scheduling problem have their own merits.
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Algorithm 1 Synthesis Procedure Transforming Tree T Into
the Set of Constraints Eg t (based on [14])
1: function Syn(feasible tree T , masking term v)
2: Eg t← ∅
3: if left(T ) and right(T ) are feasible then
4: Introduce new variable oTRk ∈ B
5: Eg t← Eg t ∪ {dec(T ) ≤ M · (1− oTRk )+ v}
6: Eg t← Eg t ∪ {dec(T ) ≥ ε−M · oTRk −v}
7: Eg t← Eg t ∪ Syn(left(T ), v+M · (1− oTRk ))
8: Eg t← Eg t ∪ Syn(right(T ), v+M · oTRk )
9: else if left(T ) is feasible then

10: Eg t← Eg t ∪ {dec(T ) ≤ v}
11: Eg t← Eg t ∪ Syn(left(T ), v)
12: else if right(T ) is feasible then
13: Eg t← Eg t ∪ {dec(T ) ≥ ε−v}
14: Eg t← Eg t ∪ Syn(right(T ), v)
15: end if
16: return Eg t

17: end function

Sensitivity-based optimization features a simple implemen-
tation and tree-constraint synthesis, in theory, overcomes the
limitations of a global plane approximation. A case study was
designed to analyze the performance of both algorithms on a
common ground, to verify the theoretical expectations and to
give insights into preferred use-cases.

A. TEST SYSTEM AND CONTROLS
Due to the widespread application in scheduling [4], [27],
[28] and the challenging network design that leads to frequent
voltage violations, thewhole study is based on amodified ver-
sion of the well-established Baran testfeeder [29]. Since the
original network does not include any generation, the feeder
was extended by DG, Photovoltaics (PV), Wind Turbine
(WT), and storage plants following the configuration in [27].
However, maximum and minimum power of all DGs were
scaled by one half to avoid generator tripping in islanded low-
load scenarios. The power limits of±1MW , the location, and
the constant average efficiency of µST

b = 0.9 of all storage
units b were kept, but to study charging cycle limitations in
more detail, the storage size was reduced to 0.9 MWh usable
capacity. In contrast to [27] that does not include details
on volatile RES, this study considers the voltage control
capabilities of all generation units and therefore additionally
assumes that PV and WT plants are limited to an apparent
power S̄ DER

l of 0.1 MVA and 0.2 MVA, respectively. Table 1
and Fig. 3 summarize the system configuration of all DGs and
the network topology, respectively.

To demonstrate the integration of low-level controls in
proactive scheduling, the model of [27] and [29] was
amended by voltage and frequency droop control. Based
on [30], for each volatile DER and storage unit, Q-of-U
droop control was enabled scaling the maximal and minimal
reactive power between bus voltages of 0.92 p.u. and 1.08 p.u.

TABLE 1. Location and rating of controllable DGs.

FIGURE 3. Network topology used to assess the algorithms.

considering a dead band of 0.96 p.u. and 1.05 p.u. For the
static reactive power limits used to define the droop curve,
it is assumed that no active power is generated or drawn
from the grid, but total apparent power limitations S̄ DER

l are
considered as well.

All scheduled DG units also participate in voltage con-
trol via a droop curve that scales the reactive power
between 0.92 p.u. and 1.08 p.u. bus voltage as well. In any
islanded subgrid, all scheduled DG units also participate in
grid forming and active power control via a primary fre-
quency bias that is scaled according to the operating range
p̄DGa − pDG

a
. The whole nonlinear network model, including

the low-level controls is solved by a series of load flow cal-
culations as implemented by the quasi-dynamic simulation of
DIgSILENT PowerFactory. The feasibility of each candidate
solution is rated by any equipment overload and any violation
of the target voltage band of 0.95 to 1.05 p.u. For each single
constraint, the level of constraint violation is calculated based
on the distance to the feasible region normalized by a nominal
operating condition of 100% loading and 1 p.u. bus voltage.

B. INPUT PROFILES AND FAILURE MODES
Both scheduling algorithms operate on forecasts of volatile
loads and generation. Fig. 4 plots the hourly load and RES
forecasts. Shading in the graphics illustrates the share of
individual assets on the total power profiles. To challenge the
algorithms under test by increasing grid imbalance, a daywith
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FIGURE 4. Forecasted power of all loads as well as PV, and WT
generation.

FIGURE 5. Dynamic electricity prices including grid transfer fees.

low RES generation was modeled. The load profiles were
selected from [31] and scaled according to the nominal load.
Dynamic prices of buying and selling electricity that are given
in Fig. 5 are based on data from [32] and the assumption
of constant grid transfer fees. For each DG unit, a price of
$90 1

MWh is assumed that is considerably above the grid
tariffs. To reduce the chance of over fitting each algorithm,
parameter tuning was conducted on input profiles different
from the presented validation data.

The linear partition Eg l(Ex) of the scheduling model directly
operates on the deterministic forecasts, but for the nonlin-
ear constraints Eg n(Ex), a set of deviation and failure sce-
narios must be available. To support further analysis, two
worst-case deviations were manually defined. The first one
models a power shortage and increases each load by 10%
while decreasing the DER generation by the same amount.
Similarly, the second scenario includes a power surplus by
increasing and decreasing DER generation and loads, respec-
tively, by 10% as well. In addition to islanding from the main
grid as demonstrated in [27], this study assumes that the line
connecting buses 02 and 03 is highly exposed and that the
grid can be partly islanded in case that line trips. For each
of the deviation cases and each of the islanding options one
worst-case scenario of a complete loss of connection is added
to the uninterrupted scenarios.

To assess varying complexities of the scheduling prob-
lem, some study cases impose some linear operation con-
straints (12) to (21) that set the minimum operating power
of DG3, pOP

DG3,t
to pOP

DG3,t
= 0.5MW for t ∈ [8:00− 17:00].

Additionally, the maximum number of charging cycles, n̄STAb
for each storage b ∈ ST is set to n̄STAb = 1 per day and the
minimum spinning reserve pUP

t
was set to pUP

t
= 0, t ∈ T.

FIGURE 6. Average normalized violation levels according to different
partitioning schemes.

C. SIMPLIFIED ECONOMIC SCHEDULING
The first case studies the performance of purely lin-
ear scheduling that includes both, the basic reserve con-
straints (16) to (18) and the operational constraints (12)
to (15). In the experiment, the second storage unit, ST2,
was removed to further simplify the problem and to ease the
comparison with other simplified cases. Without considering
the nonlinear constraints Eg n(Ex), the model returns a lower
bound for the resilient operation costs of $1716.28. Clearly,
economic scheduling, despite the reserve constraints, fails
to deliver a feasible solution w.r.t. the nonlinear constraints
Eg n. Fig. 6 shows the average violation level according to
several partitioning schemes of the nonlinear constraints. Par-
titions that do not show any violation, are excluded from the
graphics.

One may note that although most violations occur in the
presence of some failures, also nominal operation as con-
sidered by linear scheduling shows some violations that can
impact the operation. For both failure modes, a considerable
amount of violations is observed. Even for main grid outages
that are covered by the minimum spinning reserve constraint
of the linear model, considerable DG overload due to the
impact of voltage regulation and frequent undervoltage sit-
uations are encountered. Induced by the limited infeed in the
study period, no scenario shows any overvoltage conditions.
Most violations are detected at buses (undervoltage) and DG
units (overload). The few violations of inverter-based gener-
ation units (WT and PV) are directly caused by saturation of
voltage control. DG units show overload due to both, voltage
and frequency control demands.

D. HYBRID SCHEDULING OF A SIMPLIFIED MICROGRID
In the most reduced study case of hybrid scheduling, all
optional constraints are disabled and the second storage unit,
ST2, is removed from the microgrid. As a consequence,
a solution returned by the MILP solver does not necessar-
ily imply the basic resilience constraints (16) to (21). Any
spinning reserve requirement has to be learned from the
grid model. However, since the grid model includes asset
loading, every feasible solution with respect to the nonlinear
constraints Eg n is also feasible regarding Eg l(Ex), the linear
ones. As for all study cases, a fixed number of 20 global
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FIGURE 7. Convergence of the tree-based algorithm on the simplified test system without operational constraints.

TABLE 2. Local neighborhood configurations i including the number of
altered variables ni and the standard deviation σi .

iterations to demonstrate long-term minima and a dynamic
termination criterion that ends global search if the last five
iterations do not yield any improvement were installed. Fur-
thermore, a neighborhood scheme of six configurations with
descending sizes was chosen. The manually tuned number
of changed variables ni and the standard deviation σi of
each neighborhood i are listed in Table 2. As soon as the
improvement rate of the last ten samples drops below 20%,
the next configuration is chosen or local search is ended.

The convergence of one tree-based optimization run aswell
as the scheduling run of the deterministic sensitivity-based
approximation are illustrated in Fig. 7. Within the first iter-
ation, local search finds several feasible solutions, but the
local optimum having costs of $2210.31 shows a consider-
able distance to the best known solution of 76 changes in
the vector of normalized scheduling variables x̃ and 23%
higher costs. Subsequent runs of the extended linear model
reduce the gap to the optimum and due to approximation of
Eg n(Ex) show both feasible and infeasible results. Although the
tree-based method delivers the first feasible solution within
fewer samples, even the long-term operation showed slightly
higher operation costs of 2.9% compared to the optimal
sensitivity-based results on that particular run.

In contrast to the deterministic sensitivity-based approach,
the tree-based method includes a stochastic local search.
To account for stochastic effects both in the execution time
and the local search, for each case, the optimization runs
are executed 32 times and the results of all experiments
are listed in Table 3. For tree-based scheduling, the final
result as well as the processing time highly depend on the
termination criterion and an adequate tradeoff needs to be
found. Both, a constant number of 20 global iterations as
illustrated in Fig. 7 as well as the dynamic termination

criterion that may terminate earlier are used for the tree-
based configurations. Timing and accuracy of the sensitivity-
based approach, likewise, can be influenced by the ε offset
heuristically set to ε = 0.01%. Similar to the exemplary run
illustrated in Fig. 7, the tree-based approach shows average
long-term minimal costs of $1841.04 or an increase of 2.5%
compared to the sensitivity-based solution of $1795.62. How-
ever, all optimization runs of the tree-based method find a
first feasible solution below 41 samples and therefore before
the 223 samples required by the reference.

To estimate the computational effort of executing the algo-
rithms, the timing of all experiments was recorded and the
detailed results using the rate-based termination criterion are
listed in Table 4. All experiments were conducted on a virtual
Windows 10 (build 18363) machine having four assigned
Intel Xeon CPU E5-2690 v4 cores clocked at 2.60 GHz
and 32 GB memory. The algorithms themselves were imple-
mented in Python 3.7 accessing PowerFactory 2021 SP2.
The MILP model was solved by the open source solver
CBC 2.10 accessed via the Pyomo library version 6.0 [33].
To reduce mutual influence, no more than two experiments
were executed in parallel.

One can see that the average sensitivity run of 22.05 min-
utes wall clock time is considerably faster than the average
tree-based run taking 85.83 minutes. Given that most of the
time is consumed by the grid simulation, the observations
from Fig. 7 that the sensitivity-based scheduling converges
considerably faster can be further supported. In contrast to the
grid simulation that accounts for 92% and 90%, respectively
of the total wall clock time,MILP constraint synthesis includ-
ing and solving theMILPmodels in total only takes 6% of the
time for tree-based and 5% for sensitivity-based scheduling,
respectively. Likewise, neither the simulation setup nor the
remaining actions of both algorithms have a significant effect
on the computational effort. Similar effects can also be seen
from the process time statistics that also accounts for parallel
actions as conducted by the grid simulation.

E. SCHEDULING WITH OPERATIONAL CONSTRAINTS
To demonstrate the behavior of both algorithms in case of ris-
ing model complexity, as in Section IV-C, storage unit ST2 is
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TABLE 3. Optimization results of all cases covering the tree-based and the sensitivity-based method.

TABLE 4. Computation time until the termination criterion is met.

still excluded, but all operational constraints are enabled.
Due to the cycle restrictions, considerable interdependence
among scheduling variables is added and the nonlinear con-
straints do not imply the linear ones anymore. Additionally,
the minimum generation requirements of DG3 directly affect
the sampling procedures and further increase the chance of
selecting a linearly infeasible solution.

Fig. 8 illustrates the convergence of one schedul-
ing run using tree-approximation and adds the bounds
achieved by the sensitivity-based method. One can
note that tree-constraint approximation outperforms the
sensitivity-based method both in terms of final operating
costs and the number of samples until a first feasible solution
is found. As listed in Table 3, sensitivity-based scheduling
returns a solution that shows 7.5% higher costs than the
average (and simultaneously best known) tree-based solution
after 20 iterations of $1981.28. Similarly, all tree-based
optimization runs delivered an initial solution within the
first 111 samples, having an average of 44.0 samples while
the sensitivity-based approach required 114 samples to obtain
the first feasible schedule and 120 samples to finish its
computation.

Compared to sensitivity-based scheduling that terminates
within 12.44 minutes wall clock time, the average tree-
based run requires a larger number of 644 samples until the

convergence criterion is met and therefore shows an increased
computational effort of 64.24 minutes. However, using the
same number of samples that are needed to finalize the
sensitivity-based algorithm, the average cost of $2126.27 for
the tree-based method only marginally differs from the final
sensitivity-based result. The increased effort could therefore
be used to improve the final solution. Giving the distance
to the optimum and the operating costs drawn in Fig. 8,
it can be seen that due to the intended overapproximation
of the decision tree and the randomization of local search,
new regions of the solution space are explored, even after a
feasible MILP solution was found. Although that first feasi-
ble and best known solution was found in the fourth MILP
run, subsequent search shows distances of up to 27 changed
variables to the optimum.

F. SCHEDULING OF THE COMPLETE MICROGRID
The last study case includes the full set of assets and oper-
ational constraints as described in Section IV-A and IV-B.
Despite the moderate size of the problem covering six
controllable assets, the state-of-the-art reference algorithm,
sensitivity-based constraint approximation, failed to deliver
any feasible solution at all. After adding the constraint plane
approximation at the initial solution, the solver reported the
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FIGURE 8. Convergence of the tree-based algorithm on the simplified test system with operational constraints.

FIGURE 9. Convergence of the tree-based algorithm on the complete test system.

entire problem to be infeasible and no feasible solution could
be scheduled. Even without the sample reduction heuristic
that was introduced to render several problem instances com-
putationally tractable, no feasible solution was found.

In contrast to the sensitivity constraint synthesis, the tree-
constraint method finds a feasible solution within the first
local search and 37.1 samples in average. The execution time
of 8.35 minutes on average that is needed to determine the
infeasibility of the sensitivity-based model, is considerable
lower than the execution times in the other sensitivity-based
cases requiring 22.05 and 12.44 minutes, respectively. For the
tree-based method, an average execution time of 78.76 min-
utes is observed. Fig. 9 illustrates convergence of the latter
method. Although the majority of 18 MILP solutions are
infeasible, the approximation model was also able to suc-
cessfully restrict the MILP model towards a feasible solution.
In the entire scheduling run, every MILP problem could be
solved to optimum. Similarly, all 32 repetitions successfully
returned a feasible solution and an average operating cost of
$1975.12 was achieved.

V. DISCUSSION OF CASE STUDY RESULTS
By implementing and testing two hybrid scheduling
approaches, an improved sensitivity-based approach from lit-
erature and a novel tree-based method, this work successfully
demonstrates the feasibility of hybrid optimization that cou-

TABLE 5. Comparison of tree-based and sensitivity-based hybrid
scheduling.

ples nonlinear constraints and MILP. Table 5 summarizes the
main features of both algorithms. In contrast to several state-
of-the-art approaches, no manual linearization is needed [4],
[8] and both, the MILP subproblem and the grid model could
be solved by off-the-shelf solvers.

The study on hybrid optimization shows a good perfor-
mance of the sensitivity-based approximation of inherently
nonlinear grid constraints for some simplified cases. How-
ever, it also demonstrates that in other cases, it completely
fails to generate feasible schedules. In contrast, the novel
tree-constraint method that uses a more complex approx-
imation structure in the MILP problem, quickly provides
feasible solutions in all experiments and outperforms the
sensitivity-based approach in all but the most simplified
configurations.
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The original sensitivity-based algorithm as presented
in [11] is integrated into one stage of a multi-stage energy
management system and originally does not include any
scheduling decisions that involve multiple instants of time.
In particular, no multi-period operational constraints such
as the startup restrictions (15) are involved in the presented
MILP model. Despite significant differences in the experi-
mental setup, this study supports the reported effectiveness
of sensitivity-based constraint approximation [11] for some
cases and in addition to the original work, clearly demon-
strates the limits in case of more complex setups.

In contrast to the sensitivity-based method that samples
the nonlinear constraints for the sake of approximation only,
the tree-based method features a sampling strategy that both
quickly finds a feasible local optimum and provides the
training data to extend the linear model. As a result, all
experiments show that tree-based scheduling requires fewer
samples to provide an initial feasible solution. Early solutions
specifically enable use cases that quickly require a feasible
schedule but tolerate later updates towards better solutions.

Over all sensitivity and tree-based experiments, 88% and
96%, respectively, of the process time is spent on the grid
simulation performed once per sample. With the share being
that high, the number of samples has a substantial impact
on the total processing time. In the tree-based algorithm,
the number of samples that need to be drawn strongly depends
on the targeted accuracy that can be balanced by the ter-
mination criterion. However, the study case in Section IV-E
demonstrates that tree-based scheduling only draws a few
hundreds samples more to get significantly improved results
and performs equally well, on the same number of samples.
Still, the additional samples considerably prolong the execu-
tion time and need to be weighted in the accuracy tradeoff.

Due to the local search procedure, the tree-based method
does not require the MILP subproblem to generate a feasible
solution at all, as long as the local search finds suitable
solutions and the generated tree properly restarts the heuristic
search procedure. However, all cases showed that at least
some valid solutions are generated by the extended MILP
model and several times including iteration number 17 in
Fig. 9, the MILP solution even improved the global opti-
mum. In average over all tree-based experiments having a
constant number of 20 global iterations, 7.4% of the MILP
runs improved the global optimum.

It was demonstrated that several proactive scheduling prob-
lems can also be solved by purely heuristic approaches
that do not include mathematical programming [4], [7].
Although the experimental setup shows significant differ-
ences (a smaller test system without considering discrete DG
states but dynamic grid constraints are used), comparison
to [10] indicates a considerably reduced number of evaluated
samples by using hybrid optimization techniques. In contrast
to purely heuristic approaches, the presented hybrid optimiza-
tion techniques show a reduction in the number of samples by
one order of magnitude. However, a detailed comparison on
common ground is beyond the scope of this work.

Although the test system was specifically designed to
challenge the algorithms under test and to trigger physical
constraints, all study cases demonstrate that scheduling deci-
sions can have adverse effect on the grid, if the assets are
operated close to their limits. Given the modeled conditions,
no algorithm delivered an initial MILP solution that satisfied
all grid constraints which aligns well with results from related
studies that highlight the need of detailed grid constraints [6],
[34]. The first case on purely economic scheduling provided
an in-depth analysis of the encountered constraint violations
and showed that even without considering any contingencies,
low-level controls can induce some overload conditions that
are not predicted by the simplified scheduling formulation.
However, the large majority of grid constraint violations is
related to the feasibility of fault mitigation techniques.

VI. CONCLUSION AND OUTLOOK
Motivated by the high computational complexity of proac-
tive scheduling as well as the need of efficiently consid-
ering low-level controls and nonlinear grid constraints, this
work presents two hybrid approaches that successfully com-
bine mathematical programming and heuristic optimization.
A case study demonstrates that the novel optimizationmethod
based on decision trees can solve the scheduling problem,
even in case a sensitivity-based method extended from liter-
ature fails to deliver results at all. However, the study also
identifies a simplified case in which the sensitivity-based
approach returns slightly better results and therefore gives
indication which method may be best suited for a problem
at hand. Detailed insights into the convergence of both algo-
rithms show that the tree-based approach quickly delivers
first feasible solutions and that the sensitivity-based method
can suffer from considerable overapproximation of infeasible
states.

The hybrid optimization techniques enable the usage of
external grid models that cannot be included in classical
mathematical programming and a first comparison to purely
heuristic approaches indicates a considerably improved per-
formance of hybrid scheduling. Similar to most related
work [4], the study gives qualitative answers concerning
the performance of presented algorithms. However, large-
scale evaluation that covers a broad variety of grid con-
figurations and operating conditions is needed to quantify
the performance on a common ground and give final prece-
dence over the studied algorithms. To ease analysis, the study
deploys only manually defined worst-case heuristics and few
fault mitigation techniques. Future work includes a refined
stochastic or robust model to better quantify reserve require-
ments, the assessment of transient phenomena and additional
fault mitigation techniques such as rerouting or load shedding
to reduce local reserve needs.

In the presented experiments, decision trees are restricted
to axis-parallel splits, i.e., each decision involves a single
coupling variable only. Future work may also assess the
effect of arbitrary linear splits [14], study the parametriza-
tion of local search in more detail and may include more
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advanced termination criteria that further reduce the number
of samples. Other techniques such as generalized Benders
decomposition [35] may also be used in proactive scheduling.
Despite the focus on microgrids future work includes the
application of hybrid scheduling in other contexts such as
active distribution systems. By presenting the algorithms and
studying various details on solving scheduling tasks with
nonlinear constraints, this work also contributes to a broader
discussion on hybrid optimization methods.

.

APPENDIX A COMPLEXITY OF SCHEDULING
To give a first intuition on the computational complexity
of microgrid scheduling, a polynomial-time reduction from
the Knapsack problem, a weakly NP-hard problem [24],
to scheduling is provided. The Knapsack problem PKN is
defined as (31), given the positive integers vi, wi, and W .

max
Ex∈Bn

n∑
i=0

vixi

s.t.
n∑
i=0

wixi ≤ W (31)

The scheduling problem PSCH is now defined as finding
oDGa,t , o

CHG
b,t , oSELLt ∈ B and pDGa,t , p

CHG
b,t , pDCHb,t , pBUYt , pSELLt ∈

R that minimize c(·) s.t. (3) to (11) are satisfied. Hence,
a relaxed version with an empty set of nonlinear constraints
is studied. Let IKN

= (Ev, Ew,W ) be an arbitrary instance of
PKP, then the mapping to PSCH is defined as (32) to (40).

T = {0} (32)

DG = {1, . . . n} (33)

LD = ST = ∅ (34)

pDG
i
= wi ∀i ∈ DG (35)

p̄DGi = wi ∀i ∈ DG (36)

p̄SELL = W (37)

p̄BUY = 0 (38)

cSELL0 = max
i∈DG

vi
wi
+ ε (39)

cDGi = cSELL −
vi
wi
∀i ∈ DG (40)

Clearly, (32) to (40) can be computed in polynomial time.
From (3), (35), and (36), it follows that

pDGi,0 = wi · oDGi,0 ∀i ∈ DG. (41)

From the original power balance (9), as well as the map-
ping (32) to (34), and (38), the balance simplifies to∑

i∈DG

pDGi,0 = pSELL0 . (42)

Consequently, the power transfer constraint (8) transforms
to constraint (43) with the first inequality trivially fulfilled.

0 ≤
∑
i∈DG

wi · oDGi,0 ≤ W (43)

Similarly, it can be concluded from (7) and (38), that the
only valid solution of pBUY0 = 0. Note that the transfer mode
oSELLt can therefore be freely set to oSELLt = 1, without loss
of generality.

Given the cost definition of PSCH , (11), the defined map-
ping, as well as (41) and (42), the objective function simpli-
fies to (44).

c(Ex) = cTOT0

= −cSELL0 · pSELL0 +

∑
i∈DG

cDGi · p
DG
i,0

=

∑
i∈DG

(
cDGi − c

SELL
0

)
· pDGi,0

=

∑
i∈DG

−vi · oDGi,0 (44)

One can see that for any valid solution of PKN, xi, a sched-
ule oDGi,0 = xi, oSELL0 = 1, pBUY0 = 0, and pSELL0 , pDGi,0
according to (42) and (41), respectively, that satisfies, con-
straints (3) to (9) can be found. At the same time, (43) ensures
that each valid schedule of the mapped scheduling instance is
mapped to a valid instance of Knapsack in polynomial time.
On using the relation (44), it can be seen that any solution
that maximizes the Knapsack gains minimizes the scheduling
costs and vice versa.

From the polynomial time reduction from PKN to PSCH

and the fact that PKN is weakly NP-hard [24], it can be
concluded that PSCH is at least weakly NP-hard, as well.

ABBREVIATIONS
CHP Combined Heat and Power
DER Distributed Energy Resource
DG Distributed Generator
EES Electrical Energy Storage
EV Electric Vehicle
MILP Mixed Integer Linear Programming
PCC Point of Common Coupling
PV Photovoltaics
RES Renewable Energy Sources
WT Wind Turbine
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