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ABSTRACT Withmore than three million applications already in the Android marketplace, various malware
detection systems based on machine learning have been proposed to prevent attacks from cybercriminals;
most of these systems use static analyses to extract application features. However, many features gener-
ated by static analyses can be easily thwarted by obfuscation techniques. Therefore, several researchers
have addressed this obfuscation problem with obfuscation-invariant features. However, to the best of our
knowledge, no researcher has utilized deobfuscation techniques. To this end, we adopt a code deobfuscation
techniquewith anAndroidmalware detection system and investigate its effects. Experimental results indicate
that code deobfuscation can successfully retrieve useful information concealed by obfuscation. Further,
we propose interaction terms based on identified feature interactions. The proposed interaction terms aim
to eliminate the interference caused by the size of the application and other features because many feature
values are correlated to the size of the application. In addition, the experimental results indicate that these
interaction terms have a high ranking in terms of feature importance values. Our proposed Android malware
detection model achieves 99.55% accuracy and a 94.61% F1-score with the well-known Drebin dataset,
which is better than the performance of previous works.

INDEX TERMS Androidmalware detection, classification, code deobfuscation, feature interaction, machine
learning, static analysis, structural feature.

I. INTRODUCTION
Mobile security is gaining importance owing to the
widespread use of mobile devices for performing many
important tasks, such as health management, enterprise com-
munications, money transactions, and banking. Android is
currently the most popular smartphone operating system,
with an 84.8% share of the global market in 2020; this
percentage is predicted to increase over the forthcoming
years [1]. The Android platform’s large market share and
its open-market policy make it the most valuable target
for attackers. According to Kaspersky’s malware report [2],
Kaspersky mobile products and technologies detected
5,683,694 malicious installation packages, 156,710 new
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mobile banking Trojans, and 20,708 new mobile ransomware
Trojans in 2020. Given that there are more than three million
applications on the Android marketplace, there is an urgent
need to develop an efficient and automated malware detec-
tion mechanism that can allow malware analysts to focus on
suspicious applications.

Security analysts perform a program analysis for under-
standing the behavior and intent of an application. Existing
program analysis methods can be categorized into static
and dynamic analysis methods. Static analysis techniques
have higher code coverage and lower computational cost
compared to that of dynamic analysis techniques. Further,
static analysis is typically preferred over dynamic analysis,
because it is efficient and scalable, and therefore it is ideal for
managing a great number of applications. However, static
analysis techniques are more susceptible to code obfuscation.
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Previous studies ignored obfuscated codes and used
obfuscation-invariant codes such as the Android OS appli-
cation programming interface (API).

In this study, we directly address obfuscated codes such
as third-party library APIs. We explore a code deobfusca-
tion technique to address the challenge of code obfuscation
in Android malware detection. Fig. 1 shows an obfuscated
Android application package (APK). When an APK is obfus-
cated, its class, method and variable names are renamed
to meaningless symbols, such as “android.a.a.a”.
We obtain many obfuscated and useless API calls when we
extract API calls from an obfuscated APK. A code deobfus-
cation process is required to use these obfuscated API calls.
To the best of our knowledge, this is the first paper that uses
a code deobfuscation technique for Android malware detec-
tion. The primary contributions of this study are summarized
as follows:
• We use a code deobfuscation tool to recover original API
calls from obfuscated API calls. According to the exper-
iment results obtained in this study, some recovered API
calls act as important features of the malware detection
model.

• We propose interaction terms based on identified fea-
ture interactions to eliminate interference caused by the
application size. The experimental results suggest that
these interaction terms have a high feature importance
ranking.

• We propose certain novel features based on the applica-
tion certificates and the disassembler’s log file.

The remainder of this paper is organized as follows.
Section II provides the relevant background for this study
and Section III reviews the related studies. The proposed
methods are described in Section IV. Section V presents the
experiments and their results. Finally, we conclude this paper
in Section VI.

FIGURE 1. Depiction of an obfuscated APK.

II. BACKGROUND
A. STATIC ANALYSIS
Static analysis techniques use reverse engineering to extract
the information of an application by scanning the entire APK

without running the application. A static analysis technique
extracts application information from configuration files,
binary files, bytecode, source code, or other associated files.
Then, a series of features are collected and embedded in
numerical feature vectors to train machine learning models or
statistical models. The static analysis techniques are widely
used in Android malware detection because of their advan-
tages such as high code coverage and high efficiency.

B. COMMON FEATURES IN STATIC ANALYSIS
Features represent the behavior of an app; different features
represent the behavior of an app from different aspects.
In static analysis, permissions and API calls are the most
used features; the popularity of these two features is far
greater than that of other features [3]. Some other features are
also used in static analyses: required hardware and software
features, registered intent filters, meta information, constant
strings and opcode.

Several studies [4]–[6] have shown that API calls are the
best features for static analysis. Permissions carry redundant
information with API calls because of the relationship
between the permission requested and the corresponding
API call usage. Experimental results have shown that API
calls outperform other features when used alone, and com-
bining API calls with other features yields only a small
improvement.

C. DYNAMIC ANALYSIS
Dynamic analysis techniques use information flow track-
ing to discover malicious behavior by acquiring information
from running processes such as system calls and network
traffic. Dynamic analysis techniques have certain advan-
tages compared to static analysis; for example, acquiring the
information of dynamically loaded code and network traffic.
Dynamically loaded code is code loaded from a remote sys-
tem or a path within the device.ManyAndroid developers use
this technique to update their application via dynamic class
loading [7]; therefore, the presence of dynamic code loading
may not directly indicate malicious behavior.

The disadvantage of dynamic analysis is that code execu-
tion in a restricted environment can influence the behavior
of the malware. The malware may not perform the malicious
event or load the code dynamically because the command and
control server of the malware is no longer available. Further,
there are methods that can detect sandbox environments and
stop their malicious behavior to escape detection by dynamic
analysis.

D. OBFUSCATION AND DEOBFUSCATION
Software obfuscation is a technique that creates source code
or machine code that is difficult for humans to understand.
Android developers obfuscate their code for several reasons,
such as to protect their intellectual property and prevent tam-
pering. In addition, certain code obfuscations occur as a side
effect of shrinking and optimizing the code of an application.
Code shrinking can remove unused classes, fields, methods,
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FIGURE 2. System framework divided into five major phases: (a) feature extraction. (b) API deobfuscation. (c) API reverse mapping. (d) feature
embedding. (e,f) supervised learning.

and attributes from an application and shorten the name of
packages, classes, methods, and fields in the application.
Optimization inspects and rewrites the code to minimize the
size of the Dalvik Executable (DEX) files [8] of the app. Cer-
tain basic obfuscation techniques exist, such as name obfus-
cation, name overloading, debug data obfuscation, annotation
obfuscation, string encryption and DEX file encryption [9].

A large-scale investigation of obfuscation [9] showed that
the main packages of 83.1% applications are obfuscated, and
100% of apps are obfuscated when considering whether an
app contains any package that has obfuscation features. The
percentage of apps with obfuscated code is high, because
many applications include obfuscated third-party libraries.

Many automated deobfuscation systems have been pro-
posed for Android applications to facilitate reverse engineer-
ing analysis. Yoo et al. [10] proposed a string deobfuscation
scheme to acquire decrypted strings through a dynamic anal-
ysis approach. Kan et al. [11] proposed a system to recover
the original control flow graph from the obfuscated control
flow generated by Obfuscator-LLVM [12]. A control flow
graph is the graphical representation of the control flow,
and it is a directed graph where each node represents a
basic block that is a linear sequence of program statements;
each edge represents the flow of control between the basic
blocks.

DeGuard [13] is a tool that attempts to reverse the lay-
out obfuscation performed by ProGuard, which is a free
software that shrinks, optimizes, and obfuscates Java code.
Layout obfuscation modifies the layout structure of the pro-
gram by renaming identifiers, such as class, package, and
method names. Renaming these program elements with com-
pletely meaningless symbols increases the cost of reverse
engineering. Layout obfuscation is the most well-studied and
widely used technique for code obfuscation; nearly all Java
obfuscators contain this technique. DeGuard was selected to
solve the layout obfuscation problem in this study because
it reveals over 90% of third-party libraries concealed by Pro-
Guard, which is considered an efficient performance. Further,
DeGuard maintains a web service that can be used.

Not all program elements in an application can be obfus-
cated because certain entities are external, such as methods
that are part of the Android OS API and classes referenced in
static files. Adopting these renamed API calls as features can
degrade the performance of the detection model because they
are like noise. Thus, when using API calls as features, obfus-
cated API calls should be either ignored or deobfuscated.

III. RELATED WORK
To the best of our knowledge, existing studies have not
used deobfuscation techniques or the proposed feature inter-
actions. Drebin [14] is a lightweight method proposed by
Arp et al. to detect malicious applications. Drebin considers
the most important characteristics of Android applications:
hardware components, requested permissions, app compo-
nents, filtered intents from the manifest file and restricted
API calls, used permissions, suspiciousAPI calls and network
addresses from the disassembled code. These characteristics
are embedded in a vector space using one-hot encoding.
Finally, Drebin uses support vector machines (SVMs) to
determine whether a given sample is malicious or benign.
Arp et al. investigated a dataset collected from 2010 to 2012;
the authors have released the dataset, and it is now referred
to as the Drebin dataset. Drebin was evaluated using hold-out
validation (67% training and 33% testing), and it achieved a
detection rate of 93.90% with a 1% false positive rate.

DroidSieve [15] is a lightweight method proposed by
Suarez-Tangil et al. to detect obfuscated Android malware.
The authors categorized the features of an application into
two high-level classes: syntactic (code) and resource-centric
features. Syntactic features are derived from the source code
and metadata of the application, and resource-centric features
are derived from the assets of the applications. These features
are used to train an extra tree model to predict the label of
a given application; the accuracy reaches 99.82%. Among
the features proposed by DroidSieve, the most important
feature is derived from the application’s certificate. Inspired
by that study, we designed certain features extracted from the
certificate.
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Ban et al. [5] proposed a method using a linear SVM and
four types of features: permission, category, description, and
API features. They explored the potential of meta data in
Android malware detection; their experimental results indi-
cated that API calls are the best features for Android malware
detection.

SAFEDroid [16]mentioned that many studies proposed for
Android malware detection are based on static analysis; these
methods also primarily use API calls and permissions as their
features. Apart from these traditional features, SAFEDroid
uses novel structural features such as the number of methods/
classes/files/folders, size of the APK archive, number of
goto statements, and number of permissions used. Their
experimental results indicated that these novel structural fea-
tures are effective against new malware in their experiments.
Inspired by SAFEDroid, we designed novel interaction terms
based on these structural features.

Alotaibi [17] proposed the MalResLSTM framework that
is based on deep residual long short-term memory(LSTM);
the framework uses information in the manifest file, API
calls, and network addresses as features. These features are
embedded in a vector space using one-hot encoding. The
authors evaluated their framework using the Drebin dataset
and achieved a detection accuracy of 99.32% and an F1 score
of 92%.

Anuar et al. [18] proposed a method using 213 opcode
sequences that represents the corresponding chain of mali-
cious activities. The authors evaluated their method on
a dataset consisting of 500 APKs from AMD [19] and
500 APKs from Google Play and achieved an accuracy
of 95.4% when using SVM.

AdMat [20] uses a convolutional neural network and it
selects 219 popular Android methods to generate adjacency
matrices for approximating API call-graphs. The authors
evaluated their method on 4460 benign apps and 5560 mali-
cious apps from the Drebin dataset, and they achieved an
F1-score of 92%.

Rahman and Saha [21] used a two-stage stacking method
to assemble certain machine learning algorithms such as
extremely randomized tree, random forest, multi-layer per-
ceptron, and stochastic gradient descent classifiers. The
authors evaluated their framework using the Drebin dataset
and achieved a detection accuracy of 97.00%.

IV. METHODOLOGY
An Android malware detection framework was developed
based on static analysis and machine learning algorithms.
Fig. 2 shows the proposed system framework.

The system framework is divided into five major phases:
feature extraction, API deobfuscation, API reverse mapping,
feature embedding, and supervised learning phase.

A. FEATURE EXTRACTION
Reverse engineering is required to determine the manifest
file and Smali code from the collected APK. We used Apk-
tool (version 2.4.1) [22], which disassembles the Dalvik

executable bytecode (DEX) of the app into Smali code. In
Android systems, the source code is compiled in the DEX
file format to ensure compatibility with the Dalvik virtual
machine and Android Runtime; Smali is the assembly lan-
guage for the DEX format. After disassembling is performed
by Apktool, we obtain information about the application,
including Smali files, AndroidManifest.xml, the certificate
file, and a file generated by Apktool called apktool.yml.

The features extracted in this study are classified into four
sets: API call based, Apktool logfile based, certificate based
and feature interaction based. The definitions of the important
features are listed in Table 1. The descriptions of each feature
set are provided below:
S1: API call based

API calls are the most effective and most used features
because API calls can represent the behavior of an
application. A feature set of API calls was formed by
extracting all function calls found in Smali files. The
API calls can be categorized into Android OS APIs,
programmer-defined functions and third-party libraries.
Among these three types of API calls, only Android OS
APIs cannot be obfuscated. Programmer-defined func-
tions and third-party libraries are often obfuscated by
code obfuscators [9] such as ProGuard [23]. Malware
detection models do not benefit from these obfuscated
codes, and therefore, we introduce a deobfuscation
technique. If all API calls are considered, millions of
unique API calls will need to be added to the dataset
created in this study. Therefore, we selected the most
common 100,000 API calls as the API call feature
set. We represent the original API calls extracted by
S1-original; we use S1-deobfuscated to represent the
API calls after the deobfuscation process.

S2: Apktool logfile based
Apktool.yml is a logfile generated by Apktool. This
file contains information that can be used to rebuild
the APK later. The file number in the doNotCompress
category and that in the unknownFiles category are
calculated as features. The categories in apktool.yml are
defined as follows:
• doNotCompress: Used to record the names of non-
compressed files in an APK.

• unknownFiles: Used to record the names/locations
of nonstandard files in an APK.

S3: Certificate based
DroidSieve [15] designed a feature based on the dif-
ference between the signing time of the app and the
generation time of the corresponding certificate. Fur-
ther, they designed features based on the time zone
and string length of the common name for each cer-
tificate. In the proposed approach, we attain the time
difference between the signing time of each file in
the application and the generation time of the corre-
sponding certificate. Then, we extract this informa-
tion using the jarsigner [24] command line tool. Once
we acquire a list of time differences, we calculate
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TABLE 1. Four feature sets used in the proposed framework and the definition of certain important features. For the API call-based category, we used the
most common 100,000 API calls. For the feature interaction-based category, we list only some of the important features in this study.

the minimum, maximum, mean and standard devia-
tion of the list as features. Further, we use two fea-
tures of jarsigner: whether the signature is verified and
whether the file entry is listed in the manifest. These
two features are used to calculate the percentage of
files with verified signatures and the percentage of
files listed in the manifest. Finally, we calculate the
information entropy of the relative distinguished names
(RDNs) [25] in the certificate as a feature. The RDN
is an attribute-value pair within a distinguished and
unique name given to an X.500 directory object. Fig. 3
shows the certificate information of a Facebook appli-
cation. In this example, we collect the values of all
attribute-value pairs(Facebook Corporation, Facebook,
Facebook Mobile, Palo Alto, CA, US) to calculate the
information entropy of the RDNs. These values are then
used to calculate the information entropy using:

information entropy = −
∑

p log2 p (1)

where p denotes the frequency of each distinct value
collected from the RDNs.

FIGURE 3. Certificate information of the facebook application.

S4: Feature interaction based
Some structural features have been proposed in the
literature; for example, the number of requested permis-
sions, API calls, goto statements, lines of manifest file,
and elements in the manifest file [16], [26]. During the
data analysis, we found that the number of API calls
used in an APK is highly correlated with the size of
the APK; this implies that these structural features are
affected by the size of the APK. For example, although
an application that declares many services or requests
many permissions may seem malicious, larger appli-
cations generally declare more services and request
more permissions. The feature uses-permission_num
counts the number of permissions requested by the
application. Fig. 4 shows the scatter plot and lin-
ear regression lines of uses-permission_num versus
unique_apis_num in the Drebin dataset. The slopes of
the two linear regression lines are considerably differ-
ent, which indicates that malicious applications tend to
request more permissions than benign apps under the
same APK scale. Inspired by this observation, we pro-
pose certain interaction-based features to eliminate the
interference caused by the size of the APK. We use
the number of unique API calls used in an APK to
represent the scale of the APK because the raw size
of the APK can be affected by the size of the assets of
the application, such as images. Fig. 4 indicated that
there is a positive correlation between the variables,

123212 VOLUME 9, 2021



Y.-C. Chen et al.: Impact of Code Deobfuscation and Feature Interaction in Android Malware Detection

and the slopes of the two linear regression lines are
considerably different. We designed a new interaction
term calculated by dividing the number of requested
permissions by the number of unique API calls used;
this term includes information about the rationality of
the number of requested permissions. If the value of
this term for a sample is higher than that of the others,
this sample is considered to request excess permissions
based on its APK size, and it is deemed more likely to
be a malicious sample.

FIGURE 4. Scatter plot and linear regression lines of uses-permission_
num versus unique_apis_num, where r represents the Pearson’s
correlation coefficient and p denotes the p-value. Dataset: Drebin [14].

The proposed interaction-based features can be viewed
as decorrelated features. We use S4-original to rep-
resent the original structural features; S4-decorrelated
represent the decorrelated features.

B. API DEOBFUSCATION AND API REVERSE MAPPING
We use DeGuard [13] to address the obfuscated API calls
because it provides an online service that helps map obfus-
cated API calls to the original name of the API calls. After
an APK is uploaded to the DeGuard online service, DeGuard
performs code deobfuscation and returns a file called map-
ping.txt, which contains the prediction of the original API
calls of an obfuscated APK. We perform a reverse mapping
process on the API calls for each APK in this phase based on
mapping.txt.

Fig. 6 shows a part of the Smali code of an obfuscatedAPK,
and Fig. 7 is part of the mapping.txt returned by DeGuard.
In Smali code, there is an object called org/a/d/f that
has a method called b. The API call org/a/d/f/b is
obfuscated by renaming. However, with the mapping.txt
file, we know that the object org/a/d/f is probably
org/java_websocket/util/Handshakedata, and
method b is probably getFieldValue. In this case,
the API call org/a/d/f/b is mapped to org/java_
websocket/util/ Handshakedata-/getFieldV-
alue. Using this API reverse mapping process, we can
retrieve the original names of the obfuscated API calls.

The total number of unique original API calls is approx-
imately 3 million; the total number of unique deobfuscated
API calls is more than 6 million. This is attributed to the fact
that different API calls can be renamed to the same obfuscated
API call, such as android.a.a.a. This process can help
retrieve certain information loss caused by code obfuscation.
The prediction accuracy for Deguard is over 80%; it is 90%
if only third-party libraries are considered.

We estimate the time of deobfuscating an APK by run-
ning the deobfuscation process on 100 random samples for
100 rounds. Fig. 5 shows the results; it takes 3,993 s to
deobfuscate 100 APKs on average, which implies that it
takes approximately 60 days to deobfuscate the entire Drebin
dataset.

FIGURE 5. Deobfuscation time for 100 random samples.

FIGURE 6. Snippet of Smali code of an obfuscated APK.

FIGURE 7. Snippet of mapping.txt that contains the prediction of original
names according to Fig. 6.

C. FEATURE EMBEDDING
The extracted features need to be embedded into a vector
space to train a machine learning model using these features.
In the literature, certain studies have used one-hot encoding
to embed API calls into a feature vector [14], [17], and others
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used the number of appearances per API call instead of the
one-hot representation [27]. In the proposed approach, we use
the latter, which is also called term-frequency encoding. The
number of appearances of an API call in an APK can preserve
additional information. All four feature sets are joined to
define the entire feature space:

Sall = S1 ∪ S2 ∪ S3 ∪ S4 (2)

D. SUPERVISED LEARNING
In this phase, we use supervised learning algorithms to clas-
sify Android applications as either benign or malicious. For
supervised learning, a model is trained on a labeled dataset.
For model validation, we use 10-fold cross-validation to
derive a more accurate estimate of model prediction perfor-
mance. Further, we use a stratified sampling method: the
ratio of malicious samples to benign samples in the whole
dataset is preserved in the training set and testing set. We use
several algorithms including LightGBM [28], CatBoost, Lin-
eraSVM, RandomForest, and ExtraTrees to evaluate the fea-
tures more comprehensively.

E. DATASETS
The Drebin dataset [14] is an Android application dataset that
includes 5560 APKs that belong to 179 different malware
families and 123,453 benign APKs. These samples were col-
lected between August 2010 and October 2012. This dataset
is popular in Androidmalware detection research because it is
open source, has many samples, and contains malware family
labels.

The AndroZoo dataset [29] is an Android app dataset that
is regularly updated and used to obtain certain Android appli-
cation samples from recent years. There are many categories
in the AndroZoo dataset depending on the market fromwhich
each sample is collected.We selected the VirusShare category
to provide malicious samples and the Google Play category
for benign samples. Further, we only used samples that were
collected in 2018 or 2019.

The datasets used in this study are presented in Table 2.
From the Derbin dataset, we use all samples that can be
successfully processed by Apktool and DeGuard. From the
AndroZoo dataset, the samples are randomly selected to
ensure that the percentage of malicious samples in both
datasets is the same. The same percentage of malicious sam-
ples helps eliminate the effects of data imbalance.

TABLE 2. Dataset description, including the number of malicious and
benign samples in the Drebin and Androzoo datasets. We equalize the
percentage of malicious samples in both datasets to eliminate any data
imbalance effects.

V. EXPERIMENTS AND RESULTS
For the experiment, we use a machine with the following con-
figuration: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz,
64-bit PC with 512 GB RAM. The operating system is Linux

ubuntu1804 4.15.0-55-generic. Python3 is used as a pro-
gramming language with certain packages such as lightgbm,
catboost, scikit-learn, pandas and numpy. We use accuracy
(ACC), precision (PRC), recall, F1-score (F1), and area under
the curve (AUC) as the evaluation metrics. We performed
experiments to answer the following research questions:
RQ1: What is the performance of the proposed system with

original API calls?
RQ2: What is the usefulness of the deobfuscation technique?
RQ3: Are interaction-based features better than existing

structural features?
We need to explain the feature importance [30] used in

the study before we can answer these questions. The fea-
ture importance ranking of each feature is obtained using
machine learning algorithms. We selected LightGBM, which
performed the best among the algorithms, and adopted the
feature importance ranking derived from this algorithm.
LightGBM is a gradient boosting framework that uses tree-
based learning algorithms. LightGBM grows decision trees
leafwise. When adding a new tree node, LightGBM selects
the splitting point that has the largest information gain. After
training the LightGBM model, it derives the feature impor-
tance ranking for each feature by calculating the number of
times that feature is selected to be the splitting point. The
importance of a feature is decided based on the frequency
of its selection. Since we use 10-fold cross-validation for
model validation, the final feature importance rankings are
calculated from the average of ten training results.

A. RQ1: PERFORMANCE OF THE PROPOSED SYSTEM
WITH ORIGINAL API CALLS
First, we evaluate the detection performance of the proposed
system using S1-original, which has been shown to be the
best feature in many other studies [4]–[6]. Ensemble learning
is the most used classifier for Android malware detection
using static analysis. Random forest is themost used classifier
in ensemble learning [3]. Table 3 shows that LightGBM
outperforms all other classifiers with an AUC of 99.71%
and LinearSVM achieves the worst performance with an
AUC of 96.05% on the Drebin dataset. Accuracies are high
because of the data imbalance. For the imbalanced dataset,
F1 and AUC are better evaluation metrics; AUC is better than
F1-score because the F1 changes because of the variation in
the threshold of the classifier used for determining whether
a sample is positive. Thus, we use AUC as our primary
evaluation metric.

We obtain a similar result for the same experiment using
the Androzoo dataset. LightGBM has the highest AUC
of 99.27%, and LinearSVM has the lowest AUC of 95.23%
for the Androzoo dataset.

1The low F1 score can be attributed to the fact that random forest uses
a threshold that yields high precision (98.83%) and low recall (27.81%).
These results cause F1 to be low based on the formula used to calculate F1.
Further, we determine a threshold that yields an F1 score similar to that of
other algorithms with the same random forest model. We must determine a
proper threshold in this case, and thus, we use AUC as our primary metric.
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TABLE 3. Performance and computational time using feature set
S1-original . Dataset: Drebin.

B. RQ2: WHAT IS THE USEFULNESS OF THE
DEOBFUSCATION TECHNIQUE?
We compare the detection performance of the models using
feature sets S1-original and S1-deobfuscated to evaluate the
impact of the code deobfuscation technique on Android
malware detection. Table 6 shows that the average AUC
increases from 98.35% to 98.53% when we use deobfuscated
API calls instead of original API calls in the experiment
with the Drebin dataset. We analyze the feature impor-
tance rankings of the deobfuscated API calls. Among the
top 100 important features, 3 API calls were retrieved by
the deobfuscation process, which indicates that these API
calls are obfuscated in the original API calls, and they do
not contribute to the malware detection process. The most
important feature retrieved by the deobfuscation process is
com.apperhand.common.configurations.Book
mark->getStatus has a feature importance ranking
of 23. Table 5 lists the deobfuscated API calls retrieved by
DeGuard among the top-100 important feature rankings.

In the same experiment with the Androzoo dataset,
the average AUC marginally decreased from 98.22% to
98.16% when we used deobfuscated API calls instead of the
original API calls. Although the AUC did not increase,
the deobfuscation process retrieved some important API calls.
The most important API call retrieved by the deobfuscation
process is gnu.bytecode.CodeAttr->emitInvok-
eVirtual, which has a feature importance ranking of 4.
This API is used to compile a virtual method call, and it
identifies 17.74% of benign applications. However, none of
the malicious applications use this API call.

We evaluate the relevance of S1-deobfuscated and
S1-original to class labels using an information theory-based
measure. First, we calculate the correlation coefficient of the
class label and each feature using:

corr(X ,Y ) =
E[(X − µX )(Y − µY )]

σXσY
, (3)

where E denotes the expected value operator; µX and µY
represent the expected values of the feature and class label,
respectively; and σX and σY represent the standard deviations
of the feature and class label, respectively. We calculate the
correlation between class labels and feature sets by calculat-
ing the softmax-weighted average correlation coefficients of
the features in each feature set. We use the softmax-weighted
average because the features we are interested in have a
high correlation with the class labels. A softmax-weighted

average provides a feature with a higher correlation a higher
weight. The sum of all softmax weights is equal to one.
The softmax weight of each correlation coefficient σ (z)i is
calculated using:

σ (z)i =
ezi∑K
j=1 e

zj
, for i = 1, . . . ,K ,

z = (z1, . . . , zK ) ∈ RK , (4)

where z denotes the correlation coefficient vector and σ (z)
represents the softmax vector. The softmax-weighted average
correlation coefficient is calculated using:

K∑
j=1

zj ∗ σ (z)j, z = (z1, . . . , zK ) ∈ RK . (5)

The softmax-weighted average correlation coefficients of
S1-original and S1-deobfuscated are summarized in Table 4.
The result of the information theory-based measure shows
that the proposed feature set has a higher correlation with the
class label; this is consistent with our experimental result.

TABLE 4. Relevance of feature sets S1-original and S1-deobfuscated to
class labels. Dataset: Drebin.

TABLE 5. Deobfuscated API calls generated by Deguard among the top
100 important features and their ranking of feature importance. Dataset:
Drebin.

C. RQ3: ARE INTERACTION-BASED FEATURES BETTER
THAN EXISTING STRUCTURAL FEATURES?
Existing structural features in the literature can be catego-
rized into manifest-based, code-based, and file-based fea-
tures. Examples of manifest-based features include the count
of xml elements in a manifest file [26], number of requested
permissions [15] and number of lines in the manifest file [16].
Examples of code-based features include the number of goto
statements, annotations, classes, and methods [16]. Exam-
ples of file-based features include application size [26], and
the count of files and directories [16]. We construct the pro-
posed novel interaction-based features based on these exist-
ing structural features and the feature interaction described in
section IV.

We use both interaction-based features and exist-
ing structural features and compare the feature impor-
tance between them to evaluate the effectiveness of the
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TABLE 6. Performance and computational time using feature set
S1-deobfuscated . Dataset: Drebin.

proposed interaction-based features. The top 20 impor-
tant features are shown in Fig. 9 for the experiment
using the Drebin dataset. The most important feature
is uses-permission_num//unique_apis_num, which is an
interaction-based feature. Since uses-permission_num is
ranked No. 11, we know that the interaction-based feature is
more useful than the existing structural feature. This improve-
ment is indicated by many other structural features. Table 7
lists the feature importance ranking of several structural
features and the corresponding interaction-based features.
As indicated by Table 7, service_num is ranked No. 311,
and the corresponding interaction-based feature is ranked
No. 10, which is a large improvement. Fig. 8 shows the
scatter plot and linear regression lines for service_num
versus unique_apis_num in the Drebin dataset. As shown
in Fig. 8, if malicious and benign apps have the same APK
scale, the number of services of the malicious app is double
that of the benign app. It is intuitive that malicious apps
often use services to perform malicious activities because
the services lack a visual user interface and they use a long-
running background operation. It is difficult to differentiate
between malicious and benign apps if we simply look at the
number of services used by an application. However, if we
look at the interaction-based feature that considers the feature
interaction between the number of services and the APK
scale, the difference is clear.

The proposed interaction-based features can be seen as
decorrelated features. Let feature set F-existing represent
the union of feature sets S1-original and S4-original, and
let F-proposed represent the union of feature sets
S1-deobfuscated , S2, S3 and S4-decorrelated . We calculate
the redundancy of two feature setsF-existing andF-proposed
to identify the minimum redundancy between these decorre-
lated features. The redundancy of a feature set is calculated
using:

Redundancy(F) = E[corr(Fi,Fj)], i 6= j

=
2

K (K − 1)

K∑
i=1

K∑
j=i+1

corr(Fi,Fj), (6)

where E , corr(), Fi, and K denote the expected value oper-
ator, correlation coefficient operator, i-th feature of fea-
ture set F , and size of the feature set F , respectively. The
redundancies of feature sets F-existing and F-proposed are
summarized in Table 8; they are 0.11228 and 0.10313, respec-
tively. The result indicates that the decorrelation process can

reduce redundancy and create a better feature set; this is
consistent with our experimental result.

Figure 9 shows that many of the proposed certificate-based
features have high feature importance scores. Compared to
benign apps, malicious ones have a larger time difference
between the signing time of each file in the application and
the generation time of the corresponding certificate, on aver-
age. For features related to the time difference, our obser-
vation is similar to that of DroidSieve [15]. They consider
the signing time of an APK, and we look further at the
signing time of every file in an APK. Other novel certificate-
based features such as cert_entropy (ranked No. 3) and
in_manifest_ratio (ranked No. 4) are also useful. Compared
to benign apps, malicious apps on average have lower values
of cert_entropy and in_manifest_ratio. The average values
of these two features for benign apps are 1.67 and 92.17%,
respectively, whereas those for malicious apps are 1.34 and
85.53%, respectively. A lower value of cert_entropy indi-
cates that certain RDNs in the certificate are duplicated. This
duplication may be caused by an autogenerated certificate
or a developer that does not pay attention to the certificate’s
information. A lower value of in_manifest_ratio indicates
that there are more files wherein file entries are not listed in
the manifest file. The observation of these two features imply
that malware developers do not pay considerable attention to
the certificate, and they are attempting to hide certain files by
concealing the file entries.

FIGURE 8. Scatter plot and linear regression lines of service_num versus
unique_apis_num, where r represents the Pearson’s correlation
coefficient and p represents the p-value. Dataset: Drebin [14].

For the Apktool logfile-based features, doNotCom-
press_num is a useful feature ranked No. 8 in feature impor-
tance. Compared to benign apps, malicious apps have a lower
value of doNotCompress_num on average. The average
value of this feature for benign apps is 5.24, and the average
value for malicious apps is 4.72.

For the same experiment using the Androzoo dataset,
we obtain a similar result and the same conclusion.
Fig. 10 shows the feature importance ranking for this
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TABLE 7. Feature importance ranking of structural features with and without considering feature interaction. Dataset: Drebin.

TABLE 8. Redundancy of feature sets F -existing and F -proposed .
Dataset: Drebin.

experiment using the Androzoo dataset. The average val-
ues of cert_entropy, in_manifest_ratio, and doNotCom-
press_num for benign apps are 0.73, 72.98%, and 16.72,
respectively, and the average values for malicious apps are
0.67, 66.97%, and 8.94, respectively.

FIGURE 9. LightGBM importance values. Dataset: Drebin. Feature sets:
S4-original , S4-decorrelated , and S1-original .

D. PERFORMANCE EVALUATION AND COMPARISON
We evaluate the relevance of feature sets S1-deobfuscated
and S1-original to class labels; the results are summarized
in Table 4. Here, we evaluate the relevance of feature sets
F-existing and F-proposed to the relevant class labels. The

FIGURE 10. LightGBM importance values. Dataset: Androzoo. Feature
sets: S4-original , S4-decorrelated , and S1-original .

relevance values are calculated by Equation (5) and summa-
rized in Table 9.

TABLE 9. Relevance of feature sets F -existing and F -proposed to class
labels. Dataset: Drebin.

We use the Drebin dataset [14] to evaluate our method and
compare the performance with previous Android malware
detection systems. None of the previous works apply the
deobfuscation technique or propose interaction features or
decorrelated features. Further, most of the previous works use
a one-hot encoding method for feature embedding, whereas
we use term frequency encoding. Further, we compare our
method with previous works that use the same Drebin dataset
and the same validation strategy. The experimental results
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are listed in Table 10. The proposed framework achieves the
best performance according to the comparison result obtained
using the common metric accuracy presented in Table 10.

TABLE 10. Comparison on Drebin dataset. Abbreviations:
ALGO - Algorithm, LGBM - Light gradient boosting machine, LSTM - Long
short-term memory, SVM - Support vector machine, TF - Term frequency.

VI. CONCLUSION AND FUTURE WORK
We introduced novel features based on Apktool and certifi-
cates, some of which were found to be important features
in the malware detection model. These novel features were
resilient against common obfuscation techniques such as
name obfuscation, name overloading, debug data obfusca-
tion, annotation obfuscation, string encryption, and DEX file
encryption [9].

We proposed interaction-based features based on existing
structural features. We used a code deobfuscation tool to
recover the original naming of obfuscated API calls. The
results indicated that certain recovered API calls can be con-
sidered important features. Thus, there are potential benefits
of adopting deobfuscation techniques in Android malware
detection. We plan to investigate other deobfuscation tech-
niques such as string deobfuscation and control flow deob-
fuscation in the future.
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