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ABSTRACT This study is to efficiently apply artificial neural network (ANN) to the robotics, so as to
provide experimental basis for mobile robots to learn the optimal trajectory planning strategy. An algorithm
model is innovatively proposed based on back propagation neural network (BPNN) and reinforcement
learning (Q-Learning) by combining the motion space, selective strategy, and reward function design. The
simulation experiment environment is set and the ROS mobile robot is adopted for simulation experiments.
The algorithm proposed in this study is compared with other neural network algorithms from the perspectives
of accuracy, precision, recall, and F1. It can be found that the accuracy of algorithm proposed was at least
5.47% higher than that of the model algorithm proposed by other scholars, and the values of precision,
recall, and F1 were at least 5.5% higher. The results show that the mobile robot could find the shortest
trajectory and the best trajectory in a discrete obstacle environment, no matter the more or less the discrete
obstacles or the large or small the space. Therefore, compared to the advanced model algorithms proposed
by other scholars in related fields, the robot trajectory planning based on the improved BPNN combined with
Q-Learning constructed in this study could realize better results, and can be used in practical applications
with robot trajectory planning, providing practical value for the field of machine vision.

INDEX TERMS Artificial neural network, back propagation neural network, Q-learning, mobile robot.

I. INTRODUCTION
Many disciplines have made great progress under rapid
development of science and technology today. Driven by
academic and industrial needs, the development of multidis-
ciplinary technology integration is very fast, and many excel-
lent results have been obtained in the academic world and
in the process of production practice [1], [2]. Robot-related
technology is a representative of multidisciplinary technol-
ogy integration. It integrates the research results of com-
puters, sensors, and artificial intelligence (AI). It is the
pinnacle of mechatronics achievements and can represent
the high-tech level of a country [3]. The Stanford Research
Institute firstly began to study the autonomous path plan-
ning capabilities of autonomous mobile robots in complex
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environments in the 1960s [4]. At present, an important
development direction for various countries in the world is
related to the research and development of robots. China
has clearly pointed out in its future development plan that
robots, especially robots with autonomous mobility, will be
included in the field of advanced manufacturing technol-
ogy [5], [6]. Germany pointed out in 2013 that the future
development of frontier industries should give priority to
the combination of intelligent robots and man-machines.
In 2018, Japan also proposed to include the smart manu-
facturing and mobile robots in the five key development
areas. In the United States, it was also clearly pointed out
that the research on robots and autonomous systems would
be included in the next 20 technological trends. This means
that in the future, robotics is the main direction of scien-
tific and technological competition among countries in the
world.
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The movement trajectory planning of mobile robots is
the core research point during the research. The trajectory
planning of a mobile robot is mainly based on what kind
of trajectory the robot walks on with or without a map [7].
The local movement trajectory planning of a mobile robot is
a dynamic planning method, and its most important feature
is that the mobile robot can realize the real-time movement
trajectory planning based on local environment information.
However, the environment for local movement trajectory
planning of mobile robots is unpredictable, and it is difficult
to deal with various situations through experience. Therefore,
it is necessary to introduce a self-learning function, so that the
robot can navigate autonomously and avoid obstacles after a
period of training [8], [9]. The reinforcement learning algo-
rithm has been widely used in the local trajectory planning
of mobile robots, and it has been proved through practice to
be an effective algorithm for improving the intelligent sys-
tem, including the clustering algorithm [10]. Reinforcement
learning algorithm takes the ‘‘trial and error’’ behavior as the
basis, it uses the delayed return method to find the optimal
action to obtain the best decision-making ability. The core
feature of reinforcement learning is that it can learn online
and update itself, which is one of the core technologies of
path planning. Reinforcement learning has become more and
more mature in algorithm theory and application by com-
bining algorithms and disciplines such as neural networks,
intelligent control, and game theory [11], [12]. Q-Learning is
the most commonly used reinforcement learning algorithm,
but its convergence rate is relatively low [13]. The back
propagation neural network (BPNN) under artificial neural
network (ANN) shows excellent perception and comput-
ing capabilities, is good at nonlinear prediction and fitting,
and can adjust the connection signal strength among neu-
rons to learn external environmental knowledge, showing a
strong generalization ability. Therefore, BPNN has become
an important calculation model for mobile robot motion
behavior control [14]. Some researchers have combined the
potential field method with ANN to improve the effect of
movement trajectory planning of mobile robot in a dynamic
environment [15], but it can’t solve a series of problems such
as the slow convergence speed ofANN represented byBPNN.

Based on above contents, the additional momentum
method is combined with the adaptive learning rate method
to optimize BPNN, and a trajectory planning based on the
BPNN and Q-Learning is innovatively proposed, so as to
provide effective experimental basis for the robots to learn
the best trajectory planning strategy under various obstacles
conditions and for the better development of the robotics.

II. PREVIOUS WORKS
A. ANALYSIS ON ANN
With the rapid development of science and technology, deep
learning has been extensively studied in various fields. As the
key content of deep learning, ANN currently also occupies
an important position in the field of robotics. Al-Qurashi and

Ziebart [16] studied the use of Long Short Term Memory -
Recurrent Neural Networks (LSTM-RNN) to optimize the
trajectory of the robot, which is superior to other neural
networks in position and direction. Peng et al. [17] proposed
the use of Radial Basis Function Network (RBF network) to
solve the uncertainty of the robot control model, and verified
the effectiveness of the method.

B. ANALYSIS ON ROBOT MOVEMENT TRAJECTORY
In recent years, robots have attracted more and more attention
from researchers in the form of human-like or animal-like
robots. Prasetyo et al. [18] researched and discussed the gait
planning proposed on the quadruped robot, the trajectory
planning used under this case is linear translation and sinu-
soidal gait trajectory, and there are no obstacles, just walking
on flat terrain. Liu and Wang [19] proposed a local trajectory
planning method for ground service robots, which generates
a feasible and comfortable trajectory while considering mul-
tiple stationary obstacles and path curvature constraints.

C. LITERATURE REVIEW
Robot trajectory planning faces some delay in avoiding obsta-
cles, inaccurate path planning, and low model optimization
efficiency. The existing ANN is very weakwhen used in robot
trajectory planning, so it is unable to accurately obtain the
data set, and unable to accurately establish a mathematical
model suitable for robot trajectory planning. In view of the
above shortcomings, most of the current researches use a
single artificial neural network for robot trajectory planning.
However, the algorithms for robot trajectory planning is sim-
ple due to the lack of complete data sets and limited model
training capabilities, so there are few researchers optimize
and recombine the neural network algorithms.

III. THE TRAJECTORY PLANNING ALGORITHM BASED ON
THE BPNN AND Q-LEARNING
A. Q-LEARNING
Themobile robot can optimize the task result by continuously
interaction with the environment. When interacting with the
environment with a certain action, the mobile robot will
generate a new state under the action of the motion and
the environment, which will be rewarded immediately by
the environment. During the constant repetition, the mobile
robot continuously interacts with the environment, generat-
ing a large amount of data. The Q-Learning algorithm opti-
mizes its own action strategy through the generated data, and
then interacts with the environment to generate new data,
which can be adopted to further improve its own mobile
strategy. After many iterations of learning, the mobile robot
finally learns to obtain the best action sequence to complete
the corresponding task. Therefore, the theoretical theories
of reinforcement learning are learnt firstly in this study.
Q-Learning is a reward guidance behavior obtained by the
agent through ‘‘trial and error’’ learning and interaction with
the environment, aiming to maximize the reward for the
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agent. Q-Learning is different from supervised learning in
connectionist learning, which is mainly reflected in the rein-
forcement signal. The reinforcement signal provided by the
environment in reinforcement learning is used to judge the
quality of the action. It does not tell the Q-Learning system
how to generate the correct action, but an evaluation, usually a
scalar signal. Because the external environment provides little
information, reinforcement learning system (RSL) must learn
from one’s own experience. In this way, RLS gains knowl-
edge in the action evaluation environment and improves the
action plan to adapt to the environment.

Q-Learning [20] is a model-independent reinforcement
learning algorithm, which can directly optimize a Q function
that can be calculated iteratively. Its target strategy is greedy
strategy, and its action strategy is ε-greedy. The algorithm
steps of Q-Learning are shown in Figure 1 below:

FIGURE 1. The algorithm steps of Q-learning.

After the algorithm is initialized and the parameters are set,
the actions are selected according to the strategy in the initial
state, the rewards and the next state are received, the end
state is realized after convergence, and the final strategy is
outputted.

B. Q VALUE FUNCTION PREDICTION MODEL BASED ON
ANN
During the Q-Learning, mobile robots show slow conver-
gence speed, but ANN shows very fast perception calculation
speed and good nonlinear prediction and fitting, can adjust
the connection signal strength among neurons, and can learn
about the external environment. Therefore, the movement
trajectory of the mobile robot is optimized based on the ANN.

A neural network is a complex non-linear network com-
posed of a large number of simple non-linear units. It is
a non-linear model to simulate the function of the human
brain. Essentially, it is a model-independent adaptive function
estimator. When the given input is not the original training
sample, the neural network can also give an appropriate

output, that is, it has generalization ability. In the neural
network, knowledge is distributed in the storage network
through learning examples, so the neural network is fault-
tolerant. When a single processing unit is damaged, it has
little effect on the overall behavior of the neural network, but
it does not affect the normal operation of the entire system.
Because of its strong learning ability and nonlinear mapping
ability, neural network has been widely used in robot kine-
matics, dynamics, and control. In mobile robot navigation,
it is mainly used for environment model representation, local
planning, global planning, sensor information fusion, robot
control system, etc. The ANN is a nonlinear adaptive infor-
mation processing system composed of a large number of
interconnected processing units. It is proposed on the basis of
the results of modern neuroscience research, trying to process
information by simulating the processing and memory of the
brain neural network [21]. There are four basic characteristics
for ANN, as shown in Table 1 below:

TABLE 1. Basic characteristics of ANN.

ANN can realize the abstract analysis on the neural net-
work of the human brain from the perspective of information
processing and establishes a simple model, forming different
networks using different connection methods. It is a running
model composed of many interconnected nodes (neurons).
Each node (neuron) represents a specific output function,
which is called the activation function [22]. Each connection
between two nodes represents a weighted value of the signal
passing through the connection, which is called the weight,
being equivalent to the memory of the ANN. The output of
the network varies with the connection mode, weight, and
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excitation function of the network. In essence, the network
itself is usually an approximation of a specific algorithm or
function, or an expression of a logic strategy. It is assumed
that the input weight of neuron n is ϕ, the activation function
is f , and the accumulation unit is m, then the output G of the
neuron can be expressed as equation (1):

Gn = f

(∑
n

ϕnxn + m

)
, (1)

The input weight in the above equation acts on the sample
output x or sample input of the upper layer of the network,
so as to obtain the cumulative result by sum. Then, the non-
linear activation function f is adopted to obtain the response
value. The activation function is a threshold analysis mecha-
nism, which can be activated and output only when the input
exceeds a certain value, thus forming a neuron in the neural
network [23]. The structure of the neuron activation function
is shown in Figure 2 below:

FIGURE 2. The structure diagram of the neuron activation function.

A neural network is a complex non-linear network com-
posed of a large number of simple non-linear units. Essen-
tially, it is a model-independent adaptive function estimator.
When the given input is not the original training sample,
the neural network can also give an appropriate output, that is,
it has generalization ability. In the neural network, knowledge
is distributed in the storage network through learning exam-
ples, so the neural network is fault-tolerant. When a single
processing unit is damaged, it has little effect on the overall
behavior of the neural network, but it does not affect the
normal operation of the entire system. Because of its strong
learning ability and nonlinear mapping ability, neural net-
work has beenwidely used in the robot kinematics, dynamics,
and control. In mobile robot navigation, it is mainly used
for environment model representation, local planning, global
planning, sensor information fusion, robot control system,
etc. The ANN is a nonlinear adaptive information process-
ing system composed of a large number of interconnected

processing units. It is proposed on the basis of the results of
modern neuroscience research, trying to process information
by simulating the processing and memory of the brain neural
network [24].

The back propagation neural network (BPNN) is a type of
ANN. The basic BPNN algorithm is composed of the forward
propagation of signals and backward propagation of errors.
In other words, the error output is calculated according to
the direction of input to output, and the weight and threshold
are adjusted according to the direction of output to input.
In the forward propagation, the input signal acts on the output
node through the hidden layer, and the output signal is gener-
ated through nonlinear transformation. If the actual output is
inconsistent with the expected output, it will be transformed
into an error back propagation process. Error retransmission
is to retransmit output errors to the input layer through the
hidden layer and distribute the errors to all units in each
layer. The error signal of each layer is undertaken as the basis
for adjusting the weight of each unit. The error is reduced
along the gradient direction through adjusting the connection
strength between the input node and the hidden node, the
connection strength between the hidden node, and the output
node and the threshold. After repeated learning and training,
the network parameters (weights and thresholds) correspond-
ing to the minimum error are determined, and the training is
stopped. At this time, the trained neural network can process
the input information of similar samples on its own, as well as
the nonlinear conversion information with the smallest output
error [25], [26]. BPNN is capable of non-linear mapping
and can approximate any continuous function. Aiming at this
mapping ability, the collected state-actions are used to evalu-
ate the Q-value function, and BPNN training is performed at
the same time. Finally, a Q-value function prediction model is
analyzed from the multiple state-action data obtained by the
intensive Q-Learning, and the model is applied for prediction
of new Q value data. BPNN shows the disadvantages of long
learning time, slow convergence, and network training easily
falling into local minimums. In view of the above shortcom-
ings, the additional momentum method is combined with the
adaptive learning rate method [27] in this study to apply
the advantages of them to improve the BPNN algorithm.
The learning rate of the network is set to δ. If the deviation
of the system feedback is gradually reduced, the next learn-
ing rate will increase, and vice versa, the learning rate will
decrease. If the network system is trained to the saturation
area of the error surface, the variation of the error is very small
at this time, then the additional momentum term method can
be expressed as equation (2) below:

1µ ≈
α

1− λ
κQ
κµ
, (2)

In the above equation, α represents the learning rate, λ
represents the momentum factor in the network system, Q is
the network error, and κ refers to the allowable rebound error
coefficient.
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At this time, the adjustment process of the system network
connection weight can be expressed as follows:

1µ(t + 1) = α
κQ
κR
+ λ1µ (t) , (3)

In the equation above, t represents time. The adjustment of
online learning rate through the unevenness of the deviation
surface can improve the convergence of the BPNN algorithm
and effectively solve the drastic changes in the error curve.

In ANN, RNN and LSTM are also often used in robot
trajectory planning. The difference among RNN, LSTM,
and BPNN is that LSTM can only avoid the disappearance
of the gradient of RNN, but it can’t combat the gradient
explosion, while BPNN shows strong self-learning, adaptive
capabilities, generalization capabilities, nonlinear mapping
capabilities, and fault tolerance, so it is more suitable for the
computer vision.

First of all, the prediction model of the BPNN combined
with Q-value function designed in this study is also composed
of an input layer, a hidden layer, and an output layer, but the
hidden layer here is structuredwith a single layer. The input of
the neural network model is the environmental state variables
A, B, C, and D perceived by the mobile robot, then the state
vector dimension u of the input layer is 5, and the output layer
v is the 4 Q values corresponding to each action: Q(St,x1),
Q(St,x2), Q(St,x3), and Q(St,x4). The number of neurons in
the hidden layer can be calculated according to the number of
neurons in the input layer and output layer, as follows:

N ≤
√
(u+ v)+ k, (4)

In the above equation (2), u is the dimension of the state
vector of the input layer, v refers to the output layer, k repre-
sents a constant within [1], [10]. Therefore, it can be known
that the number of neurons in the hidden layer is in the range
of [4], [13]. In order to maximize the training effect of the
model, the number of neurons is selected as 13 in this study.

The structure of the Q value prediction model based on the
BPNN is given as follows (Figure 3).

FIGURE 3. The structure of the Q value prediction model based on the
BPNN.

The input layer in the above model inputs the environ-
mental variables perceived by the robot, the output layer
outputs the Q value of each action of the robot through the
feature conversion of the hidden layer, and then the number
of neurons in the hidden layer can be calculated.

The neural network layer contains many neurons, and each
neuron is related to each other through weighting, forming
an interconnected neural network structure. The most basic
ANN consists of an input layer, a hidden layer, and an output
layer [28]. The functional characteristics of each layer are
shown in Table 2 below:

TABLE 2. The functional characteristics of each layer of the ANN.

The linear function purelin is undertaken as the training
function of the neurons in the output layer, and the S-type dif-
ferentiable tangent function tansig is selected as the training
function of the hidden layer neurons of the BPNN-based Q
value prediction model, as shown in the following equation:

f (x) =
2

1+ e−2x
− 1, (5)

The backpropagation error of the BPNN is supposed as en,
then the error is the actual Q value (Q(St ,Xn)) obtained by the

Q learning algorithmminus the Q value (
∼

Q (St,Xn)) predicted
by the BPNN under the same set of samples, as shown in the
following equation (4):

en = Q (St,Xn)−
∼

Q (St,Xn) , n = 1, 2, 3 (6)

The training steps of the BPNN-based Q neural network
are given in Table 3.

C. DESIGNS OF MOTION SPACE, SELECTIVE STRATEGY,
AND REWARD FUNCTION OF ROBOTS
First, four actions are designed in this study, including for-
ward R1, back R2, left turn R3, and right turn R4 to allow
the mobile robot to walk freely in the map environment. The
above actions constitute the action set R ={R1, R2, R3, R4}.

125584 VOLUME 9, 2021



X. Li, M. Li: Direction Analysis on Trajectory of Fast Neural Network Learning Robot

TABLE 3. The training steps of the BPNN-based Q neural network.

The left and right turning angles are set to be 30◦ and can be
adjusted according to actual needs during operation, and the
back movement stipulates that the mobile robot rotates 180◦

in place before moving forward.
Secondly, a mobile robot sensor model is designed based

on the widely used ROS robot sensors [29], including three
sonar sensors on the left, center, and right in front of the
ROS robot, and the angle between each sensor is 22.5◦. The
position of the ROS robot body is supposed as the coordinate
origin (0,0), the front direction of the robot is the y-axis, and
the direction perpendicular to the y-axis is set as the x-axis,
and a two-dimensional planar rectangular coordinate system
is established as shown in the Figure 4:

In the above coordinate system, the range of the area that
the robot can perceive and detect is 30◦ - 150◦. The rectan-
gular plane area is divided into three parts: V1, V2, and V3.
Then the left, middle, and right sensors of the robot detect the
obstacles in V1, V2, and V3, respectively.
If the mobile robot selects a forward motion r1 from the

motion space R, it will travel to the divided area V2 of the
robot coordinate system in Figure 4. If the left turn action r2
is selected, it will travel to the area V3 of the robot coordinate
system. If the right turn action r3 is selected, it will travel to
the V1 area of the robot coordinate system; and if the action
R4 is selected, the robot will move back.

FIGURE 4. Schematic diagram of robot sensor.

Finally, the reward function is designed. The design crite-
rion of the reward function is given as follows. The farther
away the obstacle is, the greater the positive reward will
be; and the closer the obstacle is, the greater the negative
reward. The movement behavior of the mobile robot will
be continuously evaluated. Suppose the maximum distance
that the ROS robot can perceive is H , the distance between
the sensor and the obstacle is h, and the distance relation
function between the obstacle and the robot is the logarithmic
function of the base number h and h+0.01 as the true number,
when h = 0, the obtained logarithmic function value is not
infinite. Then the distance relation functionU is expressed as
equation (5) below:

U (h) = logH (h+ 0.01) , (7)

The reward function E of robot to avoiding the obstacles
can be written as follows.

E=



0 h ≥ H
− |Ut+1 (h)− Ut (h)| h < H and Ut+1 (h)

< Ut (h)
|Ut+1 (h)− Ut (h)| h < H and Ut+1 (h)

≥ Ut (h)

, (8)

In the above equation, Ut+1 (h) and Ut (h) represent the
reward values of the distance at time t and t+1, respectively.
It is supposed that distance function between the mobile

robot and the target isH ’, which can be expressed as follows:

H ′ =
√
(x1 − x2)2 + (y1 − y2)2, (9)

In the equation (7) above, x1 represents the coordinates of
the robot on the x axis, x2 represents the coordinates of the
target on the x axis, y1 represents the coordinates of the robot
on the y axis, and y2 represents the coordinates of the target
on the y axis. According to the above equation, the reward
function of the robot approaching the target is designed in
the form of a discrete piecewise function, which is expressed
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as follows:

E ′=


∣∣H ′ (t + 1)− H ′ (t)

∣∣ H ′ (t + 1) < H ′ (t)
0 H ′ (t + 1) = H ′ (t)
−
∣∣H ′ (t + 1)− H ′ (t)

∣∣ H ′ (t + 1) > H ′ (t)

,

(10)

In the equation above, H ′ (t + 1) and H ′ (t) represent the
distance between the robot and the target at t+1 and t , respec-
tively. Therefore, the total reward function E0 is calculated
with below equation (9):

E0 =
E + E ′

2
, (11)

The smaller the calculation value obtained by the above
calculation method, the better beneficial to increase the cal-
culation speed.

D. THE ALGORITHM FLOW OF LOCAL PATH PLANNING
BASED ON BPNN-Q LEARNING
The mobile robot obtains state variables according to the
environmental state information sensed by the sensor itself,
then selects actions, and gets the Q value function table
of the convergence function. The optimal state is used as
the sample data of the BPNN to obtain the BPNN-Q with
generalization ability. The predictive model of the value func-
tion. The model predicts the Q value selection action based
on the sensor information of the mobile robot on the given
unknown environment map, and realizes the local trajectory
planning of the mobile robot. The local trajectory planning
algorithm of BPNN combined with Q-Learning is shown
in Figure 5 below:

FIGURE 5. The local certain trajectory planning algorithm of BPNN
combined with Q-learning.

After the initialization operation (Q table, environment
information, and BPNN parameter symbol), the motion strat-
egy of the robot is selected to obtain the result of the reward
function and the next state. After the action is executed, colli-
sion avoidance detection is performed. If there is a collision,
the robot will return to the previous step to re-adjust; if there
is no collision, it will get the obstacle avoidance reward,
and then check whether it is approaching the target. If it is
approaching the target, the target reward will be performed

and the total return is calculated; if it is far away from the
target, the total return is directly calculated, the Q value
function is updated, and then the state is saved. If the current
state position is the best, the best sample data is inputted in the
BPNN, the parameters are adjusted to obtain the maximum
number of iterations, the BPNN-Q value function prediction
is obtained, and the best strategy is generated; if it is not
the best target position, it returns to the initialization state to
recalculate.

E. EXPERIMENTAL ENVIRONMENT AND PARAMETERS
SETTING OF THE SIMULATION
In this study, the python’s keras library is adopted to train the
BPNN, and the Robomaster2019 data set is applied for robot
trajectory training.

The simulation experiment is performed on the ROS
mobile robot [30], and the hardware and software compo-
nents of which are shown in Table 4 below:

TABLE 4. The hardware and software components of the simulation.

The simulation environment is a two-dimensional coordi-
nate, the size of the map is 50× 50, and the mobile robot can
move freely in the barrier-free area with randomly given steps
and directions. The starting point, ending point, and obstacles
are randomly set in the environment map.

The parameter settings are shown in Table 5 below:

TABLE 5. The parameter settings of the simulation.

IV. RESULTS AND DISCUSSION
A. COMPARISON ON PREDICTION PERFORMANCES OF
DIFFERENT ALGORITHMS
To study the performance of the robot trajectory planning
based on the improved BPNN combined with Q-Learning
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constructed in this study, the algorithm and DDPG combined
with ML algorithm, BPNN, DQN combined with ML algo-
rithm, RNN and LSTM are analyzed in terms of accuracy,
precision, recall, and the F1 value, and the results are shown
in Figure 6 below:

FIGURE 6. Influences on robot trajectory planning accuracy as the
number of iterations increases under different algorithms. (Figures a, b, c,
and d showed the comparison on accuracy, precision, recall, and F1 value,
respectively.)

As shown in the figure above, the algorithm used in this
study is compared with other neural network algorithms from
the perspectives of accuracy, precision, recall, and F1 value.
It can be found that the recognition accuracy of proposed
algorithm reaches 92.53%, which is at least 5.47% higher
than the model algorithm proposed by other scholars. In addi-
tion, the precision, recall, and F1 of the model algorithm
in this study are 91.25%, 75.5%, and 63.51%, respectively.
Compared with other algorithms, it is obvious that the preci-
sion, recall, and F1 value of the model algorithm in this study
are at least 5.5% higher. Thus, compared with the advanced
model algorithms proposed by other scholars in related fields,
the robot trajectory planning based on the improved BPNN
combined with Q-Learning constructed in this study is better.

B. EFFECTS OF VARIOUS ALGORITHMS
BPNN + Q-Learning algorithm is compared with DDPG
combined with ML algorithm and DQN combined with ML
algorithm to highlight the superiority of the proposed algo-
rithm, and the results were shown in Figure 7 below:

Among the five algorithms, the BPNN + Q-Learning
shows the shortest average calculation time per round
(16365s); and the calculation time of BPNN, Q-Learning,
DDPG combined ML algorithm, and DQN combined with
ML algorithm are 19906s, 20078s, 18784s, and 18997s,
respectively (as shown in Figure 6 above). DDPG combined
ML algorithm and DQN combined with ML algorithm take
less calculation time than BPNN and Q-Learning, but they
require more time than BPNN + Q-Learning. The loss func-
tion of BPNN + Q-Learning has been stable after the sixth

FIGURE 7. Comparison on performances of different algorithms. (Figure A
shows the comparison results of running time. 1: BPNN; 2: Q-Learning; 3:
BPNN +Q-Learning; 4: DDPG combined with ML algorithm; 5: DQN
combined with ML algorithm; Figure B illustrates the change trend of loss
function.)

variable, and the loss is significantly smaller than the other
four functions.

This means that the selection and optimization of the algo-
rithm is a key step in the robot path planning, which will
determine the running time of the algorithm and whether the
trajectory length of the robot path planning is the best.

C. EXPERIMENTAL RESULTS OF MOBILE ROBOT UNDER
COMMON OBSTACLE ENVIRONMENT
Themobile robot executes correspondingmovements accord-
ing to the maximum Q values of the four outputs of BPNN,
and performs movement trajectory planning in a discrete
obstacle environment (as shown in Figure 8 below).

FIGURE 8. The trajectory planning of mobile robot in discrete obstacle
environment.

There are fewer discrete obstacles in map A, and the gap
is larger. The mobile robot can find the shortest movement
trajectory, which is the best. At this time, the number of steps
of the mobile robot after completing the planned trajectory
is 100. The discrete obstacles in map B are significantly
increased, and the gap interval is reduced. The mobile robot
can still find the best movement trajectory and make the
movement trajectory the shortest. At this time, the number of
steps used by the mobile robot after completing the planned
trajectory is 112. It suggests that under the robot path plan-
ning model of this study, the optimal path planning of the
mobile robot will not be affected by the density of discrete
obstacles and the size of the gap interval, realizing stable per-
formance. It reveals that the algorithm used in this study can
greatly promote the trajectory planning efficiency, enabling
the robot to accurately find the best movement trajectory in

VOLUME 9, 2021 125587



X. Li, M. Li: Direction Analysis on Trajectory of Fast Neural Network Learning Robot

an environment with a small number of discrete obstacles or
a large number of discrete obstacles. Then, the movement
trajectory planning is tested in the continuous obstacle envi-
ronment (as shown in Figure 9).

FIGURE 9. The trajectory planning of mobile robot in continuous obstacle
environment.

The continuous obstacles in the above maps A and B con-
stitute different environments similar to indoors. The mobile
robot can perform the best trajectory planning in the two dif-
ferent environments. The number of steps of the mobile robot
in the map A and map B is 111 and 123, respectively. It sug-
gests that the mobile robot can perform optimal movement
trajectory planning between any starting point and ending
point, and learn a good trajectory without any collision.

D. EXPERIMENTAL RESULTS OF MOBILE ROBOT UNDER
U-SHAPED OBSTACLE ENVIRONMENT
The mobile robot is placed in the U-shaped obstacle envi-
ronment for the experiment of movement trajectory planning,
and the results are shown in Figure 10.

FIGURE 10. The trajectory planning of mobile robot in U-shaped obstacle
environment.

Figures 10A and 10B indicate that the mobile robot can
complete obstacle avoidance and path planning tasks in
U-shaped obstacle environments of different sizes by using
BPNN+Q-Learning algorithm. The numbers of steps in two
maps are 132 and 125, respectively. BPNN + Q-Learning
algorithm is not only in the optimal state of learning, but
also includes generalized self-learning capabilities, which
can generalize states that it does not include. Therefore,
the mobile robot based on BPNN + Q-Learning algorithm
can smoothly avoid U-shaped obstacle avoidance, and can
plan the shortest path from the starting point to the ending
point without collision, which canmeet the requirements, and
the effect is very satisfactory.

E. COMPARISON OF EXPERIMENTAL RESULTS OF
VARIOUS ALGORITHMS IN DIFFERENT OBSTACLE
ENVIRONMENTS
In the discrete obstacle, continuous obstacle, and U-shaped
obstacle environments, the experimental results of BPNN,
Q-Learning, and BPNN + Q-Learning are compared. The
results are shown in Figures 11A,11B, and 11C.

FIGURE 11. Experimental results of three algorithms under different
obstacle environments.

(Note: Figure 10A: discrete obstacle environment;
Figure 10B: continuous obstacle environment; and
Figure 10C: U-shaped obstacle environment. Red dotted line
shows the movement trajectory under BPNN algorithm; blue
dotted line shows the movement trajectory under Q-Learning
algorithm; and the solid line marks the movement trajectory
under BPNN + Q -Learning algorithm.)
Figure 10A reveals that the lengths of the movement tra-

jectory of mobile robot is 132, 130, and 112 under the three
algorithms (BPNN, Q-Learning, and BPNN + Q-Learning)
in a discrete obstacle environment, respectively. Figure 10B
discloses that the lengths of movement trajectory of the
mobile robot under three algorithms are 155, 160, and 123,
respectively, under continuous obstacle environment. In the
U-shaped obstacle environment, the lengths of the movement
trajectory of the mobile robot are 167, 135, and 125 under the
BPNN, Q-Learning, and BPNN + Q-Learning, respectively.
Such results suggest that the movement trajectory of mobile
robot under BPNN + Q-Learning algorithm at any obsta-
cle environment is smaller than that under the BPNN and
Q-Learning algorithm.

V. CONCLUSION
This study innovatively proposes a prediction model of
BPNN + Q-Learning by combining the BPNN and
Q-Learning algorithm to analyze the local movement trajec-
tory of the robot. The results show that in different obsta-
cle environments (discrete obstacles, continuous obstacles,
or U-shaped obstacles), the mobile robot can plan the best
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moving trajectory. It indicates that the mobile robots not only
show better performance in dynamic and complex environ-
ments, but also can use the shortest number of steps to find
the best planned trajectory. It suggests that the proposed algo-
rithm in this study can be applied in robotics. However, there
are some shortcomings in this study. The number of training
samples is limited, and the samples contain some non-optimal
state actions, which have an impact on the training effect of
the BPNN. Therefore, the algorithm will be debugged in the
future research to obtain more optimal training data, improve
the training effect of the BPNN, and enable the mobile robot
to find a more complete local estimation planning strategy.
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