
Received August 5, 2021, accepted August 31, 2021, date of publication September 3, 2021, date of current version September 17, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3110244

Detecting Wake Lock Leaks in Android
Apps Using Machine Learning
MUHAMMAD UMAIR KHAN 1, SCOTT UK-JIN LEE 1, (Member, IEEE), SHANZA ABBAS 1,
ASAD ABBAS2, AND ALI KASHIF BASHIR 3, (Senior Member, IEEE)
1Department of Computer Science and Engineering, Hanyang University, Seoul 15588, Republic of Korea
2Faculty of Information Technology, University of Central Punjab, Lahore 54000, Pakistan
3Department of Computing and Mathematics, Manchester Metropolitan University, Manchester M2 1WL, U.K.

Corresponding author: Scott Uk-Jin Lee (scottlee@hanyang.ac.kr)

This work was supported by the research fund of Hanyang University under Grant HY-2021-1959.

ABSTRACT The popularity of Android devices has increased exponentially with an increase in the number
of mobile devices. Millions of online apps are used in these devices. Energy consumption of a device is a
major concern for end-users, who want a long usage time on a single battery charge. The energy consumed
by the app must be optimized by developers, and the available APIs must be used carefully. A wake-lock
is used in apps to control the power state of the Android device and often leads to energy leakage. In this
study, we detected wake-lock leaks in Android apps using machine learning. We pre-processed apps by
extracting wake-lock related APIs to obtain the structural information of wake-lock usage and oversampled
the data using the synthetic minority oversampling technique (SMOTE) to balance the dataset. The machine
learning algorithms used to detect wake-lock leaks were first optimized using grid search to determine
the best parameters. These parameters were then used in training to detect wake-lock leaks in these apps.
We employed various machine learning algorithms and divided them into simple and ensemble algorithms
to evaluate their efficacy. The support vector machine (SVM) and stochastic gradient boosting (SGB) were
the most effective, producing 97 % and 98 % accuracy, respectively.

INDEX TERMS Android apps, call graphs, wake lock, support vector machine, over sampling.

I. INTRODUCTION
The number of smartphone users worldwide is increas-
ing; they surpass three billion and are expected to increase
more [1]. The primary function of a mobile device is to con-
nect users to the rest of the world and provide basic function-
alities to aid them in performing small tasks. These mobile
devices have limited resources such as CPU,memory, battery,
and display. Batteries in these devices are important because
they provide power to all the components of the device; they
require a sufficient amount of charge to run the device for
an entire day. Research on rendering hardware components
energy efficient and using high-capacity batteries is popu-
lar [2], but applications (apps) running on the device should
also be energy efficient. The field of mobile app develop-
ment is on the rise, and on average, 100,000 new Android
apps are released in Google Play Store every month [3].
In this fast-growingmarket, developers of these apps focus on

The associate editor coordinating the review of this manuscript and

approving it for publication was Dominik Strzalka .

functional requirements and neglect non-functional require-
ments, such as batteries. To improve battery life, developers
must write efficient codes that release all resources when they
are not in use.

Research trends in mobile devices have increased dramat-
ically over the past five years [4]. Detecting and remov-
ing energy leakage in mobile devices is one of the most
widely published topics [4]. Notably, the Android operat-
ing system (OS), iOS, Windows, and most popular apps
such as WhatsApp, Facebook, YouTube, and Chrome pro-
vide a dark mode to reduce the energy consumption of the
device [5]. This shows that big companies are also aware
of the importance of energy consumption in mobile devices.
The developers of mobile apps must also take extra care
when implementing apps, and monitor the energy used by
the apps. If the energy used by an app is increasing or the
app uses resources after being closed, then the app has some
energy leak that requires some intervention to be resolved.
Removing all resource leaks will lead to an efficient mobile
app.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 125753

https://orcid.org/0000-0002-1403-2359
https://orcid.org/0000-0002-8457-3097
https://orcid.org/0000-0003-0638-4298
https://orcid.org/0000-0003-2601-9327
https://orcid.org/0000-0002-8887-4321


M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

Mobile devices have different apps that can play video
and music for which they need the screen of the device to
stay working, or some apps must be constantly processed
while operating in the background. For example, a music
player must play music when the app is in the background,
and the user is working on a different app or when the
screen is locked. These types of apps must obtain spe-
cial permission from the Android OS called WAKE_LOCK.
Whenever an app must work in the background or a video
player requires the device screen to stay awake to prevent
it from going to sleep mode, it must acquire a wake-lock.
This wake-lock acquire, and the release mechanism must be
carefully used because this is a common reason for energy
leakage in Android devices [6]. Among the different tools
available to detect wake-lock leaks, the majority use static
analysis, while others use dynamic analysis. Static analysis
tools consider control flow graphs [7], function call graphs
(FCG) [8], and data flow graphs [9] to detect wake-lock leaks.
Dynamic analysis tools use an Android emulator to run the
app and then process their log files to determine wake-lock
leaks [10], [11].

These analysis techniques are useful for developers to
detect flaws and bugs in the software, but they often have
performance and precision issues. Static analysis can detect
specifically defined patterns in the code to detect leaks.
Any new pattern was missed. They also suffer from a high
false-positive rate. Similarly, dynamic analysis detects bugs
at runtime and requires a significant amount of computing
resources to monitor the app when it is running on the emula-
tor [12]. Notably, machine learning techniques have strongly
established themselves in a number of research fields where
they are used to effectively detect patterns in the provided
data/features. Researchers continue to use machine learn-
ing techniques everywhere to determine the correlation in
the data and extract useful information. The defects can be
grouped together and calculated as a similarity measure. They
can also be used to rank defects. Machine learning techniques
seem to be useful for identifying patterns in the given data
that influence the output. Notably, they are currently popular
and are used to detect malware [13], code smells, [14], and
permission violations [15], [16] in Android apps. Machine
learning techniques are suitable for detecting wake-lock leaks
because they exhibit patterns that can be characterized by
machine learning. This motivates us to use machine learning
techniques to detect wake-lock leaks in Android apps and
analyze their performance because the wake-lock acquires,
and the release mechanism must be monitored, and we must
identify the flow of the program that leads to wake-lock leak.

In this study, wake-lock leaks were detected using machine
learning algorithms. To apply machine learning, the apps
were pre-processed by extracting the FCGs. These FCGs rep-
resent the paths where the wake-lock API uses acquire(),
release(), and isheld(). These graphs are then
encoded, containing information on the instructions and
their neighbor nodes. After pre-processing, they were fed
into a machine-learning algorithm for training. When the

training was complete, the trained algorithm was tested, and
its efficacy was compared through metrics such as accu-
racy, precision, recall, and f-measure. The results demon-
strated that machine learning algorithms were effective in
detecting wake-lock leaks with high accuracy. Different algo-
rithms were compared to demonstrate the best-performing
algorithm.

This study was divided into different sections. Section II
summarizes the work related to wake-lock detection.
In Section III we present the motivation example of a
wake-lock leak occurrence in-app. The basic background
of SMOTE and machine-learning algorithms is described
in Section IV. Section V describes the methodology used
to extract the wake-lock-related APIs from apps. The eval-
uation of the machine-learning algorithms is presented in
SectionVI. SectionVII discusses the problems faced and how
they can be resolved. We discuss threats to the validity in
Section VIII. Finally, Section IX summarizes the work and
presents scope for future work.

II. RELATED WORK
There are several related works on wake-lock energy leaks
in mobile apps. A fully automated tool called aDoctor [17]
was proposed to detect 15 code smells, including a durable
wake-lock, based on the findings of Reimann et al. [18].
Palomba et al. [19] identified nine code smells that affect
the energy consumption of mobile apps. Cruz and Abreu [20]
provided 22 design patterns related to the energy efficiency of
mobile apps. In these studies, wake-lock is a common pattern
in the detection and removal of energy leaks. These tools
are helpful during code development to write energy-efficient
codes. They require source code to detect code smells, thus,
covering a smaller number of apps. In our study, we use
Application Package Kit (APK) files because most popular
apps only provide APK files, and the number of apps avail-
able in APK files is much larger than apps with source code.

Liu et al. [6] is the first detailed study that identified eight
patterns of wake-lock misuses that causes functional and
non-functional issues. They developed a static analysis tool
called ‘‘ELITE’’ to detect two common patterns in their study.
This study is helpful in understanding the wake-lock leak
pattern, but only six apps are used in the evaluation, which is
very few. To solve this problem, DroidLeak [21] provided a
comprehensive publicly available database on resource leaks
in Android apps. They searched the repository comment to
determine these resource leaks and energy-related words to
obtain code revisions that raise the issue and solve the issue.
Such resource leaks are not only restricted to code reposito-
ries; therefore, we must focus on APK files to cover a large
number of available apps. The most common techniques used
to detect wake-lock leaks in APK files are static and dynamic
analyses.

A. STATIC ANALYSIS
Static analysis allows app analysis without actually run-
ning them. We can use source code, bytecode, binary code,

125754 VOLUME 9, 2021



M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

or intermediate representation (IR) to analyze the flow of the
app. Li et al. [4] provided details of state-of-the-art works
that used static analysis in the Android apps. They concluded
that the soot framework [22] and Jimple IR [23] were adopted
by most tools. Banerjee and Roychoudhury [24] generated a
set of defect expressions to determine the violation of energy
defects. Relda [25] and Relda2 [26] are lightweight static
analysis tools developed to locate resource leaks that include
wake-locks. They are based on FCGs to handle the callbacks
of the Android framework. Relda2 supports two analysis
techniques (for quick scanning, they use flow-insensitive and
for accurate scanning they use flow-sensitive) with better
control on the user interface. They suffer from overhead and
false-positive problems. Xu et al. [7] used state-taint analysis
to detect resource bugs and search for resources that are open
by developers but not used in the program. They accepted
control flow graphs as inputs to track resource behaviors and
compared their results with those of Relda [25], [26] and
GreenDroid [27] to show that their approach detects more
energy leak patterns. Pathak et al. [9] used dataflow analysis
to detect a no-sleep path that includes wake-lock, GPS, cam-
era, and Wi-Fi. Data flow analysis is based on events, and the
entry point of each event is used as the starting point of the
analysis.

B. DYNAMIC ANALYSIS
In dynamic analysis, flow is extracted by running the apps
and performing different operations at runtime. Dynamic
analysis may miss some portions of app functionality or
events, as it is not possible to run all the sequences of
events. These sequences are intertwined with each other,
which implies that to run such activities/services, a certain
sequence of events must be followed. Dynamic analysis
also requires a significant amount of computing resources
to run the apps [12], [28]. Pathak et al. [29] used a power
model to monitor the state of energy consumed by differ-
ent system calls using a finite-state machine (FSM). How-
ever, their approach required modifying the app to perform
automatic profiling. Abbasi et al. [30] measured the energy
consumption of different types of wake-lock types (listed
in Table.1) and their effect when a user performs different
actions such as pushing the home button, back button, power
button, and swipe. They developed their own apps to test
these events without considering the real apps that existed.
GreenDroid [27] and E-GreenDroid [10] used state explo-
ration with Java PathFinder (JPF) to detect the wake-lock
deactivation function. Liu et al. [11] proposed the NavyDroid
tool, which monitors multiple patterns of wake-lock leaks.
NavyDroid extends the functionality of E-GreenDroid [10]
and includes a back event at the end of each event to ensure
that the app terminates after consuming all events. In con-
trast, E-GreenDroid simulates the paused and killed states.
Kurihara et al. [31] monitored the usage of GPS and
wake-lock usage to forecast energy consumption. They built
their own benchmark apps to measure energy consumption.
These tools are helpful when testing the app because they

TABLE 1. Wake lock types.

display the exact behavior of the app on the device. To process
a large number of apps, we must have multiple test cases for
each app to cover the functionalities. The manual generation
of these tests is time-consuming. Random test-generating
tools can be used, but log files must be analyzed to extract
useful information.

C. HYBRID ANALYSIS
Certain tools use a combination of the aforementioned tech-
niques, which is known as hybrid analysis. EcoDroid [32]
used both static and dynamic analyses to rank apps based on
their energy consumption. Jabbarvand et al. [33] proposed an
energy-aware test suite minimization approach. They iden-
tified energy greedy methods by statically analyzing the
app and calculating the energy cost by executing the tests,
which indicated the amount of energy used by the segment
of the test. This technique is helpful in analyzing the apps
because it produces in-depth knowledge acquired from static
and dynamic analysis, but the analysis and processing of the
logged information takes more time and increases with the
number of apps processed.

None of the aforementioned tools and techniques use
machine learning to detect wake-lock leaks. However,
Zhu et al. [34] were the only researchers to use machine
learning to detect energy bugs. They usedmachine learning to
train and predict the energy consumption of the changesmade
in the revision of code commits. In this study, we focused on
detectingwake lock energy leaks by first extractingwake lock
information and then applying a machine learning algorithm
to find wake lock leaks and evaluate their accuracy.

III. MOTIVATION
First, we briefly introduce wake locks and the way
they are used, which can cause energy leakage. They
are used by developers to control the power state
of an Android device. The developer must declare
android.permission.WAKE_LOCK permission in the
AndroidManifest.xml file of the app [35], create a
PowerManager.WakeLock instance in the source code,
and specify its type as listed in Table.1. The energy con-
sumption of each type of wake lock is different as presented
in Table.1. The full wake-lock type causes CPU running
and screen and keyboard backlight at full brightness, which
consumes more energy than all other types. After creating

VOLUME 9, 2021 125755



M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

LISTING 1. Sample code of unnecessary wakeup in Tomahawk app.

instances of wake-lock, certain APIs can be invoked to
acquire and release a wake-lock. Once the wake lock is
acquired, it will have long-lasting effects until it is released,
or the specified timeout expires. The developer can also set
certain flags when acquiring the wake locks. For example,
theON_AFTER_RELEASEflag can be set to cause the device
screen to remain ON for a defined time after the wake-lock is
released [36]. To avoid undesirable consequences, developers
must carefully use wake-lock APIs in their code, as they
directly affect the device hardware state.

The mechanism for acquiring and releasing the wake-lock
is difficult to determine, as it may be located using different
methods. For example, a wake lock is acquired in one method
and released in another method (depending on some event).
If the app is sent to the background without calling the
release method, the app is left in a high-power state, causing
an energy leak. Similarly, acquiring a wake lock too early
or releasing it too late can cause unnecessary awake time.
To understand this problem, we present a real issue in the
Tomahawk app [6], which is a music player.

Listing. 1 illustrates the sample code of the app in which
a wake-lock leak occurs. When the app is started and a
user selects an album, Tomahawk’s MusicActivity will
start the PlaybackService to play music in the back-
ground (Line 2). The service acquires a partial wake
lock when it is launched, sets up the media player, and
starts playing music (Lines 10-13). Music players have
pause or resume methods that can be called by the user

by tapping the device screen (Lines 4-6 and 14-22).
A wake-lock is released when the user closes the app,
and MusicActivity and PlaybackService will be
destroyed accordingly (Lines 7 and 23-25). The flow
of the program looks functionally correct, and music can
be played correctly in practice. However, the wake lock
is held unnecessarily when the music playing is paused
(Line 14-22), as the user may not use the player for a long
time, and the acquired wake lock causes unnecessary energy
waste. This energy waste must be prevented as it drains the
battery of the device. The developers of the app later fixed
the issue by removing the wake-lock acquired at the start
of service (Line 11-12, shown in red color). They
added a condition to check whether the wake-lock was held
or not, and depending on the result, they released the lock
when music was paused and acquired when the music started
(Lines 17 and 20 shown in green color). This is a
simple example of a wake-lock leak andmotivates us to detect
wake lock leaks in Android apps.

IV. BACKGROUND
In this section, we discuss SMOTE, which is used to balance
the dataset, as the data available to train machine learning
algorithms are less. Then, we provide a short introduction to
machine learning.

Before we go in-depth, we must first understand ways
to gather apps and identify their contents. The Android
app can be downloaded from different app stores such as Play
Store [37], F-Droid [38], APKMirror [39], Androzoo [40],
and APKPure [41]. These apps are in the Android Package
Kit (APK) format, which is a zip or rar compressed package.
This compressed APK file contains AndroidManifest.
xml, classes.dex and resources.arsc files as
well as res, assets, META-INF, and lib folders.
AndroidManifest.xml is a binary file that provides
various feature information needed by the device to run
the application, such as permission features and component
features [35]. The classes.dex are application codes
compiled in dex format. A dex file is known as Dalvik byte-
code [42], which is logically similar to the class file in Java.
The resources.arsc are binary XML files that contain
pre-compiled application resources. The res folder contains
resources that are not compiled intoresources.arscfile.
The assets folder contains the original resources of the
application, and AssetManager provides access to these asset
files.1 The META-INF folder contains a MANIFEST.MF
file that stores metadata about the contents of JAR and APK
signatures.2 The lib folder contains the code compiled from
the local library.3 Most of the apps were written in Java
programming language and compiled to Dalvik bytecode,
but from 2019, Kotlin4 is the official language declared by

1https://developer.android.com/guide/topics/resources/providing-
resources

2https://developer.android.com/guide/topics/manifest/manifest-intro
3https://developer.android.com/studio/projects/configure-cmake
4https://developer.android.com/kotlin

125756 VOLUME 9, 2021



M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

Google for Android app development. C++ can also be used
for app development using the Android Native Development
Kit (NDK),5 which is useful for managing native activities
and accessing physical device components such as sensors
and touch input. These languages can be used in Android
Studio to write the app code. Android Studio [43] is the offi-
cial IDE for Android development, which includes everything
that is required to build Android apps.

A. SYNTHETIC MINORITY OVERSAMPLING
TECHNIQUE (SMOTE)
SMOTE is the most widely used approach to synthesize
new examples [44]. Imbalanced classification is used when
there are too few examples of minority classes, and machine
learning algorithms must be trained on them. The following
steps were used to create the new examples.

1) Select a random example from the minority class.
2) Find ‘‘k’’ nearest neighbors from the selected point

(default k = 5).
3) Select one neighbor randomly from the selected

neighbors.
4) Generate a new example using a convex combination

of examples selected from Step-1 and Step-3.

The general downside of the approach is that synthetic
examples are created without considering the majority class.
This will not affect us because, in our case, we are more
interested in minority classes (wake lock leak app) and have
enough examples of majority classes.

There are three different types of variations for SMOTE,
and we will discuss common types that can be adopted.

• Oversampling: Oversampling increases the number of
instances in the minority class by selecting a random
minority example and replicating it to present a higher
number of sample representations of the minority class.
We used oversampling in our evaluation because the
number of examples of wake-lock leaks is less than that
of a clean app. The advantage of using this sampling
is that there is no information loss, and it outperforms
under-sampling. The disadvantage of this technique is
that it increases the likelihood of overfitting as it repli-
cates the minority class. Random oversampling and
adaptive synthetic (ADASYN) sampling are oversam-
pling techniques.

• Undersampling: Undersampling aims to balance the
class distribution by randomly eliminating the majority
class examples. This is performed until the majority and
minority class instances are balanced. This approach
is effective in situations where the minority class has
a sufficient number of examples, despite the severe
imbalance. The disadvantage of this technique is that it
randomly removes the examples from the dataset, which
can lead to the loss of valuable information that resides
in the removed data. Random under-sampling, Cluster,

5https://developer.android.com/ndk

Tomek links, and under-sampling with ensemble learn-
ing are some undersampling techniques. We did not
use under-sampling in our evaluation because we had a
smaller number of examples in our dataset.

• Over-Under Sampling: This is a combination of both
techniques. Suppose there are data of 10000 samples
with a ratio of 99:1, that is, 9900 samples are classified
as ‘‘0’’ and 100 samples are classified as ‘‘1’’. This
is clearly an example of imbalanced data. To balance
the dataset, the minority class is first oversampled to
have 10 % of the number of examples of the majority
class (that is, 990). For themajority class, random under-
sampling is used to reduce the number of examples, but
they should double the oversampled minority classes
(that is, from 9900 to 1980). The final class distribution
is 2:1.
We used Tomek links to observe the effects of
over-undersampling for comparison. Tomek links are
pairs of instances that are very close, but of opposite
classes (one instance belongs to the minority class, and
another instance belongs to the majority class). Remov-
ing the instances of the majority class from each pair
increases the space between the two classes, thereby
facilitating the classification process.

B. MACHINE LEARNING ALGORITHMS
Machine learning provides machines with the ability to learn
autonomously based on experience, observations, and ana-
lyzing patterns within a given dataset without explicit pro-
gramming [45]. Machine learning algorithms are applied
in every field of science to extract useful information, and
new machine learning approaches are being developed con-
tinuously. Naïve Bayes (NB) [46], support vector machine
(SVM) [47], k-near neighbor (KNN) [48], logistic regression
(LR) [49], and ridge classifier (RC) [45] are some of the
important models used in common practice.

Some advanced algorithms are called ensemble learning
algorithms. They are used to produce improved predictive
efficiency compared to that obtained from any of the con-
stituent learning algorithms alone, and an ensemble approach
utilizes multiple learning algorithms [50]. These algo-
rithms include bagging [51], random forest (RF) [52], and
boosting [53].

V. METHODOLOGY
Detecting wake-lock leaks is difficult, as wake locks are
concentrated on a small number of methods and are called in
different methods. Wake locks must be acquired and released
through the flow of the program and should not cause any
energy leakage. As Android apps are event-driven, it is diffi-
cult to obtain the flow of the program.We used static analysis
to address this problem and extracted the call graphs of the
app for processing. The proposed model is shown in Fig. 1,
and is divided into three main sections. We used a supervised
machine-learning algorithm that required the labeled data.
For this purpose, we first labeled the data as ‘‘clean’’ and

VOLUME 9, 2021 125757



M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

FIGURE 1. Wake lock detection model using machine learning.

‘‘leak’’ APKs. These APK files were preprocessed in the sec-
ond section to extract useful information before they were
fed into the machine learning algorithms. The preprocessed
information was split into training and testing data. Training
data were used to train machine learning algorithms to deter-
mine similarities in these data, and then a trained machine
learning algorithm was used to classify the testing data. The
preprocessing is described in detail in the next section.

A. CALL GRAPH EXTRACTION, ENCODING, AND HASHING
In our experiment, we used the Android app in the
APK format because they are available on different
app stores [37]–[41] where most of them can be freely down-
loaded. Another reason for using APK files is that the source
code of popular apps is typically not accessible online, which
results in missing a large portion of the apps in our study.
The APK files do not include the source code, as discussed
in Section IV. Hence, we used a reverse engineering tool to
extract useful information from APK. A reverse engineering
tool cannot extract the same information encoded in the
APK, but it tries to extract similar information. There are
different tools available to process and convert APK files into
an IR, where popular IRs such as Smali, Jasmin, and Jimple
represent Dalvik bytecode into a human-readable format.
Apktool,6 dex2jar,7 soot,8 and Androguard9 are the most
popular Android reversing tools. A comparison between these
tools can be found in the study [54], which confirms that
the most accurate IR is Smali. We used Androguard [55]
to extract call graphs (CG) from Android apps because
it is an open-source tool used for the static analysis that
converts the APK file into Smali IR. The extracted call
graph contains information on the different methods and their

6https://github.com/iBotPeaches/Apktool
7https://github.com/pxb1988/dex2jar
8https://github.com/soot-oss/soot
9https://github.com/androguard/androguard

interrelationships. Androguard builds CG using the class
hierarchy analysis (CHA) algorithm [56]. The CHA algo-
rithm [57] visits each callsite and obtains the name of the
method the callsite is referencing. It then adds an edge from
the method containing the callsite to every method with the
same name as the callsite. The result of the CHA is a com-
pletely sound call graph.

Each app has multiple methods that are interconnected and
are represented as CG. In the CG, each method is represented
as a node, and these methods are interconnected with the
edges. A small APK has more than 1000 nodes and edges
in its CG, which increases exponentially with the size of
the app [26]. The instructions contained in the method are
represented by the attributes of the node that we use to encode
nodes. TheCGof anAPK contains a large number of different
method calls, which means a large number of nodes and
edges. It requires more time and computational resources
to process; therefore, we reduce the size by extracting the
FCG. FCG can be used to determine correlations between
samples and is resistant to certain obfuscation techniques
[58]. We extracted the FCG of the wake-lock related API10

(i.e. acquire(), release(), and isheld()). For
example, we first determine the node (method) where the
wake-lock API acquire() is called. This node con-
tains instructions that use the wake-lock API. This method
is important for us; therefore, we next determine all the
ancestors of this method. Ancestors refer to all the meth-
ods in the chain that call each other to reach this API,
as shown in Fig. 2. It shows all the ancestors of the meth-
ods that call the acquire() API of the wake-lock. The
node of acquire() is shown in ‘‘red’’. For simplicity,
we do not mention the full name of the method. Notably,
acquire() is called in two methods ‘‘UpdateBlankingBe-
havior’’ and ‘‘updateWakeLock’’ which are called by other

10https://developer.android.com/reference/android/os/PowerManager.
WakeLock

125758 VOLUME 9, 2021



M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

FIGURE 2. FCG of method acquire().

methods. Extracting FCG removes the complexity of the
graph because it is much simpler as it only contains the nodes
and edges related to the wake-lock API. Fig. 2 shows the
graph of only acquire(); similarly, we extracted the FCG
of release() and isheld() APIs of wake-lock. Some
methods are common in these graphs because theisheld()
can be called with acquire/release, which implies that they
can be in the same method. Therefore, we merge the overlap-
pingmethods and create a single graph that represents theAPI
calls a pattern of wake-lock. This removes the redundancy,
and we obtained one graph containing all the method calls
of wake-lock APIs. This step also filtered unrelated APIs.
By extracting and pre-processing these FCGs, we reduced
the dimension of the CG to include a graph that is related
to wake-locks only.

These FCGs are directed graphs containing a node for each
app’smethods and edges from the caller to the callees. Encod-
ing these graphs is an important task. We can have a unique
encoded value for each graph; however, they do not exploit
the properties shared between the methods. To embed the
functional information, encoding was performed by applying
the same encoded value to methods that share the same prop-
erties. App methods can have different lengths. To normalize
them, we converted the method’s label into a 15-bit array,
and each bit represented the instructions presented in the
method [8]. The Dalvik bytecode instructions [59] and the
bits they represent are listed in Table.2. Notably, each instruc-
tion class was represented by a single bit, and these instruc-
tion classes represented all the variations in that instruction.
For example, move represented all the instruction variations,
such asmove-wide,move-object, andmove-result. In Table.3,
we present an example code, where the ‘‘Instruction’’ column
provides the sequence of instructions in the method and
the ‘‘Instruction Class’’ and ‘‘Bit’’ columns represent the
equivalent instruction and bit representations, respectively,
according to Table.2. The bit representation of the label from
the code example (Table.3) is presented in Table.4. In label
we see that only the bits of those instructions were converted
from ‘‘0’’ to ‘‘1’’ which are present in the method. Notably,
multiple ‘‘invoke’’ and ‘‘move’’ instructions present in the
method would have no effect on the label bit once they
were converted to ‘‘1’’. The reason behind this is to capture

TABLE 2. Instruction classes and their bit representation.

TABLE 3. Example code and representation of instruction and bit.

TABLE 4. Output label that represents code.

the structure of the node, and for this, we only need which
instructions are present in the method. This indicates that if
the instruction sets in the different methods are the same,
they will have the same label. If we consider the order of
instruction and the number of times the instruction is present
in the method, we need a more complex scheme to represent
it. Encoding similar methods with the same label will capture
the same functional properties and keep things simple.

After encoding the FCGs, we computed the neighborhood
hash using the neighborhood hash graph kernel (NHGK)
[52]. It is a kernel that operates over an enumerable set of
subgraphs in the encoded graph. NHGK has high graphic
structure expressiveness and low computational complexity.
To calculate the NHGK, we first determine all the neighbors
of the nodes. For example, in Fig. 2, resumeLogging()
has neighbors run(), crashRestoreStates(), and
updateWakeLock() where the encoded labels of these
nodes are calculated in the previous step. The NHGK of
method resumeLogging() is calculated by determining
all the neighbor methods and then taking the XOR of their
encoded label. We could go deeper into neighbors by includ-
ing a neighbor’s neighbor, but this would add to the com-
plexity [52]. NHGK was used to condense the neighborhood
information of the method into a single hash value. The key
advantage of NHGK is that it analyzes networks with thou-
sands of nodes in linear time, similar to FCG. The calculated

VOLUME 9, 2021 125759



M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

hash value was used to replace the encoded label, and this
hash had the same bit length as the label. As a result, we had
the hashed node, which held the function’s instructions as
well as neighborhood information. These hashes were fed
into the machine learning algorithms as inputs.

B. IMBALANCED DATA
Training a machine learning algorithm requires more data,
and the larger the dataset, the higher the accuracy. The
number of apps containing wake-locks is very high, but we
do not know whether they have wake-lock leaks, and we
cannot use these apps in our experiment. We gathered apps
containing wake-lock leaks from different sources, but the
number of apps containing the wake-lock leaks was less
than that of the clean apps. To detect the wake-lock leaks
usingmachine learning, wemust obtainmore data. Therefore,
we oversampled from the available app data. The data can
be oversampled using the two techniques. First, by simply
duplicating minority data multiple times, these examples do
not add any new information to the model and simply overlap
the previous values. Second, new data can be synthesized
from the existing datasets. This is a type of data extension for
the minority class and is referred to as SMOTE [44]. We used
SMOTE to determine the effects of oversampling. The details
of the SMOTE are discussed in Section IV-A.

VI. EVALUATION
In this section, we first introduce the experimental data and
then show how machine learning algorithms are applied to
detect wake-lock leaks. The dataset is classified as ‘‘clean’’
and ‘‘leak’’. We have used supervised machine learning, and
the clean apps are labeled with the value of ‘‘1’’ and apps with
wake-lock leaks are labeled as ‘‘0’’. Labeling is performed
manually by creating two folders, one having apps with a
wake-lock leak and the other having a clean app. When we
ran the experiment, we labeled the apps according to their
folder names. We further divided the data into training and
test sets for machine learning models. The models were eval-
uated using an accuracy metric, and we further explained the
results using a confusion matrix to demonstrate the effective-
ness of the model in detecting the wake-lock leaks. Finally,
we will also compare the accuracy, precision, recall, and
f-measure of different machine learning algorithms. We also
compared the accuracy of machine learning algorithms with
other wake-lock detection tools.

A. DATASET
Collecting datasets for the wake-lock leak app is not an easy
task; most of the tools that detect wake-lock leaks only check
the limited number of apps to show the effectiveness of their
tool [11], [26]. Other studies [21], [60], [63] have searched
the comments of the repositories of apps to determine the
energy leaks related to bugs. We do not have a large dataset
of apps with wake-lock leaks as compared to a large dataset

TABLE 5. Applications with version and tools.

such as malware apps.11 One option is to download a large
number of apps from different app stores that use wake-lock
permission in their app, but this will lead to a problem because
we do not know whether the app has a wake-lock problem.
Therefore, we cannot use random data from the app stores
for training machine learning algorithms to detect wake-lock
leaks.Wemust feed the apps with a wake-lock leak so that we
can downloaded data from different sources and label them
accordingly (as clean and leak). These downloaded apps were
previously used in a similar type of research, and we knew
the behavior of the app to label them. Table 5 summarizes
the app data used in this study. The table is divided into three
columns, and the app name is shown in the first column.
The second column shows the Github version of the app that
fixes the wake-lock leak problem, and we can search the
version number of the app and determine the problem in the
comments that they fix. The tools that use these apps for
evaluation are shown in the third column. Notably, most of the
studies used the same dataset because of the non-availability
of a large number of identified apps. The source code of
these apps is available online and can be downloaded for
further studies. There are 32 apps with wake-lock problems,
we collected both versions of each app having a wake-lock
leak and the version that resolve this problem. The versions
that removed the wake-lock problems were added to the

11https://github.com/traceflight/Android-Malware-Datasets

125760 VOLUME 9, 2021



M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

clean app data. The apps with both clean and wake-lock leak
versions will help the algorithm to narrow down the problem
and determine the acute difference between wake-lock leaks
and clean applications. The clean app dataset of 200 apps used
in our experiment was also used in the ELITE tool [6] and
identified as clean. These APK files used wake-lock in their
apps but did not have any wake-lock issues causing energy
leaks. After collecting data from different sources, we labeled
the data accordingly.

B. EXPERIMENT
Different machine learning algorithms were used in the
experiment to determine the best algorithm for classifying
apps with wake-lock leaks. We used eight machine learning
algorithms in our evaluation, five of which are common
algorithms (NB, SVM, KNN, LR, and RC) and three ensem-
ble algorithms (bagging decision tree (BDT), random forest
(RF), and stochastic gradient boosting (SGB)). To remove the
bias, we randomized our data and split the data into 80 %
and 20 % for training and testing, respectively. Each machine
learning algorithm requires different parameter values to be
set, which play an important role in achieving high accu-
racy. To determine the optimized parameters, we performed
a grid search and used these parameters. The grid search
ran the training and testing data multiple times by changing
the parameters of the algorithm to determine the optimal
parameters. The grid search provided the best score, param-
eters, mean and standard deviation. We used the optimized
parameters in our experiment, as listed in Table.6. In the grid
search, we also cross-validated these algorithms using k-fold
cross-validation. K-fold implies dividing the data into k sets;
k-1 sets were used for training, and one remaining set was
used for testing. This implies that the algorithm was trained
and tested k times. In our evaluation, we used k = 10 and
repeated the experiment three times using different training
and testing data to remove noise. We used ‘‘stratified k-fold’’
because it ensures that the data used in each fold for training
and the testing split is balanced. Table.6 shows the results
of 10-fold cross-validation. The selected parameters that pro-
duce the highest accuracy are shown in the ‘‘Parameters’’
column. Optimized parameters were used for further testing.
The accuracies of each algorithm are listed in Table.6.

To further explain the importance of machine learning
algorithms we divided the experiment into two sub experi-
ments.

1) NO OVER SAMPLING
In this experiment, we used the original 200 clean apps
and 32 apps with wake-lock problems. After decompiling,
extracting call graphs, encoding, and hashing (as discussed in
Section V), we applied different machine learning algorithms
to evaluate the results. We ran each algorithm 10 times to
demonstrate their performance because each dataset split
produced different accuracies, and we took the average of
these results to remove the noise. It can be noted fromTable. 7
that the accuracy of these machine learning algorithms is

TABLE 6. Grid search accuracy of algorithms with parameter.

TABLE 7. Accuracy of machine learning algorithms with no oversampling.

high (>90 %). This indicated that the machine was trained
well on the data and correctly classified the apps. Our data
were imbalanced. Therefore, our results should be evaluated
further. A confusion matrix must be drawn to better demon-
strate the consistency of the classified apps.

A confusion matrix is a matrix of two rows and two
columns when there are only two classes. It reports the num-
ber of false positives (FP), false negatives (FN), true positives
(TP), and true negatives (TN).

We selected the confusion matrix of the SVM algorithm to
address this problem. The number of apps shown in the con-
fusion matrix was 47, which is 20 % of the 232 apps used for
testing because we randomly divided the training and testing
sets into 80 % and 20 %, respectively. According to Table.8
‘‘34’’ apps were detected as clean apps, which implied a
high TN and indicated that the machine learning algorithm
predicted clean apps more accurately. However, we were

VOLUME 9, 2021 125761



M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

TABLE 8. Confusion matrix of a SVM.

interested in apps containing wake-lock leaks. Notably, SVM
detected only ‘‘9’’ apps as leaks owing to less data. Fur-
thermore, ‘‘3’’ apps were detected as a leak but were clean
(FP), and ‘‘1’’ app was detected as clean but contained leak
app (FN), which demonstrated that the machine was unable to
correctly predict apps with wake-lock leaks. The calculated
recall, precision, accuracy, and f-measure were 0.90, 0.75,
0.91, and 0.81, respectively, indicating that the accuracy was
high, but the precision and f-measure were not high. This is a
common problem in an imbalanced dataset. This problem can
be solved by oversampling the minority classes (apps with
wake-lock leaks) and balancing the data, such that machine
learning algorithms are trained correctly to classify the apps
with a wake-lock problem.

2) OVERSAMPLING USING SMOTE
To solve the problem of imbalanced data, we used differ-
ent oversampling techniques, as discussed in Section IV-A.
In this experiment, we determined the effect of different
sampling techniques on the accuracy of detecting apps with
wake-lock problems.

First, we applied simple SMOTE, which uses the Python
imblearn library to generate new samples of minority
classes. Consequently, we have a dataset of 200 clean apps
and 200 apps with wake-lock leaks. These generated samples
were then passed through different machine-learning algo-
rithms to obtain the classification accuracy.

We compared the accuracy of the oversampled data
by applying different machine learning algorithms. Fig. 3
shows the accuracies of the various algorithms after
applying SMOTE. The graph shows the number of iterations
on the x-axis and the accuracy of the different algorithms
on the y-axis. The number of iterations shown in the graph
is 10 because training and testing were performed multi-
ple times by splitting the data randomly for each iteration.
Notably, NB performed the worst as it considered each fea-
ture independently for the calculation of the probability, and
it did not consider any possible correlation between the fea-
tures.

The accuracy of all the other algorithms was high, but
the ensemble algorithms (BDT, RF, and SGB) had a slightly
better predictive performance than the simple learning algo-
rithms. Thus, the application of SMOTE produced the best
results from the SGB algorithm. The testing results of over-
sampling using SMOTE were very accurate, but we also
wanted to compare the effects of other oversampling tech-
niques. These results are compiled in Table.9 which shows
the accuracy of different oversampling algorithms (in the
column) and their effect on the accuracy of different machine

FIGURE 3. Accuracy using SMOTE oversampling.

TABLE 9. Accuracy of different machine learning algorithms with
sampling.

learning algorithms (in rows). Notably, among ensemble
algorithms, the SGB algorithm is highly accurate when
‘‘SMOTE’’ and ‘‘oversampling undersampling with Tomek
link’’ were used. For ‘‘random oversampling’’, ‘‘BDT’’ per-
formed a little better, but overall, the ‘‘SGB’’ algorithm had
the highest accuracy for all the techniques.

On comparing basic machine learning algorithms, it can
be noted that the accuracy of ‘‘SVM’’ using ‘‘SMOTE’’
and ‘‘oversampling undersampling Tomek Link’’ was the
highest as compared to other machine learning algorithms
(NB, KNN, LR, RC). The performance of ‘‘RC’’ was high
when ‘‘random oversampling’’ was used. It can be con-
cluded that oversampling using ‘‘SMOTE’’ was useful and
the accuracywas the highest for both simplemachine learning
algorithms and ensemble algorithms, and it did not remove
any samples such as in ‘‘oversampling undersampling Tomek
Link’’. From the perspective of algorithms, it can be noted
that ‘‘SVM’’ and ‘‘SGB’’ had the highest accuracy.

Oversampling with SMOTE may lead to overfitting.
To show that our model does not overfit, we have presented
the training and testing scores of SVM in Table. 10. Notably,
both training and testing scores are almost the same; if we see
a large difference between training and testing scores, then
our model will be over-fitting. This implies that our model
does not overfit and performs well on the data.

125762 VOLUME 9, 2021



M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

TABLE 10. Training and testing score of SVM.

TABLE 11. Confusion matrix of SVM after SMOTE.

TABLE 12. Classification report.

To further illustrate the results, we consider the effective-
ness of these algorithms in detecting wake-lock leak apps
and draw a confusion matrix. Table.11 presents the confusion
matrix of ‘‘SVM’’ after applying ‘‘SMOTE’’.

The confusion matrix shows 80 apps that were used for
testing; there were a total of 400 apps after SMOTE and
320 were used for training. The confusion matrix indicated
that the algorithm correctly detected ‘‘46’’ apps containing
wake-lock leaks (TP), and only ‘‘2’’ apps were detected
as FN. Moreover, it is well trained in detecting clean apps
(TN). Similar results were observed with other algorithms,
implying that applying oversampling (SMOTE) increased the
accuracy of detecting wake-lock leaks with high precision
and recall.

The classification report of each machine learning algo-
rithm used is presented in Table.12. The accuracy, precision,
recall, and f-measure are presented in Table.12 to illustrate the
results. According to these results, SGBwas the best perform-
ing algorithm with the highest accuracy, precision, recall, and
f-measure. During testing, we observed that the SGB took
a long time to train and test. This requires more processing
time than simple machine learning algorithms. If we have
low computational resources and a large amount of dataset for
training, thenwe can use a simplemachine learning algorithm
and sacrifice a little accuracy for better performance. From
simple machine-learning algorithms, we can choose an SVM.

To check whether machine learning algorithms perform
better, we performed an additional evaluation on the entire
CG of the app, which implies, not filtering and extracting
FCG. The results of this evaluation are listed in Table. 13.

TABLE 13. Accuracy of machine learning algorithms with CG.

TABLE 14. Confusion matrix of ELITE tool.

We can see from the table that the accuracy of machine
learning algorithms ismuch lower than the results obtained by
extracting FCG. Notably, the accuracy of all machine learn-
ing decreased. The most accurate algorithm is now Naïve
Bayes, and SVM has the lowest accuracy. On the other hand,
the remaining algorithms had an accuracy of almost of 90 %.
The overall accuracy of all the algorithms decreases because
the machine learning algorithms perform better when the
unrelated features are filtered out, which is also known as
dimension reduction [65]. We conclude that extracting FCG
from the CG helps to increase the accuracy of these machine
learning algorithms. The source code for implementation is
available online.12

C. COMPARISON WITH ELITE TOOL
We chose the ELITE tool [6] for two main reasons to com-
pare the accuracy of the machine learning algorithms. First,
it is open-source and available online for evaluation, whereas
most of the other tools are not open-source [66]. Second,
we use APKs in our evaluation and some tools to evaluate
wake-lock leaks on the source code [17], [18], [20]. Gathering
the source code of all apps is not feasible; therefore, we used
the ELITE tool for comparison.

To obtain meaningful results, we could not apply random
or new datasets for comparison. The dataset we used to
evaluate the ELITE tool was the same as that used to train and
test the machine learning algorithms. We used two datasets
and divided the comparison into two stages. In the first stage,
we apply the ELITE tool to 2,000 apps13 used in their empir-
ical study (which contains 44,736 apps and uses wake-lock).
The list of apps we used in our comparison is also provided
in our Github repository, which contains the app IDs and
permissions used by the app. We found that the ELITE
tool was able to analyze 1,642 apps; among them, 110 apps

12https://github.com/umkhanqta/MLwakelockleak
13http://sccpu2.cse.ust.hk/elite/downloadApks.html

VOLUME 9, 2021 125763



M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

TABLE 15. ELITE tool evaluation result.

were detected as wake-lock leaks (FPs), which showed a high
false-positive rate of 6.7 % and accuracy of 93 %. In the sec-
ond stage, we further analyze the tool by checking both clean
and leak apps from Table 5. These were a total of 78 apps,
of which 32 were identified as leaks and 46 as clean. When
we analyzed them using the ELITE tool, 23 apps were not
correctly identified. After further investigation, we found that
six apps were found to be FP, and 17 were FN.

In summary, we used a total of 1,720 apps, of which
17 were FN, 116 were FP, 55 were TP, and 1,532 were TN,
as shown in Table. 14. The accuracy of the tool on these apps
was 92 %, with a false-positive rate of 7.3 %. The app ver-
sion that was incorrectly identified by the tool is shown
in Table. 15 for reproducibility purposes. The table shows the
name of the app, their Github commits/APK version used in
the experiment, the classification outcome of the ELITE tool,
and the actual outcome. We conclude from Table. 12 that the
machine learning algorithms have higher accuracy (98 %),
whereas the ELITE tool has an accuracy of 92 % and a high
false-positive rate, as shown in Table. 14.

VII. DISCUSSION
Reducing the energy consumption of mobile devices is
important [4]. This study plays a crucial role in detecting
energy leaks related to wake-locks in Android apps. Notably,
this field has not been extensively explored by the research
community, especially in the field of machine learning. The
main hurdle to applying machine learning in this field is
the availability of large datasets. In this study, we attempted
to overcome this problem using SMOTE. We used machine
learning algorithms to detect wake-lock leaks in Android

apps. This trained ML model can be used to process a large
number of apps, such as in the Play Store, to detect wake-lock
leaks in apps before publishing them online and ensuring the
quality of the apps. There are some open issues that need to
be resolved in our research.

We must obtain more apps with wake-lock leaks to train
our model to effectively detect apps with wake-lock leaks.
One way to obtain more data is to extrapolate them using
different techniques [44], [67], [68]. In this study, we used
SMOTE to generate new samples. Another way to obtain
more data is to modify the original apps and insert code seg-
ments with wake-lock leaks using different techniques [69],
[70].We can extract data from the Github repository and from
the comments of the Play Store to determine apps facing the
wake-lock problems [21].

Our study provides a basic dataset of wake-lock leak apps
that we collected from different sources and can be validated
using the Github version. This dataset can be used to create
an online database of wake-lock leaks because the available
dataset is insufficient compared to the malware dataset.

Wemust have benchmark apps to verify the accuracy of the
tool. This benchmark should evaluate the tool’s accuracy in
detecting different types of wake-lock leaks. We can create
different apps with different wake-lock problems and use
them as benchmarks. These apps need to be created carefully
so that they cover each wake-lock leak type in detail.

A comparative study between different tools is required
to determine which tool detects wake-lock leaks more effi-
ciently with the pros and cons of each tool. A comparative
study can be carried out when we have standard benchmark
apps, or when we know the outcome of the app (wake-lock
leak or clean). We obtained data from many tools in our
study, and these tools demonstrate the usefulness of their tool
on the same data; thus, we cannot apply the same data in a
comparative analysis. However, we made our findings public,
encouraging other researchers to conduct comparable studies.

Despite the aforementioned issues, we apply machine
learning techniques to detect wake-lock leaks in Android
apps. Our results are encouraging for researchers because
they show that machine learning algorithms can be effectively
used to detect wake-lock leaks in Android apps. Our dataset
can be used to create an online database for wake-lock leak
apps, which can further be used to compare the accuracy
of different tools in detecting wake-lock leaks. The trained
machine learning algorithm used in our study can be used to
detect wake-lock leaks in big datasets (Play Store, F-droid,
Androzoo, and other popular stores) to ensure the quality of
the app.

VIII. THREATS TO VALIDITY
A. INTERNAL VALIDITY
Filtering the CG to FCG may affect the results because
we use FCG to minimize the complexity and processing
power of CG by filtering out unwanted APIs and using only
APIs related to wake-lock. This process has an impact on

125764 VOLUME 9, 2021



M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

the outcomes of machine learning training. To mitigate this
challenge, we evaluated the results by training the machine
learning algorithm with the CG. Table. 13 demonstrates that
the accuracy decreases when CG is used. This shows that
filtering CG to FCG improves the accuracy of the results.

To ensure that we have sufficient data for the experiment,
we rely on SMOTE to generate synthetic examples similar to
the original apps, whichmay cause overfitting or underfitting.
To check for overfitting and underfitting, we used Table. 10.
Notably, the training and testing scores are close to each other,
which indicates that our model is fit normally. If the differ-
ence between them is large, then we may have an overfitting
or underfitting problem.

Our data are imbalanced, and to train machine learning
algorithms, we must train them by splitting them equally.
Therefore, we used StratifiedKFold, which split the
samples of each class percentage equally and training is
performed in an equal number of samples.

B. EXTERNAL VALIDITY
The dataset used to train and validate the machine learning
algorithm plays a crucial role. Because we do not have a
well-known dataset, the number of apps included in our
experiment is restricted. Table. 5 summarizes the apps used in
the experiment. We ensured that these apps have wake-lock
problems by accessing their Github page and finding the
comments of the version to remove ambiguity. The results
may change when a large dataset is collected.

We used only APK in our dataset to represent a wide
portion of the Android app market. Some apps come in.jar
and.zip file formats, which can be extracted using the same
approach. We may use source code from the repository to
train machine learning, but this would limit our analysis
because it could only be used with source code, and we did
not want to limit our studies.

Another threat we face in our study is that Androguard has
the limitation of using only the CHA algorithm to construct
CGs and not providing any option to change the algorithm.
There are some other algorithms, such as RTA, VTA, and
SPARK, but the difference between the performance and
memory cost is very small, indicating that this will not have
a significant effect on our results.

IX. CONCLUSION AND FUTURE WORK
In this study, we used machine learning algorithms to detect
wake-lock leaks and evaluate the results. To train the machine
learning algorithms, we decompiled the Android app and
constructed the FCG of wake-lock APIs, and encoded them.
The dataset of wake-lock leak apps was small, which led to
an imbalanced data problem. Different types of oversampling
techniques were applied to balance imbalanced data prob-
lems, and it was noted that SMOTE oversampling performed
well. This balanced data was then used to train different
machine-learning algorithms, which were optimized using a
grid search algorithm. The results indicated that SVM and

SGB were the most effective and detected wake-lock leaks
with high accuracy and precision.

The results demonstrated that machine learning algorithms
were effective in detecting energy leakage in mobile apps.
This opens several new research directions that can be applied
to solve the energy leakage problem in mobile apps and
encourage researchers to detect code smells that lead to
energy leaks, detect other resource leaks, and observe the
performance of other machine learning techniques. In future
work, we will obtain more data and observe the effects
of machine learning algorithms without oversampling, and
include other energy leaks.

REFERENCES
[1] Smartphone Users 2020, Statista. Accessed: Dec. 30, 2020.

[Online]. Available: https://www.statista.com/statistics/330695/number
-of-smartphone-users-worldwide/

[2] H. Cheng, J. G. Shapter, Y. Li, and G. Gao, ‘‘Recent progress of advanced
anode materials of lithium-ion batteries,’’ J. Energy Chem., vol. 57,
pp. 451–468, Jun. 2021.

[3] App-Stats. Accessed: Jan. 26, 2021. [Online]. Available: https://mindsea.
com/app-stats

[4] L. Li, T. F. Bissyandé, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau,
J. Klein, and L. Traon, ‘‘Static analysis of Android apps: A systematic
literature review,’’ Inf. Softw. Technol., vol. 88, pp. 67–95, Aug. 2017.

[5] How to Set Dark Mode on Your Favorite Apps PCMag. Accessed:
May 13, 2020. [Online]. Available: https://www.pcmag.com/how-to/how-
to-set-up-dark-mode-on-your-favorite-apps

[6] Y. Liu, C. Xu, S.-C. Cheung, and V. Terragni, ‘‘Understanding and detect-
ing wake lock misuses for Android applications,’’ in Proc. 24th ACM
SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2016, pp. 396–409.

[7] Z. Xu, C. Wen, and S. Qin, ‘‘State-taint analysis for detecting resource
bugs,’’ Sci. Comput. Program., vol. 162, pp. 93–109, Sep. 2018.

[8] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, ‘‘Structural detection of
Android malware using embedded call graphs,’’ in Proc. ACM Workshop
Artif. Intell. Secur., Nov. 2013, pp. 45–54.

[9] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, ‘‘What is keeping
my phone awake?: Characterizing and detecting no-sleep energy bugs in
smartphone apps,’’ in Proc. 10th Int. Conf. Mobile Syst., Appl., Services,
2012, pp. 267–280.

[10] J. Wang, Y. Liu, C. Xu, X. Ma, and J. Lu, ‘‘E-greendroid: Effective energy
inefficiency analysis for Android applications,’’ in Proc. 8th Asia–Pacific
Symp. Internetware, 2016, pp. 71–80.

[11] Y. Liu, J. Wang, C. Xu, and X. Ma, ‘‘Navydroid: Detecting energy ineffi-
ciency problems for smartphone applications,’’ in Proc. 9th Asia–Pacific
Symp. Internetware, 2017, pp. 1–10.

[12] Z. Li, J. Sun, Q. Yan, W. Srisa-an, and S. Bachala, ‘‘Grandroid: Graph-
based detection of malicious network behaviors in Android applications,’’
in Proc. Int. Conf. Secur. Privacy Commun. Syst. Singapore: Springer,
Aug. 2018, pp. 264–280.

[13] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, ‘‘A review of Android
malware detection approaches based on machine learning,’’ IEEE Access,
vol. 8, pp. 124579–124607, 2020.

[14] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia,
‘‘Detecting code smells using machine learning techniques: Are we there
yet?’’ in Proc. IEEE 25th Int. Conf. Softw. Anal., Evol. Reengineering
(SANER), Mar. 2018, pp. 612–621.

[15] L. Zhao, D. Li, G. Zheng, and W. Shi, ‘‘Deep neural network based
on Android mobile malware detection system using opcode sequences,’’
in Proc. IEEE 18th Int. Conf. Commun. Technol. (ICCT), Oct. 2018,
pp. 1141–1147.

[16] Z. Wu, X. Chen, and S. U.-J. Lee, ‘‘FCDP: Fidelity calculation for
description-to-permissions in Android apps,’’ IEEE Access, vol. 9,
pp. 1062–1075, 2021.

[17] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
‘‘Lightweight detection of android-specific code smells: The adoctor
project,’’ inProc. IEEE 24th Int. Conf. Softw. Anal., Evol. Reeng. (SANER),
Feb. 2017, pp. 487–491.

VOLUME 9, 2021 125765



M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

[18] J. Reimann, M. Brylski, and U. Aßmann, ‘‘A tool-supported quality smell
catalogue for Android developers,’’ in Proc. Conf. Workshop Modell-
basierte Modellgetriebene Softw. Modernisierung, 2014, pp. 1–2.

[19] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
‘‘On the impact of code smells on the energy consumption of mobile
applications,’’ Inf. Softw. Technol., vol. 105, pp. 43–55, Jan. 2019.

[20] L. Cruz and R. Abreu, ‘‘Catalog of energy patterns for mobile applica-
tions,’’ Empirical Softw. Eng., vol. 24, no. 4, pp. 2209–2235, Aug. 2019.

[21] Y. Liu, J. Wang, L. Wei, C. Xu, S.-C. Cheung, T. Wu, J. Yan, and J. Zhang,
‘‘DroidLeaks: A comprehensive database of resource leaks in Android
apps,’’ Empirical Softw. Eng., vol. 24, no. 6, pp. 3435–3483, Dec. 2019.

[22] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, ‘‘The soot framework for
Java program analysis: A retrospective,’’ in Proc. Cetus Users Compiler
Infastruct. Workshop (CETUS), vol. 15, 2011, p. 35.

[23] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, ‘‘Dexpler: Convert-
ing Android Dalvik bytecode to jimple for static analysis with soot,’’ in
Proc. ACM SIGPLAN Int. Workshop State Art Java Program Anal., 2012,
pp. 27–38.

[24] A. Banerjee and A. Roychoudhury, ‘‘Automated re-factoring of Android
apps to enhance energy-efficiency,’’ in Proc. Int. Conf. Mobile Softw. Eng.
Syst., May 2016, pp. 139–150.

[25] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, ‘‘Characteriz-
ing and detecting resource leaks in Android applications,’’ in Proc.
28th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2013,
pp. 389–398.

[26] T. Wu, J. Liu, X. Deng, J. Yan, and J. Zhang, ‘‘Relda2: An effective
static analysis tool for resource leak detection in Android apps,’’ in Proc.
31st IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Sep. 2016,
pp. 762–767.

[27] Y. Liu, C. Xu, S. C. Cheung, and J. Lu, ‘‘GreenDroid: Automated diagnosis
of energy inefficiency for smartphone applications,’’ IEEE Trans. Softw.
Eng., vol. 40, no. 9, pp. 911–940, Sep. 2014.

[28] A. Naway and Y. LI, ‘‘A review on the use of deep learning
in Android malware detection,’’ 2018, arXiv:1812.10360. [Online].
Available: http://arxiv.org/abs/1812.10360

[29] A. Pathak, Y. C. Hu, and M. Zhang, ‘‘Where is the energy spent inside my
app: Fine grained energy accounting on smartphones with Eprof,’’ in Proc.
7th ACM Eur. Conf. Comput. Syst., 2012, pp. 29–42.

[30] A. M. Abbasi, M. Al-Tekreeti, K. Naik, A. Nayak, P. Srivastava, and
M. Zaman, ‘‘Characterization and detection of tail energy bugs in smart-
phones,’’ IEEE Access, vol. 6, pp. 65098–65108, 2018.

[31] S. Kurihara, S. Fukuda, T. Kamiyama, A. Fukuda, M. Oguchi, and
S. Yamaguchi, ‘‘Estimation of power consumption of each application
considering software dependency in Android,’’ J. Inf. Process., vol. 27,
no. 4, pp. 221–232, 2019.

[32] R. J. Behrouz, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann, ‘‘Eco-
droid: An approach for energy-based ranking of Android apps,’’ in Proc.
IEEE/ACM 4th Int. Workshop Green Sustain. Softw., May 2015, pp. 8–14.

[33] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, ‘‘Energy-aware test-
suite minimization for Android apps,’’ in Proc. 25th Int. Symp. Softw. Test.
Anal., Jul. 2016, pp. 425–436.

[34] C. Zhu, Z. Zhu, Y. Xie, W. Jiang, and G. Zhang, ‘‘Evaluation of machine
learning approaches for Android energy bugs detection with revision com-
mits,’’ IEEE Access, vol. 7, pp. 85241–85252, 2019.

[35] Android Permissions in Manifest. Accessed: Dec. 24, 2020. [Online].
Available: https://developer.android.com/reference/android/Manifest.
permission?hl=en

[36] Power Management. Accessed: Apr. 28, 2020. [Online]. Available:
https://developer.android.com/about/versions/pie/powerbucket-best

[37] Google Play Store. Accessed: Dec. 31, 2020. [Online]. Available:
https://play.google.com/store,

[38] F-Droid—Free and Open Source Android App Repository. Accessed:
Dec. 31, 2020. [Online]. Available: https://f-droid.org/en/

[39] APKMirror—Free APK Downloads. Accessed: Dec. 31, 2020. [Online].
Available: https://www.apkmirror.com/

[40] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, ‘‘Androzoo:
Collecting millions of Android apps for the research community,’’ in
Proc. IEEE/ACM 13th Work. Conf. Mining Softw. Repositories (MSR),
May 2016, pp. 468–471.

[41] Download APK Free Online Downloader. Accessed: Dec. 31, 2020.
[Online]. Available: https://apkpure.com/

[42] Android Developers Guide and Documentation. Accessed: Dec. 24, 2020.
[Online]. Available: https://developer.android.com/docs

[43] Android-Studio. Accessed: Apr. 26, 2021. [Online]. Available:
https://developer.android.com/studio

[44] H. Mansourifar and W. Shi, ‘‘Deep synthetic minority over-
sampling technique,’’ 2020, arXiv:2003.09788. [Online]. Available:
https://arxiv.org/abs/2003.09788

[45] A. Géron, Hands-on Machine Learning With Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
Newton, MA, USA: O’Reilly Media, 2019.

[46] I. Rish, ‘‘An empirical study of the naive Bayes classifier,’’ in Proc. IJCAI
Workshop Empirical Methods Artif. Intell., 2001, vol. 3, no. 22, pp. 41–46.

[47] C. Cortes and V. Vapnik, ‘‘Support-vector networks,’’ Mach. Learn.,
vol. 20, no. 3, pp. 273–297, 1995.

[48] S. A. Dudani, ‘‘The distance-weighted K-nearest-neighbor rule,’’ IEEE
Trans. Syst., Man, Cybern., vol. SMC-6, no. 4, pp. 325–327, Apr. 1976.

[49] D. G. Kleinbaum, K. Dietz, M. Gail, M. Klein, and M. Klein, Logistic
Regression. New York, NY, USA: Springer-Verlag, 2002. [Online]. Avail-
able: https://www.springer.com/gp/book/9781441917416

[50] R. Maclin and D. Opitz, ‘‘Popular ensemble methods: An empiri-
cal study,’’ 2011, arXiv:1106.0257. [Online]. Available: http://arxiv.org/
abs/1106.0257

[51] L. Breiman, ‘‘Bagging predictors,’’ Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[52] S. Hido and H. Kashima, ‘‘A linear-time graph kernel,’’ in Proc. 9th IEEE
Int. Conf. Data Mining, Dec. 2009, pp. 179–188.

[53] J. H. Friedman, ‘‘Stochastic gradient boosting,’’ Comput. Statist. Data
Anal., vol. 38, no. 4, pp. 367–378, 2002.

[54] Y. L. Arnatovich, L. Wang, N. M. Ngo, and C. Soh, ‘‘A comparison
of Android reverse engineering tools via program behaviors validation
based on intermediate languages transformation,’’ IEEE Access, vol. 6,
pp. 12382–12394, 2018.

[55] Androguard. Accessed: Dec. 11, 2020. [Online]. Available: https://code.
google.com/archive/p/androguard/

[56] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, andG. Vigna, ‘‘Execute
this! analyzing unsafe and malicious dynamic code loading in Android
applications,’’ in Proc. NDSS, vol. 14, 2014, pp. 23–26.

[57] J. Dean, D. Grove, and C. Chambers, ‘‘Optimization of object-oriented
programs using static class hierarchy analysis,’’ in Proc. Eur. Conf. Object-
Oriented Program. Aarhus, Denmark: Springer, Aug. 1995, pp. 77–101.
[Online]. Available: https://www.springer.com/gp/book/9783540495383

[58] T.Wu, J. Liu, Z. Xu, C. Guo, Y. Zhang, J. Yan, and J. Zhang, ‘‘Light-weight,
inter-procedural and callback-aware resource leak detection for Android
apps,’’ IEEE Trans. Softw. Eng., vol. 42, no. 11, pp. 1054–1076, Mar. 2016.

[59] Dalvik Bytecode Instruction. Accessed: Dec. 11, 2020. [Online]. Available:
https://source.android.com/devices/tech/dalvik/dalvik-bytecode

[60] S. A. Chowdhury and A. Hindle, ‘‘GreenOracle: Estimating software
energy consumption with energy measurement corpora,’’ in Proc. 13th Int.
Conf. Mining Softw. Repositories, May 2016, pp. 49–60.

[61] H. Wu, Y. Wang, and A. Rountev, ‘‘Sentinel: Generating gui tests for
Android sensor leaks,’’ in Proc. IEEE/ACM 13th Int. Workshop Autom.
Softw. Test (AST), May 2018, pp. 27–33.

[62] P. Vekris, R. Jhala, S. Lerner, and Y. Agarwal, ‘‘Towards verifying Android
apps for the absence of no-sleep energy bugs,’’ in Proc. Workshop Power-
Aware Comput. Syst. (HotPower), 2012, pp. 1–5.

[63] A. Hindle, ‘‘Green mining: A methodology of relating software
change and configuration to power consumption,’’ Empirical Softw.
Eng., vol. 20, pp. 374–409, 2015. [Online]. Available: https://link.
springer.com/article/10.1007/s10664-013-9276-6, doi: 10.1007/s10664-
013-9276-6.

[64] A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoudhury, ‘‘Ener-
gyPatch: Repairing resource leaks to improve energy-efficiency of
Android apps,’’ IEEE Trans. Softw. Eng., vol. 44, no. 5, pp. 470–490,
May 2018.

[65] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. Cambridge, MA, USA: MIT Press, 2018.

[66] S. Habchi, ‘‘Understanding mobile-specific code smells,’’ Ph.D.
dissertation, Dept. Comput. Sci., Univ. de Lille, Lille, France,
2019. [Online]. Available: https://www.semanticscholar.org/paper/
Understanding-Mobile-Specific-Code-Smells-Habchi/d053ab8424a9b8c
6d088f5cdbd5417259e0c8060

[67] H. He, Y. Bai, E. A. Garcia, and S. Li, ‘‘ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,’’ inProc. IEEE Int. Joint Conf.
Neural Netw., Jun. 2008, pp. 1322–1328.

125766 VOLUME 9, 2021

http://dx.doi.org/10.1007/s10664-013-9276-6
http://dx.doi.org/10.1007/s10664-013-9276-6


M. U. Khan et al.: Detecting Wake Lock Leaks in Android Apps Using Machine Learning

[68] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial net-
works,’’ 2014, arXiv:1406.2661. [Online]. Available: http://arxiv.org/
abs/1406.2661

[69] L. Li, ‘‘Boosting static analysis of Android apps through code instru-
mentation,’’ in Proc. 38th Int. Conf. Softw. Eng. Companion, May 2016,
pp. 819–822.

[70] M. Zhang, R. Qiao, N. Hasabnis, and R. Sekar, ‘‘A platform for secure
static binary instrumentation,’’ in Proc. 10th ACM SIGPLAN/SIGOPS Int.
Conf. Virtual Execution Environ., 2014, pp. 129–140.

MUHAMMAD UMAIR KHAN received the
B.S. degree in computer engineering from
Balochistan University of Information Tech-
nology, Engineering and Management Science,
Pakistan, and the M.S. degree in computer engi-
neering from Lahore University of Management
Sciences, Pakistan. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Engineering, Hanyang University,
South Korea, funded by the Higher Education

Commission, Pakistan. His research interests include android development,
program analysis, and machine learning.

SCOTT UK-JIN LEE (Member, IEEE) received the
B.S. degree in software engineering and the Ph.D.
degree in computer science from The University of
Auckland, New Zealand. After the Ph.D. degree,
he was a Postdoctoral Research Fellow with
the Commissariat à l’Énergie Atomique et aux
Énergies Alternatives, France. He has been with
the Department of Computer Science and Engi-
neering, Hanyang University ERICA Campus,
South Korea, since 2011. He is currently serving

as an Associate Professor major in bio artificial intelligence for the Depart-
ment of Computer Science and Engineering. His research interests include
software engineering, formal methods, and quality assurance. He is also
a member of the Korean Institute of Information Scientists and Engineers
and the Korean Society of Computer and Information. He has served as an
editor, the technical chair, and a committee member for several journals and
conferences.

SHANZA ABBAS received the B.S. degree in
information technology from the University of the
Punjab, Pakistan, and the M.S. degree in soft-
ware engineering from the National University
of Science and Technology, Pakistan. She is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Computer Science and Engineering,
Hanyang University, South Korea, funded by the
Higher Education Commission, Pakistan, in 2018.
Her research interest includes natural language

interface to database systems with machine learning.

ASAD ABBAS received the B.S. degree in infor-
mation technology from the University of the
Punjab, Pakistan, in 2011, the M.S. degree leading
to the Ph.D. degree from the Department of Com-
puter Science and Engineering, Hanyang Univer-
sity ERICA Campus, Ansan, South Korea, funded
by the Higher Education Commission, Pakistan,
in 2014, and the Ph.D. degree in computer sci-
ence and engineering from Hanyang University,
in August 2018. He served as an Assistant Profes-

sor for the Department of Software Engineering, The University of Lahore,
Pakistan. He is currently serving as an Assistant Professor for the Faculty of
Information and Technology, University of Central Punjab (UCP), Lahore,
Pakistan. His research interests include software product line, the IoT sys-
tems and applications and embedded software applications, big data analyt-
ics, and machine learning.

ALI KASHIF BASHIR (Senior Member, IEEE)
received the B.Sc. degree (Hons.) in computer
forensics and security from the Department
of Computing and Mathematics, Manchester
Metropolitan University, U.K., and the Ph.D.
degree in computer science and engineering from
Korea University, South Korea.

His past assignments include an Associate Pro-
fessor of ICT with the University of the Faroe
Islands, Denmark; Osaka University, Japan; Nara

College, National Institute of Technology, Japan; the National Fusion
Research Institute, South Korea; Southern Power Company Ltd., South
Korea, and Seoul Metropolitan Government, South Korea. He is currently
a Senior Lecturer/an Associate Professor and the Program Leader of the
Department of Computing and Mathematics, Manchester Metropolitan Uni-
versity. He is also with the School of Electrical Engineering and Com-
puter Science, National University of Science and Technology (NUST),
Islamabad, as an Adjunct Professor, and the School of Information and Com-
munication Engineering, University of Electronics Science and Technology
of China (UESTC) as an Affiliated Professor and the Chief Advisor of the
Visual Intelligence Research Center. He has worked on several research and
industrial projects of South Korean, Japanese and European agencies and
Government ministries. In his career, he has received over 2.5 Million USD
funding. He has authored over 180 research articles, received funding as the
PI and the Co-PI from research bodies of South Korea, Japan, EU, U.K.,
and Middle East, and supervising/co-supervising several graduate (M.S. and
Ph.D.) students. His research interests include the Internet of Things, wire-
less networks, distributed systems, network/cyber security, network function
virtualization, and machine learning.

Dr. Bashir is a member of the IEEE Industrial Electronic Society and
ACM. He is leading many conferences as the chair (program, publicity,
and track) and had organized workshops in flagship conferences, like IEEE
Infocom, IEEE Globecom, and IEEE Mobicom. He is serving as the Editor-
in-Chief for the IEEE FUTUREDIRECTIONSNEWSLETTER. He is also serving as an
Area Editor for KSII Transactions on Internet and Information Systems, and
an Associate Editor for IEEE Internet of Things Magazine, IEEE ACCESS,
PeerJ Computer Science, IET Quantum Communication, and Journal of
Plant Diseases and Protection. He is a Distinguished Speaker of ACM.

VOLUME 9, 2021 125767


