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ABSTRACT The rapid rise of non-communicable diseases (NCDs) becomes one of the serious health issues
and the leading cause of death worldwide. In recent years, artificial intelligence-based systems have been
developed to assist clinicians in decision-making to reduce morbidity and mortality. However, a common
drawback of these modern studies is related to explanations of their output. In other words, understanding the
inner logic behind the predictions is hidden to the end-user. Thus, clinicians struggle to interpret these models
because of their black-box nature, and hence they are not acceptable in the medical practice. To address this
problem, we have proposed a Deep Shapley Additive Explanations (DeepSHAP) based deep neural network
framework equipped with a feature selection technique for NCDs prediction and explanation among the
population in the United States. Our proposed framework comprises three components: First, representative
features are done based on the elastic net-based embedded feature selection technique; second a deep neural
network classifier is tuned with the hyper-parameters and used to train the model with the selected feature
subset; third, two kinds ofmodel explanation are provided by theDeepSHAP approach. Herein, (I) explaining
the risk factors that affected the model’s prediction from the population-based perspective; (II) aiming to
explain a single instance from the human-centered perspective. The experimental results indicated that the
proposed model outperforms various state-of-the-art models. In addition, the proposed model can improve
the medical understanding of NCDs diagnosis by providing general insights into the changes in disease
risk at the global and local levels. Consequently, DeepSHAP based explainable deep learning framework
contributes not only to the medical decision support systems but also can provide to real-world needs in
other domains.

INDEX TERMS Non-communicable diseases, explainable artificial intelligence, deep shapley additive
explanations, feature selection, deep neural network, prediction.

I. INTRODUCTION
NCDs are the major global health issues confronting
humankind. According to the NCDs global status report by
the World Health Organization, NCDs are the leading cause
of death accounting for 41 million people die each year.
It is equal to 71% of the 57 million deaths globally [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

In particular, NCDs are the leading cause of 15 million pre-
mature deaths that occurred in adults between 30 and 70 years
old annually. The main varieties of NCDs are cardiovascular
diseases, diabetes mellitus, cancers and chronic respiratory
disease. Remarkably, cardiovascular disease is assumed first
with the highest number of 17.9 million, followed by cancers
of 9 million, respiratory diseases of 3.9 million, and then
diabetes handles 1.6 million people for deaths due to NCDs
annually [2]. NCDs are driven by forces of modifiable and
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non-modifiable risk factors. As we knowwell that modifiable
risk factors include harmful use of tobacco and alcohol, envi-
ronmental factors, unhealthy diets, and physical inactivity,
which lead to obesity, hypertension and raised cholesterol.
On the contrary, non-modifiable risk factors consist the age,
sex and genetics [3], [4]. Fortunately, about 80% of all heart
disease, stroke, diabetes and 40% of cancers can be prevented
if the major risk factors were eliminated [5], [6]. Most NCDs
are often diagnosed at a late stage. If NCDs can be predicted
before it occurs, healthcare actions can be taken by individu-
als and reduce patient harm. Hence, there remains a need to
construct a decision support system, serving the progression
of NCDs for detecting patients with high risk and minimizing
the death rate.

Recently, the use of artificial intelligence in the healthcare
industry has been rapidly increasing. However, decision-
making responses suffer from various problems. To deal with
these problems, advanced data-driven and machine learn-
ing approaches have been regularly developed in recent
researches [7]–[13]. Furthermore, many systems cannot
handle high dimensional datasets and select significant fea-
tures to compute a general weight for them based on their
significance due to the lack of a smart framework [7]–[9].
In a study [9], a smart healthcare monitoring system for
heart disease prediction based on ensemble deep learning
and feature fusion was proposed. The authors combined
the extracted features from both sensor data and electronic
medical records using the feature fusion method. After that,
irrelevant and redundant features were eliminated based on
features information gain technique, and the conditional
probability approach computed a specific feature weight for
each class, which further improved system performance.
Finally, the ensemble deep learning model was trained for
heart disease prediction; also, it obtained higher accuracy
than other compared methods. Therefore, most of the exist-
ing literature considered the accuracy and false-positive rate
for assessing the performance of classification algorithms.
The absence of other performance measures, such as model
build time, misclassification rate, and precision, should be
considered the major limitation for classifier performance
evaluation [10].

Moreover, time-series data analysis is essential in the
healthcare industry for the management of chronic dis-
eases to medical experts could analyze the patient’s history
when making a progression diagnosis. However, data are
usually either limited or not available to use because of their
cost, especially in developing countries. In a study [11],
authors used a collection of cost-effective time-series features
including patient’s comorbidities, cognitive scores, medica-
tion history, and demographics to predict Alzheimer’s dis-
ease progression using support vector machine (SVM), RF,
k-nearest neighbor (KNN), logistic regression (LR), and
decision tree techniques. In their results, the early fusion
of comorbidity and medication features with other features
revealed significant predictive power with all models. The
RFmodel reached the best predictive performance. Likewise,

complex models such as deep learning and ensemble tech-
niques contribute superior performance for enhancing the
diagnosis and treatment of various chronic diseases [12], [13].

However, most of the existing studies have limited expla-
nations of their results. In general, accurate prediction
performance and explainability are two dominant criteria of
the best decision support system [14]. Accurate prediction
performance during testing may set up some degree of trust
in the model. Despite their prediction accuracy, a common
drawback of thesemodern studies is related to their black-box
model. Thus, understanding the inner logic behind the pre-
dictions is hidden to the end-user, also it is challenging to
apply them in real-world health care applications. Mostly,
medical experts do not trust decisions yielded by black-box
models without any explanations [14]–[16]. In the meantime,
the selection of a suitable feature set is crucial to remove
redundant features that contribute varied benefits such as
improve learning accuracy and alleviate better readability and
understanding. In healthcare applications, a set of significant
feature selections is still a challenging procedure. Numerical
studies proposed feature selection methods such as informa-
tion gain, gain ratio, and correlation coefficients. Neverthe-
less, these techniques do not consider the interactions among
the features and are not suitable for applying them directly to
healthcare applications [17]. Furthermore, a limited number
of studies have concentrated on optimizing the parameters of
machine learning models in order to improve performance.

To address the above problems, we propose the DeepSHAP
based deep neural network (DNN) equipped with a feature
selection technique to construct an accurate and explainable
decision support system. In this study, the National Health
andNutrition Examination Survey (NHANES) dataset is used
to build the predictive and explainable decision supportmodel
of NCDs. The proposed framework comprises three com-
ponents. In the first component, representative features are
done based on the data cleaning and elastic net (EN) based
embedded feature selection technique. In the second compo-
nent, the DNN classifier is tuned with the hyper-parameters
and used to train the model with the selected feature subset.
In the last component, two kinds of model explanations are
provided by the DeepSHAP approach: (I) explaining the
risk factors that affected the model’s prediction from the
population-based perspective; (II) aiming to explain a single
instance from the human-centered perspective. The entire
process of modelling, including feature selection, training,
hyper-parameter tuning, model evaluation and explanations
is considered.

Furthermore, our proposed model is contrasted against
state-of-the-art baseline models. For constructing decision
support models of NCDs, three different sets of significant
features are generated from the NHANES dataset. The gener-
ated features are selected by support vector regression-based
recursive feature elimination (SVR-RFE), sequential back-
ward feature selection with random forest (SBFS-RF), and
proposed EN feature selection techniques. In order to find
the optimal combination of features in each subset, features
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are kept when it maximizes the model performance. After-
wards, these feature subsets used for the model training of
all classifiers, namely SVM, KNN, RF, multilayer perceptron
(MLP), extreme gradient boosting (XGBoost) and proposed
DNN, respectively. This would suggest that machine-learning
techniques used in the proposed framework could be inter-
changed with other efficient techniques of experimental
design depending on the domain.

Meanwhile, classifiers are tuned with their corresponding
hyper-parameters in order to improve prediction performance
and avoid the over-fitting problem. Finally, a comparison
of experimental results is conducted between the proposed
framework and state-of-the-art baseline models in valida-
tion and test datasets for NCDs. The accuracy, specificity,
recall, precision, f-scores and area under the curve (AUC) are
exploited to evaluate prediction model performances.

The major contributions of this study are:
• Wepropose DeepSHAP based explainable deep learning
framework, which is incorporated with a feature selec-
tion approach for early prediction of non-communicable
diseases.

• We appraise the effectiveness of the proposed frame-
work on a real-world non-communicable diseases
dataset from the NHANES, which was collected among
the population of the United States. The results from
the empirical study confirm that the proposed model
outperforms various state-of-the-art baseline models.

• We define the several feature subset of non-
communicable diseases using embedded and model-
based feature selection techniques. It helps improve
computational speed and prediction accuracy and allows
domain experts to understand predictions.

• The proposed framework provides global and local
level explanations of the complex deep neural networks
model along with population and human-centered per-
spectives. Experimental findings are better able to rep-
resent the decision process of themodel and allow giving
personalized health recommendations to patients.

• The proposed framework contributes not only to the
health care applications of non-communicable diseases
but also provide to other domains.

The rest of this paper is structured as follows: In Section II,
we present the literature review related to the subject of this
research paper. Section III describes the proposed framework
and its main three components. In Section IV, we introduce
the dataset, experimental setup, detailed process of experi-
mental design. Section V discusses the overall experimental
results that were accomplished by the proposed framework
and experimental design. Finally, Section VI ends with a
conclusion of the current study and some notes on directions
of future enhancement.

II. RELATED WORK
The health care industry has been greatly benefited from
the advantages of modern technological advances. Machine-
learning techniques achieve the remarkable prospect of

transformation for the diagnosis and treatment of various
chronic diseases. In this section, we discuss the related
work in two parts: A) Machine-learning techniques for
NCDs; B) Explainable artificial intelligence in health care
applications.

A. MACHINE LEARNING TECHNIQUES FOR
NON-COMMUNICABLE DISEASES
Various studies have focused on the accuracy enhancement of
NCDs diagnostic models concerning feature selection tech-
niques and refined machine-learning classifiers [18]–[29].

According to the study [18], authors proposed to con-
struct the prediction model for multiple diseases applying
metagenome data from 1,079 individuals collected among
the healthy group and patients with one of six diseases.
Authors built prediction models based on LogitBoost, SVM,
KNN and logistic model tree classifiers using forward selec-
tion and backward elimination techniques. In their compar-
ative results, the LogitBoost performed the highest accuracy
of 98.1 among four classifiers. In addition, they suggested
the optimal feature subsets at the genus level obtained by
backward elimination. Similarly, authors studied multi-label
neural network method to predict chronic diseases combining
neural network and multi-label learning technology based
on cross entropy lost function and backward propagation
algorithm [19]. They utilized 19,773 patients with 10 chronic
diseases extracted from MIMIC-II database in order to iden-
tify the types of chronic diseases.

The authors aimed to build a heart disease predictionmodel
applying feature selection and machine-learning techniques
namely, Naive Bayes, generalized linear model, linear regres-
sion, deep learning, decision trees, RF, gradient boosted tree
and SVM in their study [20]. They used the hearth disease
dataset, which included 13 features and 303 patient records,
from the UCI repository. Experimental results showed an
enhanced performance with an accuracy level of 88.7 through
the prediction model for heart disease with the hybrid RF
with a linear model. In another study [21], a chronic kidney
disease dataset from theDepartment of Nephrology, Huadong
Hospital, and Shanghai Fudan University Affiliated Hospital
was utilized to develop a prediction model of chronic kidney
disease progression. The authors compared machine learning
classifiers including LR, EN, LASSO, ridge, SVM,RF, KNN,
NN and XGBoost, also analyzed the importance of variable
factors in each predictive model. The empirical results from
their experiments indicated that EN, LASSO regression, ridge
regression and LR showed the highest overall predictive
power, with an average AUC and precision above 0.87 and
0.80, respectively.

To construct an accurate early prediction model of cervi-
cal cancer, the authors solved outlier and class imbalance
problems [22]. First, they used outlier detection methods
such as density-based spatial clustering of applications with
noise and isolation forest. Then, the synthetic minority
over-sampling technique (SMOTE) and SMOTE with Tomek
link applied to solve the class imbalance problem. Finally,
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a random forest (RF) classifier was used to predict cervical
cancer. In the study [23], the authors studied a consolidated
decision tree-based intrusion detection system for binary and
multiclass imbalanced datasets. In their study, an improved
version of the random sampling mechanism called super-
vised relative random sampling proposed to generate a bal-
anced sample from a high class-imbalanced dataset at the
pre-processing stage of detector.

Therefore, wearable sensors play a key role in contributing
a new method to collect patient data for efficient health-
care monitoring. However, one effort is accompanied by a
large amount of healthcare data generated from wearable
sensors and social networking data. Hence, authors [24] intro-
duced a novel healthcare monitoring framework based on the
cloud environment and a big data analytics engine to store
and analyze healthcare data and to improve classification
accuracy. Their proposed big data analytics engine was uti-
lized data mining techniques, ontologies, and bidirectional
long short-term memory (Bi-LSTM). Bi-LSTM classifier
utilized to predict drug side effects and abnormal condi-
tions in patients. In another study [25], authors designed
a computerized process of classifying skin disease through
deep learning-based MobileNet V2 and LSTM using a skin
disease dataset that contained over 10,000 dermatoscopic
images that are collected from different people around the
world. Their designed method outperformed several meth-
ods such as fine-tuned neural networks, convolutional neural
networks, very deep convolutional networks for large-scale
image recognition developed by visual geometry group, and
convolutional neural network, and also it obtained minimal
computational efforts.

As determined machine learning techniques for NCDs,
thewrapper, embedded or hybrid feature-selection techniques
have been adoptedmore efficiently to select important feature
subsets than common filtered techniques [26], [27]. More-
over, it should be noted that most researchers in previous
studies aimed to apply the feature selection techniques for
not only higher accuracy but also an improvement in under-
standing the causes of NCDs. The NCDs predictive results
of previous studies implied that DNN, SVM, Ensemble clas-
sifiers achieved the best performances when compared with
other baseline models [28], [29].

B. EXPLAINABLE ARTIFICIAL INTELLIGENCE IN
HEALTH CARE APPLICATIONS
Explainable artificial intelligence is presently becoming
popular with multi-disciplines, including health care appli-
cations. We have recognized this trend as more crucial for
health care experts to overcome several challenges such as
readiness of outcomes. Meanwhile, few numbers of stud-
ies intended to solve the black-box issue in the health care
area [16], [30]–[34].

In a study [16], authors aimed to study the utility of
various model-agnostic explanation techniques of machine
learning models for predicting individuals at risk of devel-
oping hypertension based on cardiorespiratory fitness data.

That data included 23,095 patients who underwent treadmill
stress testing by physician referrals and was collected from
Henry Ford Affiliated Hospitals between 1991 and 2009.
For assisting the better understanding of the outcomes of the
prediction, five global (Feature Importance, Partial Depen-
dence Plot, Individual Conditional Expectation, Feature
Interaction, Global Surrogate Models) and two local (Local
Surrogate Models, Shapley Value) interpretable techniques
were applied. Only the RF classifier was utilized to predict
the outcome because these authors had already compared
with the LogitBoost, Bayesian Network classifier, Locally
Weighted Naive Bayes, ANN, SVM and RF in their previous
research study [30] on the same dataset. Their comparison
results performed the best AUC of 0.93 by RF among other
classifiers.

In another study [31], authors developed explainable
clinical predictive models for stroke outcome using a dataset
of 514 patients accessed from a committee of Charite Uni-
versitatsmedizin Berlin. The NN and tree boosting modern
classifiers were used for the prediction and explanation of the
outcome. In order to explain the outcomes, they used deep
Taylor decomposition for MLP and CATBOOST algorithm
with SHAP values for tree boosting. In addition, predic-
tive performance and explanations of the generalized linear
model, lasso and elastic net were used to compare with NN
and tree boosting models.

The researchers studied dynamic and explainable machine
learning prediction of mortality in patients in the intensive
care units using longitudinal data from patients admitted to
four ICUs in the Capital Region, Denmark, between 2011 and
2016 in the study [32]. A recurrent neural networkwas trained
with a temporal resolution. After that, the SHAP algorithm
was applied to the prediction model for obtaining explana-
tions of the features that drive patient-specific predictions to
mitigate the issue of black-box predictions at any given time
point. According to the study [33], the authors developed an
accurate and interpretable Alzheimer’s disease diagnosis and
progression detectionmodel. This model provided physicians
with accurate decisions along with a set of explanations for
every decision using 11 modalities of 1048 subjects from
the Alzheimer’s disease Neuroimaging Initiative real-world
dataset. For model explainability, authors used global and
instance-based explanations of the RF classifier by using the
SHAP, significantly.

Therefore, most studies were limited to coverage includ-
ing both problems of prediction accuracy and explainability
in the decision model of NCDs. It was noted about some
issues accompanied to global and local level explanations
through black-box models. Global explanations can explain
the decision-making process of prediction models in general,
but it is limited to explain the reason for the individual
level. The local approach can explain the conditional inter-
action between features and classes for a single instance.
Local explanations can be more accurate than global explana-
tions [34]. Thus, we propose DeepSHAP based deep learning
framework, which incorporated a feature selection technique
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FIGURE 1. Deep shapley additive explanations based deep neural network framework equipped with elastic-net based feature selection technique.

for prediction and interpretation of NCDs in order to solve
existing both problems.

III. PROPOSED DEEPSHAP BASED EXPLAINABLE DEEP
LEARNING FRAMEWORK
In this paper, we propose the DeepSHAP based DNN frame-
work equipped with an EN feature selection technique to
build an accurate and explainable decision support system
as illustrated in FIGURE 1. The proposed framework incor-
porates main three components: data pre-processing with
feature selection, DNN prediction model construction and
model explanation.

A. DATA-PREPROCESSING
Data pre-processing is a crucial step where the dataset is pre-
pared for training before constructing the classification mod-
els. There are several important steps in data pre-processing,
such as data cleaning, scaling and feature selection.

Data cleaning is a basic procedure of preparing data for
analysis by removing missing values and outliers. The prob-
lem ofmissing values is common in data, which appears when
data values are not stored for the features in an observation.
In statistics, an outlier refers to the observations that have
an abnormal distance from other values on the tails of the
distribution. Therefore, the lost data and outliers are excluded
in our data analyzing process because it can be the cause of
bias in model estimation.

In addition, high-ranged values can intrinsically affect
the results of prediction algorithms. Thus, normalization is
needed when features have a highly different values range.
The normalization is used in the pre-processing step to rescale

the feature values in the interval of 0 to 1. The equation
for normalization [35] is derived by initially deducting the
minimum value from the variable to be normalized. The
minimum value is deducted from the maximum value, and
then the previous result is divided by the latter as follows
Equation 1:

X ′ =
X − Xmin

Xmax − Xmin
(1)

where: X is a feature and Xmax and Xmin are the maximum
and minimum similarity values. X ′ represents the normalized
feature value.

B. ELASTIC-NET BASED EMBEDDED FEATURE
SELECTION TECHNIQUE
Regularization methods have become popular, which select
the feature subset efficiently and prevent over-fitting issues.
Elastic net (EN) is a regularized multiple regression method
that combines the l1 and l2 penalties of the LASSO (Least
Absolute Shrinkage and Selection Operator) and Ridge to
solve the high-dimensional feature selection problem [36].

LASSO method executes continuously shrinkage and
selects features automatically at the same time. l1 penalty
minimizes the size of all coefficients and allows some coef-
ficients to be minimized to the value zero, which eliminates
the predictor from the model. However, LASSO cannot deal
with the prediction of features correlations. On the con-
trary, l2 penalty of ridge regression is to penalize a model
based on the residual sum of squared coefficient values.
Ridge regression is efficient where there are dependencies
between the features in the model. The ridge cannot produce
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a parsimonious model, because it prevents any coefficients
from being removed from the model.

Thus, EN method brings the strong advantages of LASSO
and ridge regressions, and addresses the drawbacks of both.
EN [37] uses a combination of the l1 (LASSO) and l2 (Ridge)
penalties and it can be defined as Equation 2:

β̂ = argmin
β

(‖y− Xβ‖2 + λ2 ‖β‖2 + λ1 ‖β‖1) (2)

where: λ1 ≥ 0 and λ2 ≥ 0 are two regularization parame-
ters. Adding a quadratic part to the penalty, EN removes the
limitation on the selected features and stabilizes the selection
from grouped variables. EN finds an estimator in a two-stage
procedure: first, for each fixed λ2 it finds the ridge regression
coefficients and then does a LASSO type shrinkage.

C. DEEP NEURAL NETWORK AND HYPER-PARAMETERS
A deep neural network (DNN) is an artificial intelligence-
based technique, which inspired by the structure of the human
brain function. NN is a group of interconnected neurons that
learn together to perform a particular function. The common
configuration of NN is to employ three or more layers namely
input, hidden and output. FIGURE 2 shows the neural net-
work architecture with one hidden layer. First, the n number
of input nodes {x1, x2, x3, . . . , xn−1, xn} at the input layer is
determined by features. Then, these input nodes are trans-
ferred to the hidden layer, and the corresponding n number
of weights {w1,w2,w3, . . . ,wn−1,wn} multiplies each con-
nection between nodes during training. At least one hidden
layer contains the weighted nodes. Nodes in neighboring
layers are interconnected, but nodes in the same layer are not.
If a network does not have enough hidden nodes, the input
and output mappings cannot learn well. Finally, the output
of hidden nodes depends on the classes’ number, which is
estimated by applying an activation function and make final
decisions Y based on optimized weights by minimizing the
error between predicted and actual values [38], [39].

The performance of the DNN is highly associated with
the selection of hyper-parameters. Neural networks can be
learned via an efficiently one-hidden-layer MLP, however,
learning with two or more hidden layers of perceptrons can
produce much better performance than a single one. Thus,
in the proposed framework, DNNs consist to turn the {2-10}

FIGURE 2. Neural network architecture.

hidden layers. Here, per hidden layer varies the number of
nodes {3, 5, 10, 15, 20, 25} was tested to compare the
performance between three activation functions: Rectified
linear units (ReLU), Sigmoid (sigm) and Tanh (tanh). In the
experimental result, we provide the optimal hidden layers
and their nodes regarding the highest predictive performance.
Also, these models are optimized by Adam, and the learning
rate is set at 0.001 while retaining the rest hyper-parameters
fixed. Regularization methods are employed to reduce the
likelihood of over-fitting. Moreover, l2 with 0.0001 value
of regularization parameter added to the loss function that
shrinks model parameters to prevent over-fitting [40].

D. DEEP SHAPLEY ADDITIVE EXPLANATIONS
For constructing the accurate and explainable framework
for NCDs, this study is motivated by Deep Shapley Addi-
tive Explanations (DeepSHAP) [41] for mixed model types,
a framework for layer-wise propagation of SHAP [42]
values that build upon deep learning important features
(DeepLIFT) [43].

SHAP is a unified framework based on the Shapley value.
SHAP is used to explain the predictions of an instance x
by evaluating the contribution of each feature to the predic-
tion. Shapley value is utilized in cooperative game theory
to estimate the contribution of each player in a coalition
game. The main idea is that determining all possible differ-
ent permutations in a player’s contribution in each game by
using marginal contribution. After that, the average of these
contributions of each player is calculated in Equation 3 as
follows [42]:

φi

(
f , x i

)
=

∑
S⊆N\{i}

|S|! (M−|S| − 1)!
M !

∗
[
f(S∪{i})−f(S)

]
(3)

where: M is the number of features and the sum extends
over all subsets S of N not containing feature i; f (S) is the
prediction for feature values in the set S; here, ith feature
is excluded, then simulated random values of the ith feature
from the dataset. However, the exact evaluation of the Shapley
value is computationally expensive because of the estimation
of contributions among many features contributions for pre-
diction. SHAP assigns each feature an importance value for
a particular prediction.

Moreover, local explanations inspired by local surrogate
models and global explanations based on aggregations of
Shapley values can be provided by SHAP for predictions.

IV. EXPERIMENTAL DESIGN FOR NON-
COMMUNICABLE DISEASES
A. EXPERIMENTAL ENVIRONMENT
All experiments were performed on a PCwith 3.50 GHz, Intel
Core i5-6600K, and 32GB RAM using Microsoft Windows
10 operating system. Python programming language is uti-
lized in the experimental analysis with the open libraries and
packages such as Pandas [44], Numpy [45], Matplotlib [46],
Scikit-learn [47], Statsmodels [48], XGBoost package [49],
DeepSHAP [42] and so on.
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FIGURE 3. Experimental design for non-communicable diseases prediction and explanation.

B. NHANES DATASET
The National Health and Nutrition Examination Survey
(NHANES) dataset is used to construct the predictive and
explainable decision support models of NCDs. NHANES
designed to assess the health and nutrition status of the gen-
eral population in the United States. This nationwide survey
is amajor program of the National Center for Health Statistics
that is part of the Centers for Disease Control and Prevention
(https://www.cdc.gov/nchs/nhanes).

In general, this survey examines approximately 5000
people each year across the United States. The NHANES
interview includes demographic, socioeconomic, dietary, and
health-related questions. The examination component con-
sists of medical, dental, and physiological measurements and
laboratory tests that were administered by medical person-
nel. Notably, the NHANES dataset is used to determine the
prevalence of major diseases and their risk factors in epidemi-
ological studies and health sciences research.

C. BASELINE METHODS
1) WRAPPER FEATURE SELECTION TECHNIQUES
In the proposed framework, we aim to apply the elastic-net
based embedded feature selection technique to find out the

essential and applicable features, besides improving the pre-
diction performance. The wrapper technique unifies a super-
vised machine-learning algorithm in the procedure of feature
selection in order to find the optimal combination that maxi-
mizes model performance. In wrapper techniques, a search
strategy iteratively adds and/or removes features from the
dataset. The most commonly used search strategies are for-
ward, backward and recursive selections.

Thus, support vector regression-based recursive feature
elimination (SVR-RFE) [50], sequential backward feature
selection with random forest (SBFS-RF) [51] wrapper fea-
ture selection techniques are used to compare to the proposed
technique in part of empirical comparison analysis.

2) BASELINE CLASSIFICATION ALGORITHMS
AND PARAMETERS
In this study, we compare the proposedmodel to the following
various classification algorithms for NCDs prediction.

• Support Vector Machine (SVM): The SVM classifier
is a supervised machine-learning model that can be used
for solving classification and regression problems [52].
We tested the parameters on SVM as a kernel (linear,
poly, RBF), gamma (scale) and tolerance (0.001).
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• K-nearest neighbors (KNN): KNN is a machine-
learning algorithm that can solve the classification
task [53]. In the classification phase, instances are clas-
sified to the class most frequently occurring amongst
the neighbors which measured by the distance function.
In parameter setting, we have turned the values of k
number 3, 6, 9; weight options (uniform, distance) and
metric (Minkowski).

• RandomForest (RF):RF is a parallel structured ensem-
ble tree-based method that utilizes bagging to aggregate
multiple decision tree classifiers [54]. We have config-
ured the number of estimators in the random forest as
250, 500, 750, 1000, 1250, and 1500, also the quality
of split-measured criteria has selected by ‘‘gini’’ for the
Gini impurity and ‘‘entropy’’ for the information gain,
respectively.

• Multilayer Perceptron (MLP): MLP is a class of
feed-forward neural network. MLP has an input layer,
one hidden layer, and one output layer [55]. In this
experiment, the single hidden layer of MLP consists
of several nodes {3, 5, 10, 15, 20, 25}. Moreover,
we use Adam optimizer for training and set the learning
rate is 0.001 with the Rectified linear units (ReLU),
Sigmoid (sigm) and Tanh (‘‘tanh’’) activation functions.

• Extreme Gradient Boosting (XGBoost): XGBoost is
an efficient and scalable machine learning classifier,
which was popularized by [49]. Gradient boosting deci-
sion tree is the original model of XGBoost, which com-
bines multiple decision trees in a boosting way. For
hyper-parameters, gamma (0, 0.001), column subsam-
ple ratio (0.9, 0.95, 1), subsample ratio (0.9, 0.95, 1),
maximum delta step (0.4, 0.6, 0.8, 1), number of boost
(60), learning rate (0.1, 0.01, 0.001), early stop round
(100), minimum child weight (2, 3, 4, 5) and maximum
tree depth (2, 4, 6, 8).

D. EVALUATION METRICS
For evaluating the NCDs prediction model, evaluation met-
rics are determined using four values, namely True Positive
(TP), True Negative (TN), False Positive (FP) and False
Negative (FN). A total number of (TP+TN) can interpret
correct predictions and incorrect predictions built by the
model is (FN+FP), respectively. The evaluation metrics of
accuracy, specificity, recall, precision, f-score and, the area
under curve have been utilized as model comparisons and
model selection. The evaluation metrics [35,56] were defined
as:

Accuracy =
TP+ TN

TP+ FP+ FN + TN
(4)

Specificity =
TN

TN + FP
(5)

Recall =
TP

TP+ FN
(6)

Precision =
TP

TP+ FP
(7)

F − score = 2 �
precision � recall
precision+ recall

(8)

V. EXPERIMENTAL RESULT AND ANALYSIS
The general architecture of experimental design is illustrated
in FIGURE 3. The overall experimental results and analysis
are provided in this section.

A. DATA PRE-PROCESSING AND FEATURE
SELECTION ANALYSIS
The National Health and Nutrition Examination Survey
(NHANES) dataset is utilized to construct the decision
support system of NCDs. For NHANES, 9,971 individu-
als in 2015-2016 and 9,254 individuals in 2017-2018 were
involved. In this experiment, we have collected a total
of 19,225 individuals’ data from 2015 to 2018. There are sev-
eral methods to deal with missing data and produce complete
data for analysis. To prevent model complication, we have
excluded all the missing values and outliers. Interquartile
range was used in outlier elimination. Moreover, individuals
under 20 years of age were eliminated from our further analy-
sis, because most NCDs were diagnosed by individuals aged
equal to or more than 20 years old in the examination survey
of NHANES. Thus, 13,014 individuals were excluded due to
missing values, outliers and selection criteria of age, which
were stored in the dataset. Totally 6,211 individuals’ records
have remained after the data cleaning phase.

This study was designed to consist of experimental and
control groups. The experimental group was characterized by
individuals with one of the NCDs diagnosed in their medical
history, including diabetes, prediabetes, asthma, heart failure,
coronary heart disease, heart attack, stroke, hypertension,
kidney failure, and angina. On the other hand, the control
group was defined by normal individuals who had not been
diagnosed with NCDs. Consequently, NCDs diagnosed 2,107
(34%) individuals in the experimental group and 4,104 (66%)
individuals in the control groupwere kept for further analysis.
The statistics about this process are shown in FIGURE 4.

The dataset contains 51 features including informa-
tion about demographic, socioeconomic, main vital signs,
health-related questions, medical, dental, and physiological

FIGURE 4. Sample selection procedure of national health and nutrition
examination survey dataset.
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TABLE 1. Features description of the NHANES dataset.

measurements, as well as laboratory tests administered by
medical personnel as shown in Table 1.

In the proposed framework, the EN regularization method
is utilized to eliminate redundant and irrelevant features
from the feature space. First, we trained the EN model
with initial features. Then, it derives feature importance
scores from the predictive model that has been fit on the
training dataset. Inspecting the importance score provides
insight into that elastic net model and which features are the
most important and least important to the predictive model
when making a prediction. In the final stage, the EN feature

selection model rejects the irrelevant and useless features
using the derived feature importance scores. As a result, BPX-
PULS, DMDHHSIZ, DIQ050, DID250, DPQ040, DPQ050,
SMQ856, SMQ858, SMQ878, SLQ060, ALQ130, ALQ151,
MCQ370d, DPQ080 and DPQ060 features were eliminated.
At the end of the EN feature selection procedure, totally
35 features were remained.

B. COMPARISON RESULTS OF PREDICTION MODELS
For evaluating the prediction models, we split the data
into 80% for the training set and 20% for the test set.
Cross-validation with the 5-fold splitting procedure is applied
to the training set. In 5-fold cross-validation, the train-
ing dataset is randomly partitioned into five folds; where
4 folds are used for training models, and 1 fold is used
for validation while tuning model hyper-parameters [57].
The cross-validation process has ten times repetitions to
decrease the unlikely chance of getting over-optimistic
results. Consequently, after configuring the best setting of
hyper-parameters, we evaluate the final model on the test set.

The statistical significance test of performance comparison
to find difference in NCDs predictive models is summarized
in Table 2. In our analysis, the various machine-learning
classifiers were compared in terms of accuracy metric across
validation and test sets. Statistical test was calculated with
ρ-value of 1.27 � 10−8(ρ-value < 0.001) and rejected the
null hypothesis at a 99% significance level. Accuracy is
the proportion of the total number of correct predictions. The
error rate of accuracy is when the classifier predicts positive
instances as negative and negative instances as positive. The
accuracymetric determines whichmodel is best at identifying
healthy and unhealthy individuals in input samples. For the
superior predictive model, accuracy should be nearer to 1.
The highest accuracies of validation and test sets are marked
in bold.

A careful look at the accuracy results of the validation set,
the highest performance of 0.9351 (95% Confidence Interval
(CI), 0.9241–0.9481) was scored by our proposed DNN with
EN, following by 0.9193 (0.9083–0.9313) was reached by
XGBoost with EN model. Moreover, DNN and XGBoost
classifiers with different feature selection techniques per-
formed higher accuracy compared with other classifiers.
DNNwith SVR-RFE and SBFS-RF achieved accuracy scores
of 0.8219 (95% CI, 0.8079–0.8379) and 0.9102 (95% CI,
0.8962–0.9242), respectively. In case of the XGBoost clas-
sifier, 0.8365 (95% CI, 0.8235–0.8505) with SVR-RFE and
0.9014 (95%CI, 0.8864–0.9174) with SBFS-RF higher accu-
racy scores were reached.

Among the test set, the DNN classifier exhibited the
best capability of prediction accuracy of 0.9501 (95% (CI),
0.9391–0.9621) when it incorporated with EN embedded
technique. Following by it, 0.9411 (95% CI, 0.9281–0.9551),
0.9256 (95% CI, 0.9106–0.9406) and 0.9074 (95% CI,
0.8944–0.9214) accuracy scores were achieved by the
XGBoost with EN, DNN with SBFS-RF and MLP with
SBFS-RF, respectively. It is clearly shown that SVR-RFE
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TABLE 2. Statistical significance test of the overall accuracy evaluation for non-communicable diseases prediction models.

technique based models performed the lowest accuracy
results of 0.8012 (95% CI, 0.7872–0.8172) by SVM;
0.7905 (95% CI, 0.7775–0.8055) by KNN; 0.8315 (95% CI,
0.8185–0.8455) by RF; 0.8288 (95% CI, 0.8178–0.8418) by
MLP; 0.8485 (95% CI, 0.8325–0.8625) by XGBoost; and
0.8498 (95% CI, 0.8338–0.8668) by DNN.

FIGURE 5 illustrates accuracy result charts of NCDs pre-
dictive models in the test set. The evidence from these results
suggests that the proposed EN based classifiers indicated
better performances, followed by SBFS-RF based classifiers
achieved the second-best accuracy performances than other
predictive models. Contrary, KNN and SVM classifiers with
SVR-RFE achieved lower accuracies of 0.7905 and 0.8012,
respectively. The difference of average accuracies between
EN based DNN classifier and that with the worst model of
SVR-RFE based KNN was 15.96%.

Different feature selection techniques and classifiers
enabled us to discover the best predictive model of NCDs
and enhance the overall accuracies. As seen in Table 3, com-
parison results of NCDs predictive models in validation and
test sets are provided. The highest performances of evaluation
metrics are marked in bold.

For validation set, among feature subset of SVR-RFE,
the highest specificity of 0.7919, recall of 0.8014, AUC
of 0.7967 were outperformed by DNN classifier, and
XGBoost classifier reached the highest precision of
0.8547 and f-score of 0.8265, significantly. Considering
these evaluation performances of high-performing models
based on SVR-RFE, DNN and XGBoost classifiers indicated
the best classifiers than other baseline classifiers. However,
it should be noted that overall evaluation metric scores were
decreased significantly when compared with other feature
selection techniques in the validation set. Meanwhile, SVM
with the SVR-RFEmodel reached the worst predictive results

such as specificity of 0.6801, recall of 0.7305, the precision
of 0.8032, f-score of 0.7651 and AUC of 0.7053, when
compared with the other SVR-RFE based classifiers.

In the feature subset of SBFS-RF, the best model was
distinguished by DNN in terms of the recall, precision,
f-score and AUC, which reached 0.9025, 0.9236, 0.9129 and
0.8833, respectively. Considering the recall, XGBoost and
DNN models performed higher scores of 0.8659 and 0.8641,
respectively.

Furthermore, the worst results such as specificity of
0.7431, recall of 0.8413, precision of 0.8226, f-score
of 0.8318 and AUC of 0.7922 were reached by KNN with
the SBFS-RF model. Regarding the EN based feature subset;
the best specificity of 0.8657 was achieved by the XGBoost
model, also DNN model performed better prediction ability
than other models, with a recall of 0.9231, the precision
of 0.8795, f-score of 0.9008 andAUCof 0.8912, significantly.
Concerning the specificity, recall and AUC evaluation met-
rics, EN with the KNN model presented the lowest scores
of 0.7974, 0.8657 and 0.8316, respectively.

For comparison results of the predictive models in the test
set, in terms of the SVR-RFE, the best results for recall
of 0.8293, the precision of 0.8528, and f-score of 0.8305,
were determined byMLP, SVM, andDNN classifiers, respec-
tively. The XGBoost classifier produced the best specificity
of 0.8345 and AUC of 0.8242. By contrast, whilst using
SVR-RFE, lower values for recall of 0.7443, f-score of
0.7887 and AUC of 0.7431 were identified by KNN, more-
over, specificity of 0.7188 and precision of 0.8257 were
reached by SVM and RF, respectively.

In SBFS-RF, the best results for the specificity of
0.8997, recall of 0.9166, the precision of 0.9158, f-score
of 0.9162 and AUC of 0.9082 were performed by DNNwhen
ReLU activation, 4 hidden layers with 10 neurons, ‘‘Adam’’
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FIGURE 5. Statistical significance test of non-communicable diseases prediction models along with accuracy scores. (a) models equipped by support
vector regression-based recursive feature elimination; (b) models equipped by sequential backward feature selection with random forest; (c) models
equipped by elastic net.

FIGURE 6. Box plot of the f-scores comparison of non-communicable
diseases prediction models equipped by support vector regression-based
recursive feature elimination.

FIGURE 7. Box plot of the f-scores comparison of non-communicable
diseases prediction models equipped by sequential backward feature
selection with random forest.

optimizer and 0.001 learning rate were used. Contrary, the
KNN reached the lowest specificity, recall, precision, f-score
and AUC of 0.7551, 0.8278, 0.8329, 0.8303 and 0.7915,
respectively.

Considering EN based predictive models, the DNN model
achieved promising performances across evaluation metrics
for the specificity of 0.8988, recall of 0.9573 precision of
0.9368, f-score of 0.9469 and AUC of 0.9281, when it used

FIGURE 8. Box plot of the f-scores comparison of non-communicable
diseases prediction models equipped by elastic net.

‘‘Adam’’ optimizer, ReLU activation function, 3 hidden lay-
ers with 10 neurons, and 0.001 learning rate. As can be
seen, EN based SVM and KNN models performed lower
results compared with EN based other models, but these
models reached slightly better result across the other fea-
ture selection techniques based on SVM and KNN models.
Among EN based models, the lowest NCDs predictive per-
formances were reached as following models such as SVM
with a recall of 0.8493, KNN with the specificity of 0.8062,
AUC of 0.8302, and RF with the precision of 0.8215 and
f-score of 0.8498. With regard to the most evaluation metrics,
EN based predictive models reached the highest results in the
test set.

It is well known that the f-score is a commonly used
evaluation metric in the prediction task, which balances both
the concerns of precision and recall into a single score.

Thus, concerning the f-score, FIGURES 6 to 8 illustrate
the box plots of the prediction models in the test set. In these
figures, the x-axis denotes the f-score and the y-axis presents
the developed predictive models on NCDs. The f-score veri-
fied that the proposed EN with the DNN model was better at
NCDs early diagnosis among classes, achieving the f-score
of 0.9469, which outperformed the lowest scored SVR-RFE
based KNN model by 15.82%.
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TABLE 3. Statistical significance test of the overall accuracy comparison for non-communicable diseases prediction models.

Essentially, the DNN model with each SBFS-RF and
SVR-RFE technique performed the highest f-scores compare
with other classifiers in each of the corresponding feature
selection techniques. Among overall DNN based predictive
models, f-scores were slightly lower than proposed EN by
11.64% in SBFS-RF and 3.07% in SVR-RFE, significantly.

FIGURES 9 to 11 illustrate the ROC curves for the NCDs
predictive models on the four kinds of feature selection tech-
niques. In ROC curves analysis, we can demonstrate the
separation and discrimination ability of the predictivemodels.

The ROC curve is plotted with the measurements of true
positive (sensitivity) along with the y-axis, and false pos-
itive (1-specificity) along with the x-axis. The sensitivity
and specificity are crucial measures to classify an individ-
ual as having the disease or not having the disease. For
the NCDs prediction model, the false-positive error occurs
when unhealthy individuals are misclassified as healthy,
whereas false-negative error appears when healthy indi-
viduals are misclassified as not having a disease. Hence,
the false-positive error is worse than a false negative
error [17].

For ROC curve analysis, the DNN classifier equipped
with SVR-RFE and EN feature selection techniques reached
notable significant performance than other correspond-
ing models. However, in the selected feature subset of
SBFS-RF, XGBoost outperformed DNN in terms of ROC
value. Besides, enhanced performances were achieved by
not only DNN but also XGBoost that reached computable
results across each feature selection technique. Therefore,
the SBFS-RF with the KNN classifier determined the worst
predictive model among overall predictive models, but results
were slightly improved when this classifier was combined
with SVR-RFE by 4.84% and EN by 8.71%.

It is well recognized that the feature subset selected by EN
can improve the predictive performance significantly in most
classifiers. EN with the XGBoost showed the second-highest
score of 0.9092. Essentially, ROC analysis verified that our
proposedDNNclassifier incorporatedwith the ENmodel was
better at NCDs prediction across overall baseline models.

Depends on the collected NCDs data in this study, we did
not consider the frequently occurred class imbalance problem
in prediction analysis during the experiment. Nonetheless,
decision-making responses suffer from the class imbal-
ance problem that also has received much attention from
researchers [26], [58]. To deal with this problem, sampling

FIGURE 9. Receiver operating characteristic curves of non-communicable
diseases prediction models equipped with support vector
regression-based recursive feature elimination.
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FIGURE 10. Receiver operating characteristic curves of
non-communicable diseases prediction models equipped with sequential
backward feature selection with random forest.

FIGURE 11. Receiver operating characteristic curves of
non-communicable diseases prediction models equipped with elastic net.

techniques are investigated to rebalance an imbalanced
dataset to alleviate the effect of the skewed class distribu-
tion. Broadly, sampling techniques can be classified into two
groups, under-sampling and over-sampling. Under-sampling
discards the samples from the majority class to make it equal
to the minor class. A drawback of under-sampling is the loss
of information. On the other hand, over-sampling creates the
samples in the minor class to make it equal to the majority
class [59]. Moreover, it has a drawback, which is associated
with duplicated random records, which can be a cause of
over-fitting. Existing studies have exhibited that the SMOTE
and adaptive synthetic (ADASYN) over-sampling techniques
are used rather than downsizing datasets [13]. To enhance
our model consumption, the further solution to the class
imbalance problem needs to be reflected.

As shown in Table 4, we compared the execution time
of employed machine learning techniques in our analysis.
For feature selection techniques, the embedded EN technique

TABLE 4. The comparison of execution time for machine learning
techniques.

takes the lowest execution time when compare with wrap-
per feature selection techniques of SBFS-RF and SVR-RFE.
As we know well, wrapper techniques are computationally
intensive because wrapper techniques train a model for each
subset. Therefore, a model and searching strategy are essen-
tial to finding the optimal combination. The SBFS-RF takes
long execution time than other feature selection techniques.
In the case of classification algorithms, we determined the
execution time of training data produced by EN. Moreover,
only optimized best parameters were used to execute the time
of these classifiers.

It is clearly shown that SVM takes a long time when we
used the optimal polynomial kernel function. Contrary, KNN
and MLP ran faster but could not achieve acceptable predic-
tion accuracies. Among tree-based classifiers, the XGBoost
became slower and needs more memory to run than RF,
however, we got computable accuracy with the proposed
DNN classifier. Even though EN based DNN was performed
the fastest one when compare with others, it served our
purpose. In addition, the most time-consuming SBFS-RF and
SVM techniques may not suit the ongoing trend of healthcare
technology.

C. GLOBAL AND LOCAL EXPLANATION RESULTS
The model explanation is an essential task to get a better
understanding of the reasoning behind the predictive mod-
els. In the second component of the proposed framework in
this study, a standard forward pass is applied to DNN and
activation at each layer is merged for the prediction task.
Thereafter, in the third component, the score obtained at the
output of the DNN is propagated backwards in DNN, using
the propagation rule of the DeepSHAP approach in order to
enhance the interpretability of the NCDs prediction model
across the United States population.

The DeepSHAP approach enables two perspectives on
the DNN model explanations: population-based and human-
centered perspectives. In terms of the population-based
perspective, the proposed model is able to explain conditional
interactions between risk factors and classes on the training
dataset. Moreover, the model can explain the conditional
interaction between features and classes for a single individ-
ual for human-centered perspective.
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FIGURE 12. The global explanation for non-communicable diseases among the United States from the
population-based perspective.

To ensure model explanation, features were sorted in
descending order of their importance scores in DNN model
construction. As a selection result of the EN, 35 features
were selected to build the prediction model. Among the
general population in the United States, the most relevant
20 features of total features with their importance scores
are presented in FIGURE 12. For the prediction model of
NCDs across the entire population, ‘‘Ever told you had
high blood pressure’’, ‘‘Age in years at screening’’, ‘‘Body
Mass Index (kg/m2)’’, ‘‘Doctor told you - high choles-
terol level’’, ‘‘Gender (1-male; 2-female)’’, ‘‘Had at least
12-alcohol drinks/1 year’’; ‘‘How do you consider your
weight’’; ‘‘Smoked at least 100 cigarettes in life’’ and ‘‘Ever
told have health risk for diabetes (among family history)’’
were maintained most significant features with importance

FIGURE 13. Local explanation of a single instance from the
human-centered perspective.

scores of 0.895, 0.656, 0.501, 0.315, 0.245, 0.223, 0.221,
0.201 and 0.191, respectively.

Therefore, high blood pressure occurred as a highly scored
feature in the population of the United States. Similarly,
a study [60] found an eminent association between high blood
pressure and NCDs among middle-aged and older adults
(aged 45 years and older) in China. In addition, approxi-
mately 9.4 million deaths are estimated caused by raised
blood pressure, which means approximately 40% of adults
have hypertension [61]. Overweight, cholesterol level and
obesity determined significant features to develop NCDs in
our study. Likewise, according to the study [62], the preva-
lence of increasing body mass index and high cholesterol
level increased at more than one-half of the adult population
in the United States. Essentially, obesity is a global burden,
which has been strongly associated with most NCDs. This
result is similar to that study [63], where high rates of over-
weight and obesity increased the burden of type 2 diabetes,
coronary heart disease, and stroke in most countries in the
Middle East.

According to the study [64], the risks for severe illness
from NCDs increased along with older adults in India.
Moreover, they identified that lower socioeconomic status
is associated with smoking, alcohol use, low intake of fruit
(vegetables), and being underweight, whereas, higher socioe-
conomic status is associated with greater exposure to obesity,
dyslipidemia, diabetes in men, and hypertension in women.
Also, the authors highlighted the prevalence of cigarette
smoking among men and obesity among women was signif-
icantly higher in rural India. In another study [65], authors
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determined the prevalence of risk factors of NCDs among
rural communities in the Limpopo Province of South Africa.
Their results defined that tobacco prevalence, alcohol con-
sumption, and being overweight has a consistently higher
association with NCDs among adults.

Therefore, most of the notable risk factors for NCDs were
represented as modifiable. It is well known that modifiable
risk factors are behaviours and exposures that were highly
associated with the risk of developing various diseases. Due
to prevent and correct these modifiable risk factors, it is
required to take actions such as smoking cessation, alcohol
reduction and exercise in public health. The highly scored
risk factors enhance the rationale decisions in disease-related
health concerns and should be collected in NCDs prediction
data.

As a result of the DeepSHAP based global explanation
approach, high-scored features are at the top of the list.
These importance scores are appropriate for understanding
the entire sample of the population, however, not at the
individual level. Further, even some features seem to have
less impact on the NCDs prediction model among the whole
sample, but in some cases, they may have a critical impact on
some part of the patients for diagnosing NCDs.

In FIGURE 13, the local explanation of the randomly
chosen individual is shown. Local explanation result exhibits
the most important 10 features of individual, negative risk
factors were colored by orange and positive risk factors were
marked by blue. Each value and its detailed descriptions
are provided in Appendix. A negative coefficient exhibits
an inverse relationship that the event becomes less likely as
the predictor increase. The highest negative relationships for
preventing NCDs were identified with the randomly chosen
individual were ‘‘Age in years at screening = 65 (years
old)’’, ‘‘Feeling down, depressed, or hopeless = 2 (Several
days)’’, ‘‘Total sugars (gm) = 63’’, and ‘‘Body Mass
Index (kg/m2) = 28.6’’.
On the contrary, ‘‘Body Mass Index (kg/m2) = 28.6’’,

‘‘Had at least 12-alcohol drinks/1 yr? = 2 (no)’’ and
‘‘Education Level = 3 (College graduate or above)’’ were
significantly positively associated with preventing NCDs.
As noted, in patient-centered healthcare applications, local
explanations can be more accurate than global explanations.

Consequently, domain experts can able to explain the inter-
nal behaviour of accurate deep neural networks and know
essential reasons to develop NCDs among the entire popula-
tion and each individual. Furthermore, local explanations are
crucial to make personalized health care recommendations.

VI. CONCLUSION AND FUTURE WORK
NCDs lead to the occurrence of premature death and become
a significant threat to public health globally. It is essentially
needed to reveal a more intelligent model that can assist in
an early diagnosis of NCDs in the health care area. However,
constructing an accurate and explainable model is challeng-
ing in the machine learning community.

Thus, we have proposed DeepSHAP based DNN frame-
work equipped with an EN feature selection for early

prediction of NCDs. The procedure of this framework com-
prises three components: (I) representative features were
selected based on EN; (II) DNN classifier was tuned with
the hyper-parameters and used to train the model with the
selected feature subset; (III) global and local level explana-
tions were provided by DeepSHAP technique. As a result,
the proposed framework emerged as being the best predic-
tive model as it can reach notable superior performance
than the other state-of-the-art baseline models. Furthermore,
the proposed model provides explanations of NCDs along
with information about the entire population as well as each
individual in the NHANES dataset. Thus, we are able to
explain the internal behaviour of accurate DNN and know
exactly why it makes specific decisions.

Despite the potentials, this study has certain limitations.
We have used only one cross-sectional dataset because NCDs
data are usually not available. In other words, we have done
our analysis at only a specific point in time. Nevertheless,
the time series forecasting model is significantly crucial to
predict the disease progression, estimate early warning scores
of critical transitions over time. Thus, we have planned to
extend our model to achieve accurate and explainable per-
formances on longitudinal data while handling frequently
occurred class-imbalanced problems. The further extended
analysis expected to provide more advantages for experts to
detect developments or changes in the characteristics of the
target.
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