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ABSTRACT In recent years, more researchers pay their attention to the security of artificial intelligence. The
backdoor attack is one of the threats and has a powerful, stealthy attack ability. There exist a growing trend
towards the triggers is that become dynamic and global. In this paper, we propose a novel global backdoor
trigger that is generated by procedural noise. Compared with most triggers, ours are much stealthy and
straightforward to implement. In fact, there exist three types of procedural noise, and we evaluate the attack
ability of triggers generated by them on the different classification datasets, including CIFAR-10, GTSRB,
CelebA, and ImageNet12. The experiment results show that our attack approach can bypass most defense
approaches, even for the inspections of humans. We only need poison 5%-10% training data, but the attack
success rate(ASR) can reach over 99%. To test the robustness of the backdoor model against the corruption
methods that in practice, we introduce 17 corruptionmethods and compute the accuracy, ASR of the backdoor
model with them. The facts show that our backdoormodel has strong robustness formost corruptionmethods,
which means it can be applied in reality. Our code is available at https://github.com/928082786/pnoiseattack.

INDEX TERMS Deep learning, backdoor attack, procedural noise, global trigger.

I. INTRODUCTION
In recent years, deep learning has achieved great success
in computer vision ([1]), natural language processing([2])
and graph neural network([3]). Besides, deep learning
also has greatly promoted the epidemiological study of
COVID-2019 and the development of antibodies.([4]–[6]).
However, there exist many threats for deep learning: adver-
sarial examples([7], [8]), which attack the models at the test-
ing stage through adding some small perturbations that are
unseen by humans; backdoor attack([9], [10]), which attack
the models at training stage through inserting some poi-
soned data into a training dataset; inference attack([11], [12]),
which infers the training data or the model weights according
to the deep learning model could remember the training data.
Therefore, we can see that deep learning is facing many secu-
rity problems. The scenarios which the adversaries can attack
includes face recognition([13]), disease diagnosis([14]),
spam detection([15]), autonomous driving([16]) and so on.
How to defend against these attacks is still an open problem
for researchers. Compared with some attacks, the backdoor
attack is stealthy, whose triggers are often not easily detected.
However, the attacking ability of which is powerful, with a
high attack success rate. Therefore, the backdoor attack is
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full of several research values. We assume that some individ-
uals or small companies need to customize models to work
with actual needs for the backdoor attack. However, these
individuals or small companies have no enough resources to
train models, so that they need to submit the requirements
to the third-party platform, and the third-party platform will
return the models to users after training. With such a process,
the adversary can insert triggers into the model and have
a backdoor model. The backdoor model can keep a high
accuracy on benign inputs but classify the poison images as
targeted labels that the adversary wants. Another scenario for
the backdoor attack is that some companies or individuals
will download datasets or backdoor models from the website.
The datasets may be injected with the poisoned data, and the
modes will be implanted with a backdoor if training model
with these datasets. Even some large companies which have
enough computing resources can also be attacked. Federated
learning([17]) is a promising field that collects data from
the million(even billion) devices in a real sense and trains
models with these data to enhance the generalization ability
of the model. However, the data collected from the reality
is easy to be inserted into triggers and brings in backdoor
attacks([18], [19])

There are a lot of attack methods in backdoor attacks,
which can be classified as visible backdoor triggers([9], [10])
and invisible backdoor triggers([24], [25]). Except for image
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classification, some traces of backdoor attacks can also
be found in these fields: video recognition([25]), natu-
ral language processing([26]), graph neural networks([27]).
Although the backdoor attack has a powerful attack abil-
ity, the limitations of the triggers will affect the stealth-
iness of which. There exist many attack methods whose
triggers can be detected by human vision. As we can see
from Fig.1, the triggers of BadNets([9]), Blended([20]),
SIG([21]), Refool([22]) are too apparent for the manual
detection. Therefore, designing a more stealthy attack algo-
rithm is full of necessary. In this paper, we introduce a novel
trigger which generated by procedural noise. Fig.1 shows
the poisoned examples generating by our approach, and we
can find that which is more unnoticeable than any other
poisoned examples. Moreover, our poisoned image is natural
and difficult for humans to distinguish.

We introduce the related works in Section 2, including the
works of attacks and defenses. In Section 3, we mainly pro-
pose the preliminary knowledge about procedural noise and
backdoor attacks. Moreover, we will introduce our approach
in Section 4, and the experiments for evaluating are in
Section 5. In Section 6, we draw a conclusion of our paper.

The main contributions of our paper are following:
• We propose a novel backdoor attack approach, which is
more powerful and stealthy. The triggers of our attack
approach are easy to generate, which means that we can
quickly generate lots of triggers, not static but still have
attack ability.

• We introduce six different baseline defense approaches
and evaluate our attack performance with these defenses
on different datasets. The results prove that our approach
is powerful and robust enough to defend most defense
methods.

• To verify the robustness of our approach for the cor-
ruption methods, we list 17 corruption methods in the
classification tasks and test the accuracy and ASR under
these corruption methods. Our approach is still robust
for the corruption methods, which means our approach
has excellent application values.

II. RELATED WORK
In this section, we will introduce the related works on back-
door attacks and the defense approaches.

A. ATTACK
For backdoor attack, [9] firstly proposed BadNets attack. The
BadNets attack only needs to insert into a few training data
with some particular patterns and flip the labels but has a high
attack success rate. However, this attack will leave a trace of
backdoor in the activation filters layers. [28] proposed clean-
label attack, the two approaches: GAN-based and adversarial-
attack-based are introduced in paper [28]. Compared with
the BadNets attack, the adversary only needs to poison a
small percentage of a single class, but the attack ability is
strong. Interestingly, [29] proposed an optimization-based
method to generated the poisoned data, which only needs to

poison the target class with one image and can reach well-
performance on ASR. Although these early methods have
high ASR, they can be detected with some standard detection
methods([30]–[32]). However, [33] designed an embedding
algorithm, which can bypass the detection approaches. They
added a discriminator to distinguish the poisoned data and
clean data, then update the parameters of the model with the
loss of discriminator, aiming to confuse the discriminator.
The detection approaches will fail because the feature rep-
resentation of the poisoned and clean data is mixed when
the discriminator cannot distinguish them. [34] presented the
backdoor attack with dynamic triggers, the similar idea is
claimed in [35]. They used a generator network to generate
the triggers according to the inputs. The triggers of different
inputs are also different. However, the drawbacks of the
approaches in [34], [35] are that the triggers are still apparent
for humans and can be detected by then visual detection. [22]
proposed a novel attack approach Refool that used physical
reflection properties to implant backdoors. The adversary
will choose some images from candidate images subsets, and
these images are inserted into the target images as the trig-
gers through the reflection algorithms in [22]. [23] proposed
attack approachWaNet that using a small and smooth warping
field to generate poisoned examples. The poisoned exam-
ples of WaNet are not inserted into the visual patterns but
with the small unnoticeable distortion. Besides, [18] firstly
released semantic attack to backdoor federated learning.
[36], [37] also introduced the similar ideas of semantic back-
door attacks. The semantic backdoor attack is stealthy for
humans because the triggers are more realistic and easily
ignored.

Moreover, there exist some attacks to modify the mod-
els. [38] first explored the attack based on modifying the
model parameters directly without training with poisoned
data. [39] injected the backdoor through inverting bits on
the quantization network. [40] also proposed a similar attack
method. At present, [41] showed how to backdoor attack
contrast learning. They listed many enlightening findings in
their paper and claimed that poisoning only 0.005% can cause
the model to misclassify. In the future, backdoor attacks with
self-supervised learning will be a promising research field.

B. DEFENSE
Although the backdoor attack has a certain stealthiness and is
challenging to be detected by humans, most of the backdoor
attacks will still leave a trace to be detected. [30] proposed
that the spectrum of the feature represents covariance can be
used to detect the backdoor. [31] found that the feature repre-
sentations of the poisoned data and clean data are different in
that they could be clustered into two clusters, one is poisoned,
and the other is clean. Based on an intuition that the triggers
are usually small so that [32] used the optimization method
to get reverse engineer trigger for each target label and mea-
sured the L1 norm of the triggers. They defined anomaly
index, the absolute deviation of the data point divided by
the median of their absolute deviations, as the detection
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FIGURE 1. Comparison among different backdoor attacks. The leftmost is the original images and the frequency domain
image with Fast Fourier Transform(FFT). The top row shows the poisoned examples generated by BadNets([9]),
Blended([20]), SIG([21]), Refool([22]), WaNet([23]) and our method. The last one of that is the image adding natural noise,
taking it as a natural condition. The second row shows the residual map, following [23]. The poisoned examples generated
by the first four methods are unnatural. Both the WaNet method and our method are not easy to detect by humans, and
our method has fewer changes to the original image. We transform images through FFT to show more details because the
high-frequency domain can show the changes in detail. It can be seen that the images change a little under our method in
the high frequency, which highlights the stealthy of our approach.

criterion. [42] proposed a method utilizing a likelihood-ratio
test to analyze the feature representations and identify the
legitimate image. [43] perturbed the inputs by superimpos-
ing various image patterns and observing the entropies of
inputs. They claimed that the entropies of poisoned examples
are lower than that of the clean. Recently, [44] introduced
to compute adversarial perturbation for each input and uti-
lize the difference between the perturbations for the clean
examples and the poisoned examples to detect. Besides, [45]
studied the dissimilarities between poisoned examples and
clean examples under the frequency domain and proposed
a feasible detection method. In addition to these detection
methods, there also exist many approaches that mitigating
the attack ability. [46] proposed to use neuron pruning to
mitigate backdoor. [32] proposed Neural Cleanse with three
approaches: input filters, neuron pruning, and unlearning.
These threemethods provided some enlightening ideas for the
defense against backdoor attacks. [47] pointed out the vulner-
ability of triggers and demonstrated that transformationmeth-
ods could defend against backdoor attacks. [48] showed that
adversarial training could be used to enhance the robustness
of the model to mitigate attacks. Besides, [49] proved that
using L2 regularization could mitigate backdoor attacks and
the tight parameters are the key to this defense approach. [50]
studied a lot of specific attack methods and defense meth-
ods in detail, and listed the advantages and disadvantages
of these methods, puts forward some incisive conclusions.
Therefore, it is suggested that readers can read through this
paper. Following the [50], we also suggest the researchers
can have a better understanding about some resources on
https://pages.nist.gov/trojai/.

III. PRELIMINARY
A. BACKDOOR ATTACK
In the backdoor attack, the adversary can get to the clean
training dataset D and modify the clean dataset by injecting
some poisoned data P following D′ = D ∪ P, the backdoor
model f ′ can be obtained through training with poisoned
dataset D′. The backdoor model f ′ has regular classification
performance on the clean dataset but classifies the poisoned
data with triggers into the labels that the adversary wants.
This attack mode is often a targeted attack. The poisoned
example x ′ is normally written as x ′ = x ⊕ T , where T is
the backdoor trigger. In this paper, the generation of poisoned
data is following as:

x ′ = G(x) = clip((1− α) · x + α · T , xmin, xmax) (1)

whereG(·) is the generation function, α ∈ [0, 1] is a trade-off
hyper-parameter, x ′ is the poisoned example. And xmin, xmax
are the minimum and maximum values of images x. Attack
success rate(ASR) is a crucial index to measure the effect
of the backdoor attack, which means the success rate of
classifying the poisoned data into the target class. It is as
follows:

ASR =

∑
x,y∈Dtest [f

′(G(x)) = y′|y 6= y′]

NDtest
(2)

where y′ is target class, and NDtest is the number of
dataset Dtest .

B. PROCEDURAL NOISE
In Computer Graph field, Noise is defined as the random
number generator of computer graphics([51]). The function
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of noise is always characterized by the power spectrum. If we
can manipulate the power spectrum of the noise, we can
model the noise in a highly structured texture. Procedural
noise is a special class of noise that has rich texture features.
Meanwhile, it has a rich mathematical theory to follow and
easily interpret. There are many methods to generate proce-
dural noise, which are classified into the following:
• Lattice

– Perlin One of the famous procedural noise genera-
tion algorithms is the Perlin noise algorithm([52]).
To generated Perlin noise, firstly, we define a lattice
structure and compute the pseudo-random gradient
vector of the vertices of each lattice. Secondly,
we compute the distance between point (x, y) and
its adjacent lattice vertices, then dot them with the
gradient of vertices. Finally, we compute the weight
sums by using the relaxation curve. The relax-
ation curve function is often as following function:
y = 3t2 − 2t3 or y = 65 − 15t4 + 10t3.

– Simplex Simplex noise is an improvement on Perlin
noise([53]), the complexity of Perlin noise isO(2n),
but Simplex noise is O(n2) and the lattice type of
Simplex noise is also different from that of Perlin
noise.

• Convolution
– Gabor Gabor noise is a sparse convolution noise

with the Gabor kernel g([54]) as following:

g(x, y) = Ke−πa
2(x2+y2)

× cos [2πλ (x cosω0 + y sinω0)] (3)

where K and a are the magnitude and inverse width
of the Gaussian kernel, λ, ω0 are the period and
orientation. For a point (x, y), the Gabor noise Nx,y
in (x, y) is computed as follows:

N (x, y) =
∑

wig
(
Ki, ai, λi, ω0,i; x − xi, y− yi

)
(4)

where wi is the random weights, (xi, yi) are the ran-
dom positions, Ki, ai, λi and w0,i are the parameters
of the different Gabor kernels.

• Point
– Worley [55] proposed a function-based Voronoi

graph to generate procedural noise. This noise has a
lattice texture, and it can produce textured surfaces
resembling flagstone-like tiled areas, organic crusty
skin([55]).

– Voronoi Voronoi noise is based on Worley noise,
whose edges are much smoother and the textures of
which are more natural.

IV. PROCEDURAL NOISE ATTACK
A. ATTACK MOTIVATION
How to make the design of the trigger more invis-
ible? Comparing with local triggers([9], [28]), global

triggers([22], [23]) more stealthy and unnoticeable. The trig-
gers of [22], [23] are global and show the powerful attack
capability and stealthiness(Fig.1). Therefore, there exists an
intuition that designing a global trigger, which is easy to be
learned for deep learning. It can be interpreted as following:

The texture is an essential feature of the image. If we modify
the texture feature of inputs slightly and teach the model to
learn this new texture feature, can we make the model
remember this textured pattern and take it as a trigger?

Procedural noise has strong texture features, and it is
often used in terrain generation, computer graphics, and other
fields([51]). According to intuition, we can add an imagewith
different types of procedural noise by Equation.1. To show
the effectiveness in the worst case, we choose a picture whose
background is pure color, Fig.2 shows the demo of the image
with procedural noise. The fusion scalar α in Equation.1 is set
as 0.2. We can find that images with the Perlin noise, Simplex
noise, and Voronoi noise are still natural even in the worst
case. Although there exist some shadow regions in the image,
they are often ignored by the vision system of humans.

FIGURE 2. The images with different procedural noise. The top row is the
procedural noise, and the bottom row is the images adding the
corresponding procedural noise. We set the fusion scalar as 0.2.

[56] proposed to use procedural noise as the universal
adversarial perturbation for the black-box adversarial attack.
They claimed that the procedural noise has high ASR to
cheat the classifiers because the procedural noise and the
other existing Universal Adversarial Perturbations (UAPs)
are similar. [57] claimed that the adversarial perturbations
could change the features of inputs. Therefore, we can con-
clude that the procedural noise, similar to UAP, can change
the features of inputs and attack the model. Our motivation is
to utilize the property that changing the feature to make small
perturbations to the target object. In the backdoor attack,
we use procedural noise to change the features of inputs
and make the model learned that changed features as the
potential triggers. In the adversarial attack, procedural noise
changes the features of inputs and confuses the model to get
an incorrect result. There is a significant gap between the
backdoor attack and the adversarial attack with procedural
noise. Next, we will show our attack approach in detail.

B. ATTACK APPROACH
Our attack method can be divided into the following steps:

1) Generate procedural noise. In this paper, we introduce
three different categories of procedural noise. As we
can see from Fig.2, we can find that the different types
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of procedural noise in the same category are similar.
Therefore, we can choose one from each category as
representative. In this paper, Perlin noise, Gabor noise,
and Worley are chosen to evaluate the attack effective-
ness. Meanwhile, we will adjust the procedural noise
and tune it for practical purposes to make our noise
challenging to detect.

2) Train a clean model to gain the attention images of
GradCAM([58]). If we add noise directly to the large-
scale images, the backdoor model will remember the
texture features of the whole procedural noise images.
In this case, the attention of the GradCAM is abnormal,
and it is easy to detect by using the approaches of XAI.
Therefore, we choose the attention image of the model
as amask for the procedural noise images, and the noise
to be injected into the image is the procedural noise dot
product with the mask. It will be explained in the next
itemize in detail.

3) Fuse image and noise. We define the procedural noise
as Ip, the attention image as Ia. To mitigate the effect
of the Mach Bach, we use the sin function to fuse the
noise and image. The mask is defined as follows:

mask = dot(sin(
π

2
Ia), Ip) (5)

where the dot is the dot product, next, we will use the
mask noise as the backdoor trigger T .

4) Train the backdoor model. The whole training process
can be seen in Fig.3.

FIGURE 3. An overview of our attack approach. The whole training
process for the backdoor model follows: Firstly, we extract the attention
image for the original image through GradCAM methods. Secondly,
we randomly generate the procedural noise and dot product with the
attention image to produce the trigger. Finally, we generate the poisoned
example following Equation.1 and train model with such poisoned
example.

V. EXPERIMENT
A. EXPERIMENT SETUP
In this paper, we evaluate our attack approach on four differ-
ent datasets: CIFAR-10, GTSRB, CelebA, and ImageNet12.
These four datasets are the benchmark datasets in the Com-
puter Vision(CV) field. The evaluation results can provide
fair and trustworthy comparisons. For the CelebA dataset,
there exist 40 attributions, and we choose three attributions
of them and split the CelebA dataset into eight classes to

do multi-class classification. For ImageNet12, we choose
12 classes from the total ImageNet dataset following the
experiments settings in [22].
• CIFAR-10 CIFAR-10 dataset has 10 classes, whose
images are 3 channels. The size of images from the
CIFAR-10 dataset is 32×32×3. The training set consists
of 50K examples, and the testing set consists of 10K
examples.

• GTSRB GTSRB dataset is a multi-class, single-image
classification dataset, which has 43 classes, and more
than 50,000 images in total. The size of images from
GTSRB is from small to large, and we resize them into
the scale 32× 32× 3.

• CelebA CelebA is a large-scale face attributes dataset
with more than 200K celebrity images, each with
40 attribute annotations. In this paper, we resize them
into the scale 64× 64× 3.

• ImageNet12 ImageNet12 is a subset of the ImageNet
dataset. The entire training set consists of 12492 images,
and the testing set consists of 3132 images. In this paper,
we resize them into the scale 224× 224× 3.

In this paper, we use ResNet18 to train CIFAR-10, GTSRB,
and CelebA datasets and use DenseNet121 to train the Ima-
geNet12 dataset. The optimizer is Adam optimizer with an
initial learning rate of 0.001. Besides, the fusion scalar α is
0.3 for CIFAR-10 and GTSRB, and that for CelebA, Ima-
geNet12 is 0.2. The poison ratio is 0.1.

B. ATTACK EXPERIMENTS
This paper lists three types of procedural noise, and each
type of procedural noise has multi-hyperparameters for its
functions. Naturally, there will raise some questions:
• Do the hyperparameters of procedural noise have effects
on the attack efficiency?

• Do different types of procedural noise have effects on the
attack efficiency?

There exists more than one hyperparameter for procedural
noise. To simplify the question, we choose one hyper-
parameter as the controlled variable, and we set differ-
ent hyperparameters values for Perlin noise(lattice-based
method), Garbor noise(convolution-based method), andWor-
ley noise(point-based method). For Perlin noise, the period
is the critical factor to control the noise. If the period is
small, the scale of Perlin noise is much smaller (Fig.4 top).
Therefore, we choose the period p as the controlled variable.
For Gabor noise, we choose λ of Equation.3 as the controlled
variable. The Gabor noise with different λ and the images
with these noises are shown in the middle of Fig.4. For the
Worley noise, the number of lattice n is the key parame-
ter. We generated the Worley noise with different n, and
the images with the Worley noise are shown at the bottom
of Fig.4.

The period p for Perlin noise is set from 10 to 100,
the period λ for Gabor noise is set from 5 to 50, and the
number of points n for Worley is set from 2 to 20. The other
hyperparameters are stable that following the [56]. The fusion
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FIGURE 4. The demo of the images with different procedural noise. We choose Perlin noise, Gabor noise, and Worley noise. The first row of each
sub-figure is the corresponding procedural noise, the second row is the images with procedural noise, and the third row is the residual image. We set
fusion scalar as 0.2, and the g in Equation.5 in the 1h×w , where h, w are the height and width of image. For the large-scale dataset(ImageNet12), the g is
usually set as the pixel values of the attention image. Especially for images with the Worley noise, we mark some regions with red circles that may be
used as a basis for judging the backdoor attack.

scaler is set as 0.2. The demo of the images with different
procedural noise is shown in Fig.4. As we can see from Fig.4,
the perturbations of Perlin noise are more subtle and more
fine-grained. Although the periods are from small to large,
the differences among these periods are not noticeable. The
distortions are substantial enough for the Gabor noise when λ
is small, and the distortions will decrease when the λ becomes
large.When the λ is 50, the bandwidth of the procedural noise
image is large so that the changes in the neighbor region are
not drastic, and we can find the image with the Gabor noise
under the λ is 50 are natural. For the Worley noise, it is clear
that the Worley noise is like clusters, making corresponding
target image regions turn shallow and become abnormal.
To highlight this case, we mark the shadow regions with red
circles that may leave the trace for humans to be detected.

To evaluate the attack ability of the procedural noise under
different hyperparameters, we compute the accuracy and
ASR. The evaluation results are shown in Table.1. As we can
see, each accuracy of the backdoor model is similar to the
standard clean model, and the ASR is also high enough to
prove the powerful attack ability. Meanwhile, we can find few
differences for the backdoor with the same procedural noise
but different hyperparameters. The different types of proce-
dural noise have similar performances. Therefore, we can
conclude that the hyperparameters of procedural noise have
few effects on the attack efficiency, and they all have high
accuracy and ASR. Based on the conclusion, we can have a
more stealthy and fine-grained backdoor attack, which is not
easy to detect.

C. DEFENSE EXPERIMENTS
To evaluate if our attack approach can attack against the
most defense methods, we choose Activate Clustering([31]),
Spectral Signatures([30]), Fine-Pruning([46]), Neural Clea-
nse([32]), STRIPS([43]) and GradCAM Visualization as
baseline defense approaches. The main introductions of these
defense approaches are following:
• Activate Clustering Activate clustering is a detection
method to defense against backdoor attacks. [31] found
the feature representations can be clustered into two
clusters. One is a poisoned cluster. The other one is
a clean cluster. The last hidden layer can reflect the
high-level features of the inputs([50]). If there exist
differences among the high-level features, the feature
representations can interpret these differences. There-
fore, activate clustering utilizes this property to detect
the poisoned examples.

• Spectral Signatures The spectral signatures method is
also a detection method to detect whether the inputs
belong to poisoned data. [30] claimed that the backdoor
model would leave the trace for the poisoned data. They
used singular value decomposition to decompose the
latent representations and computed the outlier score.
If the outlier score is high, the input will be judged to
be a poisoned example. Otherwise, the input is a clean
example.

• Fine-Pruning Pruning technology is a valuable technol-
ogy in deep learning. Fine-pruning is to prune the acti-
vated neurons to mitigated the backdoor attack carefully.
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TABLE 1. Accuracy and ASR for the procedural noise with different hyperparameters.

FIGURE 5. The representations of the poisoned examples and clean
examples. We use PCA to represent the last hidden layer and K-means to
cluster the poisoned clusters and clean clusters.

Inspiring the neurons will be activated when meeting
the poisoned trigger([9]), [46] proposed to prune the
backdoor neurons then restore the model performance.
However, this method will degrade the accuracy of the

FIGURE 6. The detection for the three types of procedural noise attack on
the CIFAR-10 dataset through spectral signatures.

FIGURE 7. Fine-Prunning on CIFAR-10. The x-axis is the number of
pruned filters, and the y-axis is accuracy.

model, and pruning each neuron will have high compute
complexity.

• Neural Cleanse Neural Cleanse is also a detection
approach against backdoor attacks. [32] used reverse
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FIGURE 8. The anomaly index of the clean data and poisoned data on the
dataset CIFAR-10.

FIGURE 9. The entropies of poisoned examples and clean examples on
CIFAR-10.

FIGURE 10. The activation heatmaps of the clean model and backdoor
models on the dataset CIFAR-10.

engineer to get the potential trigger for each label and
computed the L1 norm for each trigger. This input will
be a poisoned example if the potential trigger deviates
from the median absolute deviations of all potential
triggers. [32] defined anomaly index as the detection
criterion, and the anomaly index is always set as 2.

• STRIP STRIP is also a baseline detection method.
The intuition is that the prediction of clean input
under perturbations will have high uncertainty. How-
ever, the uncertainty of predicting poisoned examples
will be low, which has a strong hijacking effect to ensure
the attack success rate. [43] claimed that this method
is input-agnostic and can detect the poisoned examples
with the threshold of entropy.

• GradCAM VisualizationThe deep learning model
often lacks the explainability of decisions. However,
Explained AI(XAI) provides practical tools to compre-
hend the deep learning model. The supplement deci-
sions of XAI make it possible to detect backdoor
attacks. For a poisoned input, the defender will find the
anomalies if the attention of the model is not suitable.
Therefore, we will utilize GradCAM to visualize the
attention regions of the model and illustrate that
the attention of the backdoor model is similar to that of
the clean model.

FIGURE 11. The original image with the generated images by 17 different
corruption methods.

FIGURE 12. The accuracy and ASR of backdoor models with three types of
procedural noise.

TABLE 2. Activate clustering detection results on CIFAR-10.

To have the best stealthiness, we set the period p of Perlin
noise as 100, the λ of Gabor noise as 50, the number of
points n of Worley noise as 2. In the experiment section,
we mainly discuss the results of the CIFAR-10, and the other
results of other datasets are shown in Appendix. Moreover,
the conclusions about CIFAR-10 also fit the other datasets.

1) ACTIVATE CLUSTERING
Following the experiment settings from [31], we plot
the distribution of the poisoned examples(three types of
procedural noise) and clean examples on the CIFAR-10
dataset with PCA(Fig.5). As we can see from Fig.5, the clean
examples(blue points) and the poisoned examples(orange
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FIGURE 13. The poisoned data on the other datasets.

FIGURE 14. GradCam.

points) are mixed under the backdoor attack with Perlin
noise and Gabor noise, except for the Worley noise. The
results mean that the poisoned data with Worley noise
can be detected by the activate clustering approach, but
the poisoned data with Perlin noise and Gabor noise can
bypass the detection. To evaluate the detection effective-
ness, Table.2 shows the accuracy and F1-score of the detec-
tion on the clean data and poisoned data under different
labels. The Table.2 also prove the conclusion that we get
from Fig. 5.

2) SPECTRAL SIGNATURES
For the spectral signatures([30]), we compute the top right
singular vectors of the feature representations. The result is
shown in Fig.6. The x-axis shows the corresponding eigen-
value, and the y-axis shows the number of examples with the
corresponding eigenvalue. In contrast to the demonstrations
in [30], the eigenvalues of the poisoned examples with three
types of procedural noise are similar to the clean examples.
Even for the Worley noise, it can also bypass the detection.

For the detector, it is hard to separate the poisoned examples
from the clean examples. Therefore, the defender cannot
mitigate the backdoor attack by throwing away the poisoned
data.

3) FINE-PRUNING
Fine-Pruning mainly focuses on neuron analyses. For a given
specific layer, the last hidden layer is chosen as the specific
layer. We test Fine-Pruning on our models with different
procedural noise and plot the accuracy of clean data with the
backdoor model and clean model. As we can see from Fig.7,
there exist no points that the accuracy of the clean is higher
than the backdoor, meaning that our approach can bypass
Fine-pruning, and it is difficult for Fine-Pruning to mitigate
the attack.

4) NEURAL CLEANSE
[50] claimed that the Neural Cleanse is less effective with
the increased trigger size. The results of our experiment on
CIFAR-10 prove the demonstration from [50]. As we can

127212 VOLUME 9, 2021



X. Chen et al.: Use Procedural Noise to Achieve Backdoor Attack

FIGURE 15. Activate Clustering. The feature representations of the clean data and poisoned data.

FIGURE 16. Spectral signatures.

see from Fig.8, the anomaly index of the poisoned data with
procedural noise is all under threshold 2(The recommended
value in [32]), which means that our approach can bypass the
Neural Cleanse.

5) STRIP
In the evaluation with STRIP, we randomly choose 100 clean
images from different classes to superimpose them into
the test images and compute the entropies of inputs. Fig.9
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FIGURE 17. STRIP.

shows the entropies of the poisoned examples and clean
examples. We can see that the entropies of clean examples
and poisoned examples have similar distributions. Accord-
ing to the principle of STRIP, the poisoned examples usu-
ally have low entropies, and the clean examples usually
have high entropies, which fails for poisoned data with
procedural noise. The backdoor model generated by our
approach behaves like a benign model.

6) GradCAM VISUALIZATION
We randomly choose five images from the CIFAR-10 dataset
and visualize the activation heatmaps of the clean model with
backdoor models in Fig.10. As can be seen, the heatmaps
of the clean model and the backdoor models are similar
and there exist few differences among them. Although the
poisoned data is injected into the trigger, procedural noise,
the heatmaps do not change a lot, which means that our
approach can bypass the GradCAM visualization detection.

D. ATTACK ROBUSTNESS
In practice, the backdoor triggers will become frag-
ile for disturbances, which will cause ASR to decrease
through some simple transformations or corruption meth-
ods. However, humans are not confused about these

transformations or corruption methods. There will exist some
limitations for the adversary to deploy the backdoor attacks
in the physical scene. We evaluate our attack approach
with different corruption methods to test the robustness.
We choose 17 corruption methods following [59]. These
seventeen corruption methods include Gaussian noise, shot
noise, speckle noise, impulse noise, Gaussian blur, glass blur,
zoom blur, motion blur, defocus blur, fog, snow, spatter,
contrast, brightness, jpeg compression, pixelate, and elastic
transform. We choose an image from GTSRB and generate
different images by 17 different corruption methods shown
in Fig.11.

We plot the accuracy and ASR of backdoor models with
three types of procedural noise under the corruption methods
in Fig.12. On the CIFAR-10 dataset, we can find that the
accuracy of the backdoor models decreases under the most
corruptions, and these models have a similar performance
of accuracy. However, there exist gaps among the ASR of
the backdoor models with different procedural. The Perlin
noise outperforms other procedural noise, and the different
types of procedural noise have different sensitivities for the
corruption methods. The ASR of Gabor decreases the most
with noise the Gaussian blur, glass blur, motion blur, defocus
blur, fog, snow. The Worley noise is affected by the defocus
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FIGURE 18. Neural cleanse.

blur and contrast. In other datasets, the conclusion about
the sensitivities of the backdoor models is also established.
In general, the Perlin noise is much more robust than other
procedural noise. The backdoor models with Gabor noise
and Worley noise are easily affected by corruption methods,
which are not entirely the same. Besides, we can find that
our approach is robust for most corruption methods, which
means our approach can be applied to the physical scenario
with the adaptive ability. In fact, the backdoor attack can
affect the deep learning models’ downstream tasks and can
also attack the applications about deep learning, such as face
recognition and autonomous driving. Therefore, the defense
approach against such attacks is necessary, and it will be the
future works for us.

VI. CONCLUSION
In this paper, we introduce a novel backdoor attack approach
that perturbs the target images with procedural noise, whose
triggers are powerful and stealthy. We study three different
types of procedural noise and prove that our attack approach
can bypass most defense methods. Besides, the experiment
with corruption also claims that our approach has strong
robustness for many corruption methods, and they can be
applied in practice. In the future, we will develop the defense
framework to defend some related backdoor attacks such as
Refool([22]), WaNet([23]) and our attack approach. More-
over, wewill also investigate the theory of the backdoor attack
to have a deeper understanding.

APPENDIX
THE EXPERIMENTS ON THE OTHER DATASETS
See Figs. 13–18.
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