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ABSTRACT The Internet of Things (IoT) is constantly growing, generating an uninterrupted data stream
pipeline to monitor physical world information. Hence, Artificial Intelligence (AI) continuously evolves,
improving life quality and business and academic activities. Kafka-ML is an open-source framework that
focuses on managing Machine Learning (ML) and Al pipelines through data streams in production scenarios.
Consequently, it facilitates Deep Neural Network (DNN) deployments in real-world applications. However,
this framework does not consider the distribution of DNN models on the Cloud-to-Things Continuum.
Distributed DNN significantly reduces latency, allocating the computational and network load between
different infrastructures. In this work, we have extended our Kafka-ML framework to support the manage-
ment and deployment of Distributed DNN throughout the Cloud-to-Things Continuum. Moreover, we have
considered the possibility of including early exits in the Cloud-to-Things layers to provide immediate
responses upon predictions. We have evaluated these new features by adapting and deploying the DNN
model AlexNet in three different Cloud-to-Things scenarios. Experiments demonstrate that Katka-ML can
significantly improve response time and throughput by distributing DNN models throughout the Cloud-to-
Things Continuum, compared to a Cloud-only deployment.

INDEX TERMS Distributed deep neural networks, data streams, cloud computing, fog/edge computing,

machine learning, artificial intelligence.

I. INTRODUCTION

Over the last years, a great number of sources and fields
have persistently procured tons of data [1]. Machine Learn-
ing (ML) and Artificial Intelligence (AI) [2] algorithms have
assumed an essential role in their processing and allowed us to
rely on practical tools in this computerized era. This is bene-
ficial since making useful predictions and suggestions have
drastically improved business activities and people’s lives.
For instance, well-known social media companies analyze a
huge amount of information to detect what they deem as inap-
propriate content [3], [4]. Also healthcare [5], [6], structural
health monitoring [7], [8], and education systems [9], among
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others, have advanced thanks to this progress. Regardless, all
this implies a continuous data processing that often does take
a long time to give an accurate answer, which may not be
sufficient in most real-time cases.

More recently, the Internet of Things (IoT) [10] is respon-
sible for most of the production of data streams. In fact,
the number of these data sources are increasing and 500 bil-
lion associated gadgets are estimated by 2030 [11]. This
means that the coming years will challenge current ML/AI
algorithms because of the immeasurable number of input
sources and the required response time. Most systems that
rely on these algorithms work with persistent and static
information rather than volatile, increasing, and continuous
data streams. In consequence, they could run into great dif-
ficulties for years to come due not only to uncontrollable
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data sources, but also adaptability problems. Therefore, data
stream technologies should be considered in outstanding
frameworks [12], such as Tensorflow [13] and PyTorch [14],
which currently offer limited support for these tools.

To overcome previous challenges, we developed Kafka-
ML [15], an open-source! framework to manage ML/AI
pipelines through data streams. Kafka-ML is based on the
popular and distributed message system Apache Kafka [16]
for data stream dispatch and adopts a microservice and con-
tainerization architecture for its deployment in production
environments. In the inference phase, ML/AI algorithms
in Kafka-ML can be deployed as single processing units,
i.e., the whole ML model, but they can also be distributed
in clusters for fault tolerance and high availability. How-
ever, in situations where a low latency is required it is
desirable to have faster responses as close as possible to
where the information is produced (e.g., in the Edge or
the Fog). It is unquestionable that the latency offered by
paradigms such as cloud computing might not satisfy the
requirements of low-latency applications, hence both Edge
and Fog computing [17] are contributing to these use cases.
Moreover, ML/AI algorithms, especially Deep Neural Net-
works (DNN), usually need a large number of computational
resources and specialized hardware (e.g., GPUs), which may
not satisfy the requirements of resource-constrained systems.
For this reason, DNN are partitioned along the Cloud-to-
Things Continuum in order to have smaller processing units
(and sub-models) distributed. The Cloud-to-Things contin-
uum (Figure 1) can be defined as a set of processing units,
such as fog servers and edge devices, located between the [oT
and the Cloud. Those processing units optimize bandwidth
consumption and response times for time-sensitive applica-
tions. For instance, a possible deployment in this context
could place IoT devices generating data streams connected
to edge devices, then edge devices connected to fog servers
for intermediary processing before sending the information
generated to the Cloud. These processing units can allocate
DNN, whose sub-models may present less accuracy at the
lowest layers, but they do reduce the response time [18]. This
paradigm is known as Distributed and Deep Neural Networks
(DDNN) [19].
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FIGURE 1. Cloud-to-things continuum.

As our framework Kafka-ML was only prepared to work
with DNN and not with DDNN applications, in this paper,
we introduce an extension which expands the functionality
of Kafka-ML by enabling the use of DDNN in its life cycle.

1 https://github.com/ertis-research/katka-ml
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This new version offers the same features as Kafka-ML, such
as the complete management pipeline of DDNN applications
and the data stream management. In addition, it supports the
training of DDNN models, the incorporation or early exits,
and the deployment of their sub-models for latency optimiza-
tion in distributed and heterogeneous clusters in the Cloud-
to-Things Continuum. In [15], we presented the Kafka-ML
framework and in [18] the architecture for connecting DDNN
over the Cloud-to-Things Continuum. In this work, we focus
on the extensions of Kafka-ML for enabling DDNN appli-
cations and managing its life cycle, in addition to further
evaluations of a DDNN application in different layers over
the Cloud-to-Things Continuum.

The rest of the article is organized as follows. Section II
presents the related work. Section III explains the motivation
to do this work. The design of distributed models is presented
in Section I'V. In Section V the ML/AI pipeline of distributed
ML models in Kafka-ML is detailed. Then, in Section VI
the Kafka-ML architecture for distributed ML models and
its components are presented. Section VII shows the results
of the validation carried out to evaluate the framework. And
finally, Section VIII presents our conclusions and future
possible works.

Il. RELATED WORK
Kubeflow [20], an open-source machine learning toolkit
for Kubernetes, allows configuring multiple steps of
machine learning and artificial intelligence pipelines, such as
hyper-parameters and pre-processing. Nonetheless, the flex-
ible support for DDNN over the Cloud-to-Things Contin-
uum and data streams is still out of this solution design.
Edgelens [21] and HealthFog [22], as frameworks, deploy
deep learning-based applications in Edge-Fog-Cloud envi-
ronments and improve their Quality of Service (QoS). Both
of them run non-distributed machine learning models, rather
than adjust DDNNs to the continuum. Moreover, Edgelens
scales down in resolution to reduce latency. IoTEF [23],
a fault-tolerant architecture, manages and monitors cloud and
edge clusters in a unified way. However, it still needs to
automatize the distribution of DDNN in order to accomplish
other QoS characteristics, such as low latency and optimiza-
tion of inference processes beyond fault tolerance.
Kafka-ML follows a different approach than other dis-
tributed data stream frameworks such as Apache Storm,
Apache Spark streaming, and Apache Flink [24]. Those pro-
vide frameworks to perform distributed computation over
data streams at any scale. Apache SAMOA [25] is another
project that aims to enable the development of ML algo-
rithms through data streams without directly dealing with the
complexity of underlying processing engines such as Apache
Storm and Apache Samza. In general, these frameworks
provide distributed engines for distributing computation in
general with data streams, but they do not have a special focus
or have limited support for facilitating popular ML/AI frame-
works (e.g., TensorFlow) and ML/AI pipelines as Kafka-ML
does.
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Teerapittayanon et al. [26] introduced the concept of early
exits with their BranchyNet approach. This concept allows
inferences to end in middle layers, rather than go through the
whole deep neural network model. The final accuracy could
decrease when using early exits, but it is acceptable consid-
ering the significant reduction of response time. Partition-
ing deep neural networks based on these early exits reduce
considerably the resource consumption over the Cloud-to-
Things Continuum, and thus, the DDNN that follow this
concept have a higher impact in reducing response time for
time-sensitive applications as they also diminish the sending
of messages to the highest levels of the continuum.

Additionally, there are studies that, by combining Cloud
and Edge environments, show that the response time is
accelerated while the network congestion is reduced [27].
Notwithstanding, along the continuum, Fog plays a role in
addition to Edge and Cloud. This led to DINA [28], a fine-
grained solution based on matching theory for dynamic
DDNN partitioning in fog networks. Regardless, early exits,
as BranchyNet [26] proposes, need to be considered since
the inference early stops at middle layers reduce not only
response time, but also network traffic [29] and computing
capacity [30].

DIANNE [31] provides a flexible and modular framework
for deep learning applications by splitting DNN into its ele-
mentary operations (e.g., softmax outputs and hidden layers)
and implementing these as services that can be distributed
across multiple and heterogeneous devices. Despite the great
modularity of this approach, it is limited to self-developed
components and not widely used frameworks, which may
limit the adoption of the solution. Moreover, DIANNE does
not consider Branchynet early exits for optimizing communi-
cation between layers.

An adaptive surgery scheme [32] dynamically splits
DDNN to optimize both the latency and throughput under
variable network conditions between the Edge and the Cloud.
This approach does not consider the cases where the inference
stops at the middle layers (early exits). In [33], an optimiza-
tion algorithm to find an optimal partition that minimizes
the inference time for BranchyNet networks is proposed.
AAIoT [30] proposes a neural network segmentation method
to optimize the computation allocation of inference tasks in
multi-layer IoT systems. Edgent [34] presents a framework
for dynamic DNN collaborative inference in Edge computing,
combining DDNN dynamic portioning and Branchynet early
exits to maximize the inference accuracy and optimizing the
latency response.

The main drawbacks of previous approaches are: 1) they
do not provide open-source implementations for the man-
agement of DDNN like Kafka-ML; 2) they do not consider
current used ML frameworks like TensorFlow for a better
extrapolation of the results; 3) some of them perform only
simulations results; and, last but not least, 4) they do not
consider fault tolerance or load balancing for infrastructures
with variable conditions and data streams inputs like the IoT.

125480

lll. MOTIVATION

Deep neural network models consist of a large number of
hidden layers. The distributed deployment [21] of these
tends to improve their response time [27], especially in
high-complexity, critical problems which need real-time
responses. Smaller neural networks significantly reduce
the response delay and can fit in devices with resource-
constrained limitations. However, they may also decrease the
accuracy, and thus, the reliability of these critical systems,
which may require greater confidence in the predictions.
In this sense, a tradeoff between accuracy, latency, and device
requirements can be present in the partitioning of deep neu-
ral networks. Therefore, instead of having IoT devices and
applications that collect and send information from the envi-
ronment to the Cloud, which processes it with all the latency
and bandwidth consumption problems involved as previously
envisaged in Kafka-ML,; in this work we envisage distributed
models that can be allocated in the continuum from the IoT to
the Cloud, including layers and paradigms such as Edge and
Fog computing. In these layers, DDNN will be dispatched to
provide time-sensitive responses as close as possible to where
the information is produced (IoT devices) when predictions
are accurate enough.

Despite the fact that allocating edge and fog layers in
the continuum improves latency and bandwidth consump-
tion problems, as well as reducing response times due to
workload distribution, these layers may be overloaded if they
are used to run computationally hard inferences hundreds of
times per minute. This overload can be handled by using
partitioned models based on BranchyNet, which considers
what are called early exits. Therefore, a large model could
return an accurate answer in early layers rather than at the
end of the model. Additionally, early exits allow us to par-
tition and distribute these models over different architecture
layers in the Cloud-to-Things Continuum. As a consequence,
intermediate edge and fog layers could infer from a small
part of a model and, if the prediction is accurate enough,
return a response without the need to wait for a Cloud
response.

On the other hand, the management and deployment of
infrastructures in the Cloud-to-Things Continuum can pose
several challenges due to the dynamic nature of its com-
ponents. In these scenarios, an adequate management and
fault-tolerant guaranties represent a must for the deployment
of DDNN. Moreover, due to the mobility of its nodes, DDNN
should be easily portable to avoid large delays. In this sense,
containerization technologies represent a suitable approach
for the deployment of DNN applications as demonstrated
with Kafka-ML, an approach which should be addressed
to manage the multi-layer infrastructures presented in the
continuum and the deployment of DDNN.

To sum up, we aim to extend the functionality provided by
Kafka-ML in order to allow it to work with DDNN and early
exits in the Cloud-to-Things Continuum, and also to support
the management, deployment and sharing of distributed ML
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edge_input = keras.Input(shape=64,
name="edge_input )

x = layers.Dense (64,
activation=tf .nn.relu ,
name="relu *)(edge_input)

output_to_cloud = layers.Dense (64,
activation=tf .nn.relu ,
name="output_to_cloud ") (x)

edge_output = layers.Dense(10,
activation=tf.nn.softmax ,
name="edge_output *)(output_to_cloud)

edge_model=keras .Model(inputs=[edge_input],
outputs=[output_to_cloud, edge_output],
name="edge_model *)

cloud_input = keras.Input(shape=64,
name="cloud_input ’)

x1 = layers.Dense (64,
activation=tf .nn.relu ,
name="relul *)(cloud_input)

x2 = layers.Dense(128,
activation=tf .nn.relu ,
name="relu2 ’)(x1)

cloud_output = layers.Dense(10,
activation=tf .nn.softmax ,
name="cloud_output ’)(x2)

cloud_model = keras.Model(inputs=
cloud_input ,
outputs=[cloud_output],
name="cloud_model )

Listing 1. Distributed ML models example for Kafka-ML.

models, metrics, and results in high-performance and high-
availability infrastructures.

IV. DEFINITION OF DISTRIBUTED MODELS IN KAFKA-ML
In order to have a better understanding of how distributed
models are and can be designed in Kafka-ML, it will be
explained how to define a distributed model step by step,
as well as the necessary parts to connect it in the ML frame-
work TensorFlow.

Listing 1 and 2 source codes may seem familiar. In fact,
they are simple Python TensorFlow/Keras model definitions
with certain hidden layers, outputs, and the compilation
for training. At present, Kafka-ML integrations with differ-
ent ML frameworks are still under development in order
to expand its domain. Currently, TensorFlow/Keras is sup-
ported. Figure 2 shows an overview of the distributed deep
neural model used for this example.

The first thing to consider when creating distributed mod-
els is the design of the structure of the global network that we
want to implement, i.e., defining the distributed sub-models
that will be part of it. In this case, an example is presented
in Listing 1, in which the global model is made up of two
different sub-models, which are two partitions to be deployed
at Edge and the Cloud. Once the architecture has been
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input = keras.Input(shape=64, name="input ’)
edge = edge_model(input)
cloud = cloud_model(edge[0])
model = keras.Model(inputs=[input],
outputs=[edge[1], cloud], name=’model )
model . compile (optimizer="adam’,
loss={
>edge_model ’:
>sparse_categorical_crossentropy ’,
>cloud_model ’:
>sparse_categorical_crossentropy ’
},
metrics =[ " accuracy '],
loss_weights=[0.001, 0.001])

Listing 2. Entire network definition example.

Relu (128) ]—>[Soﬁmax(10)H—>[CL0UD_0UTPUT]
Relu (64)
Input (64)

A

CLOUD

(output_to_cloud}———>{ }——>{softmax (10) }—é—)[EDGE_OUTPUT )
- Relu (64) :
Input (64)

Relu (64)

EDGE
FIGURE 2. Example of a distributed neural network.

decided, users, like in other ML frameworks, have to specify
how the internal structure of each one of the distributed
sub-models will be like. This structure consists of its input
layer, its hidden layers, and its output layers. In this example,
the sub-models have an equal input layer (edge_input and
cloud_input) of shape 64 in order to accept images. Thus,
the Edge model consists of only one hidden layer of 64 neu-
rons (targeted for resource-constrained devices), followed by
two output layers (output_to_cloud and edge_output). These
represent the connecting layer to the Cloud and the early exit
at the Edge respectively. These layers have to be specified
as outputs in the configuration of the global Edge model.
The Cloud model consists of two hidden layers with 64 and
128 neurons (x/ and x2 layers) followed by one output layer
(cloud_output). In this case, there is no need of an early
exit, since it is the last layer in this continuum. A notable
aspect of these distributed models is that they allow obtaining
partial outputs (predictions), as the information is processed
throughout the global network. This is achieved by estab-
lishing different types of outputs within each layer of the
continuum infrastructure (Edge and Cloud). For the example,
the softmax output layer edge_output of the Edge model is the
one which produces the intermediate prediction in the Edge,
and cloud_output produces the final output in the Cloud.
Another important output is the one that is responsible for
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sending the information to the next layer of the distributed
model so that it can continue to be processed (here is where
the union of the distributed sub-models is performed). In our
case, the ReLU output layer output_to_cloud of the Edge
model carries out this task, which will be linked to the input
layer (cloud_input) of the Cloud model. For this reason,
output_to_cloud and cloud_input layers should have the same
dimension.

Finally, for training purposes, a global neural network
has to be created including each of the previously defined
distributed sub-models as shown in Listing 2. As done so
far for the sub-models, the inputs and outputs of the global
model must be specified. However, here there is a special
consideration, since the outputs and the inputs of the corre-
sponding models have to be manually joined, following the
same structure that was used to define each of the distributed
sub-models (i.e., the order in which the outputs were defined
for each of them). In this example, the outputs are the early
exit (edge[1]: edge_output) at the Edge, and the Cloud output.
There is only one input that corresponds to the Edge input.
This process is performed automatically by Kafka-ML during
training. In addition, we must ensure that the shape of the
output tensors of the previous sub-models are the same as
the shape of the input tensors of the subsequent sub-models.
In this case, the shape of the output layer output_to_cloud
of the Edge model must be the same as the shape of the
input layer cloud_input of the Cloud model, which is 64 neu-
rons. Finally, we will have to compile the global model by
establishing a series of parameters that may vary, such as the
optimizer, the types of the losses and the desired metrics. One
important thing when defining a global neural network with
different sub-models is that we have to specify one type of
loss for each one of the distributed sub-models as well as the
same number of loss_weights as the number of sub-models
that we have. This example can be extrapolated to another
number of distributed models and early exits.

V. PIPELINE OF A DISTRIBUTED ML MODEL IN
KAFKA-ML

In this section, the pipeline of a distributed ML model in
Kafka-ML is presented, including its life cycle. Before that,
let us introduce an important concept in Kafka-ML: the con-
figurations. A configuration is a logical set of ML models that
can be grouped for training and evaluation. This can be useful
when it is required to compare and evaluate metrics (e.g.,
accuracy and loss) of a set of ML models or just to define
a group of them that can be trained with the same and unique
data stream in parallel. Since ML models in configurations
will be trained with the same data, they should have the
same similarities such as the same input layer. Note that a
configuration can also include only one ML model.

The steps of the Kafka-ML pipeline are the following:
1) implementation and registration of distributed ML models;
2) creation of training configurations for a set of ML models
to be trained; 3) deployments of a specific training con-
figuration with certain parameters; 4) feeding the deployed
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configuration with training data streams; 5) obtaining and
comparing the result metrics from the training phase;
6) deploying a selected ML model for inference and pre-
diction making; and lastly, 7) inference phase to feed the
deployed trained models with data streams to obtain their
predicted results. Figure 3 shows the full sequence of the
pipeline steps. Next, each of the steps is detailed.

TensorFlow E = ocker

§€kcfka d-’ §€kaikq

Ingesting the

Creatinga DEpoe e deployment

configuration o fmi"m with stream
J data

Deploying.
trained models
for inference

Designing and
defining ML
‘models

FIGURE 3. ML/AI pipeline in distributed Kafka-ML.

A. IMPLEMENTATION AND REGISTRATION OF THE
DISTRIBUTED ML MODELS

From the beginning, we wanted to make Kafka-ML as simple
as possible so we would let programmers to focus on what
matters most to them, which is usually the creation of ML
models. This is the reason why we developed a useful tool that
enables easy testing and validation of ML models. Therefore,
the only source code needed are the distributed ML models
definitions as shown in Listing 1. On the other hand, we do
not need to specify the entire network definition, as shown
in Listing 2. This task will be performed automatically by
Kafka-ML at the training phase.

Once the whole model is defined, we can split its
sub-models and insert them into the Kafka-ML Web UI
for model creation as shown in Figure 4. It is possible to
define models directly in Kafka-ML, but it is advisable to use

Create Model

Fog

Fog model

Distributed

ID3 Cloud v

Imports

fog_input = keras.Input(shape=64, name="fog_input)

output_to_cloud = keras.layers.Dense(64, activation=tf.nn.relu,
name="output_to_cloud')(fog_input)

fog_output = keras.layers.Dense(10, activation=tf.nn.softmax,
name="og_output)(output_to_cloud)

fog_model = keras.Model(inputs={fog_input], outputs=[output_to_cloud,
fog_output], name="fog_model')

FIGURE 4. Definition of a distributed ML model in Kafka-ML.
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an external and more powerful ML Integrated Development
Environment (IDE) or editors such as Jupyter. If we need
to add any other required function to the model, it can be
inserted in the imports field. The form also has two fields
related to the distribution: the first one indicates if we are cre-
ating a distributed model or not, and the second one specifies
the next ML distributed model connected to this model. Once
the model is submitted, its source code will be checked as a
valid model and incorporated into Kafka-ML. If the model
has been successfully created, the pipeline can be continued
to the next step.

B. CREATION OF TRAINING CONFIGURATIONS

A configuration is simply a set of ML models to be deployed
and trained together afterwards. To add a whole distributed
model, only the sub-model which is placed at the top of its
structure has to be selected, and Kafka-ML will automatically
add the rest of the distributed chain to the configuration.
A configuration can be created in the Kafka-ML Web UI as
shown in Figure 5.

= Kafka-ML Models Configurations Deployments Training Inference Datasources

Create Configuration

Configuration

Testing

1D3 Cloud, ID4 Mnist -

FIGURE 5. Creation of a configuration in Kafka-ML.

C. DEPLOYING THE CONFIGURATION FOR TRAINING

The first thing to deploy a configuration is to establish some
parameters related to the training and evaluation phases,
which are the batch size, epochs, and number of iterations.
Then, if a user submits it, a task per Kafka-ML model (global)
will be deployed. Note that all the sub-models will be trained
in the same task. The first step carried out by each job
deployed is to fetch its corresponding ML model (and sub-
models) from the Kafka-ML existing models and load it to
start training. Eventually, jobs wait until a data stream with
training and optionally evaluation data is received through
Apache Kafka. This allows us to have ready-to-train models
and train them directly if there is already a data stream avail-
able in Kafka. A deployment can be created in the Kafka-ML
Web UI as shown in Figure 6.

D. FEEDING THE DEPLOYMENT WITH DATA STREAM

The next step in the pipeline is to send the data streams
to the deployments for training. The training phase will not
start until the data stream is available in Kafka as the Kafka
stream connector expects to have it at the beginning. Two

VOLUME 9, 2021

= Kafka-ML Models Configurations Deployments Training Inference Datasources

Deploy configuration Configuration

10
epochs=5, steps_per_epoch=1000

steps=5

FIGURE 6. Deploying a configuration for training in Kafka-ML.

Kafka topics have been used for this purpose: the first one
is the data topic itself, which only contains training and
evaluation data streams for the training and evaluation phases;
and the second one is the control topic, used to specify the
deployed ML models through control messages and when and
where (data topic) the data streams are available for train-
ing and evaluation. Control messages are further detailed in
Kafka-ML [15].

After sending a data stream (e.g., from an IoT device) with
the libraries provided in Kafka-ML (AVRO and RAW) to the
corresponding configuration deployment, all the ML models
included in the configuration will start the training.

E. OBTAINING THE METRICS RESULTING FROM THE
TRAINING

Right after the training and evaluation are performed, Kafka-
ML users will be able to visualize the defined metrics (e.g.,
loss and accuracy) for each trained model (and sub-model)
in the Kafka-ML Web UI as shown in Figure 7. In that form,
the results submitted by each training job to the Kafka-ML
architecture are displayed. For each model, users can down-
load the trained model, delete it, or deploy it for inference
(next phase).

Training results of Deployment 1

Fite

» . 202102
Cloud 0.3180125654 2THasTseet00z P

202102 N
227145753 8020222

£dge 03698201711

3
2 Fog 03467257321
. 202102

2rasrsszzeniz ¥
4

- J— accuracy 201.02-
st 06261765553 oasoegszs SR v i »

acouracy:
08483989839

FIGURE 7. Training management and visualization in Kafka-ML.

F. DEPLOYING AN ML MODEL FOR INFERENCE

Once the ML models are trained, they can be deployed for
inference using the Kafka-ML Web UI as shown in Figure 8.
This form will ask for the number of inference replicas to be
deployed. Replicas enable load balancing and fault tolerance
among inference deployments. Users will have to specify
some Kafka topics in the form: 1) input topic, for values to
predict on; 2) output topic, for predictions; and, in case we are
working with a distributed ML model, 3) upper topic, which
is used to send the output prediction information to the upper
model so it can continue the prediction flow. Topics are the
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Deploy Training result 1 for inference

1

put forma
RAW

n for ]

{"data_type": "uint8", "label_type": "uint8", "data_reshape": "28 28", "label_reshaf.
mnist-in
mnist-out
https://192.168.65.3:6443
eyJraWQiOiJDTj1vaWRjaWRwLNRyZW1vbG8ubGFULCBPVT1EZW1vLCBPPVF
mnist-upper

0.7

FIGURE 8. Deploying a distributed trained ML model for inference in
Kafka-ML.

elementary way to allow producers (data sources) and con-
sumers (training and inference jobs) to interact with Apache
Kafka. Each topic is uniquely identified with a name. Kuber-
netes credentials can also be included for the deployment of
the model (or sub-model) into another Kubernetes cluster in
the continuum. Users will also have to define a prediction
limit. This limit will be used to control the accuracy level in
sub-models and, from that, elevate or not the prediction to
the next layer. Therefore, if the accuracy is higher than the
threshold, the output can be sent to the available early exit
finishing the prediction flow.

G. FEEDING THE DEPLOYED TRAINED MODELS WITH
DATA STREAM FOR INFERENCE

Finally, the ML/AI pipeline ends once the trained model is
ready and deployed to make predictions through data streams.
In this case, it is not necessary to send control messages,
because the necessary information for inference (e.g., input
and output topics) was already defined in the Kafka-ML Web
UI (Fig. 8). Users and systems only have to send the data
streams with the chosen data format to the input topic, and
then the results of the inference will be sent immediately to
the output topic once models make their predictions.

VI. KAFKA-ML ARCHITECTURE FOR DISTRIBUTED ML
MODELS

Kafka-ML is a novel and open-source framework to man-
age ML/AI pipelines through data streams. In this work the
Kafka-ML architecture has been extended to enable the man-
agement and deployment of distributed DNN models in the
Cloud-to-Things Continuum. As seen in the previous section,
Kafka-ML offers an open-source and easy-to-follow Web
User Interface (UI) to deal with the ML/AI pipeline for both
specialists and non-specialists on ML/AI. Users simply need
to compose a couple of lines of ML model code to train,
evaluate, assess, and perform inference on their algorithms.
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In addition, this structure utilizes a novel way to deal with
data streams in Apache Kafka, that can be reused and so
avoids the requirement for any information system or data
storage for datasets in Kafka-ML (we will discuss this further
in Section VI-E).

The Kafka-ML architecture encompasses a set of
components based on the principle of single responsibil-
ity, that comprises a microservice architecture [35]. All
of these components have been containerized so that they
will run as Docker containers, enabling component isolation
and portability. The management of a cluster of nodes and
the deployment of Kafka-ML in distributed and production
infrastructures are achieved through Kubernetes. Kubernetes
enables continuous monitoring of the containers and their
replicas to ensure that they continually match the state
defined for them, as well as enabling other features for
production environments such as high availability and load
balancing. Kubernetes manages the lifecycle of Kafka-ML
and its components. Kafka-ML for distributed ML models
is an open-source project, and its implementation, config-
urations, Kubernetes deployment files and some examples
can be found at our GitHub repository.”> An overview of
the Kafka-ML architecture, the new components, and the
ones modified regarding the previous version of Kafka-ML
is shown in Figure 9. In this overview, Kafka-ML is deployed
in a Kubernetes cluster in the Cloud and sub-models are
deployed in clusters along the Edge, the Fog, and the Cloud.
The new components created in this architecture are shown
in blue and the components modified in orange. The control
logger is responsible for managing the control messages and
sending them to the back-end. Apache Katka and Zookeeper
(required by Kafka) are also deployed as Docker containers
and managed through Kubernetes.

A. BACKEND

The back-end component provides a RESTful API to manage
all the information contained in Kafka-ML. This component
works with the Kubernetes API to manage and deploy all
the components needed in the distributed pipeline. This com-
ponent was built using the Python web framework Django
and the official Python client library for Kubernetes® for
the deployment and management of Kubernetes compo-
nents. Among the differences with the previous version of
Kafka-ML are those changes made in the module itself that
incorporate the new functionalities necessary to work with
distributed neural networks (e.g., model and configuration
definitions), as well as the new components responsible for
carrying out the training and the inference phases of the
distributed models.

B. FRONTEND
The front-end component offers a web user interface where
users can manage all the information and functionality in

2https ://github.com/ertis-research/kafka-ml
3 https://github.com/kubernetes-client/python
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FIGURE 9. Overview of the new Kafka-ML architecture and its components deployed and managed in
Kubernetes clusters. Orange component: modified; blue component: added.

Kafka-ML. This component uses the RESTful API defined
in the back-end and has been implemented using the popular
TypeScript framework for web development Angular. In this
case, changes were included to provide users with all the
new information and fields required in each of the different
forms to complete the pipeline of the distributed models
(e.g., Fig. 4 and 8).

C. TRAINING DISTRIBUTED MODELS

Once a specific configuration which contains partitioned ML
models is deployed, a job (a deployable unit in Kubernetes)
will be executed according to each Kafka-ML model for train-
ing and containerizing in a Docker container. If the config-
uration contains other distributed or non-distributed models
that are going to be trained with the same data stream, a job
per ML model will also be created. Algorithm 1 describes
the procedure of the distributed training job in Kafka-ML,
and Figure 10 depicts the sequence diagram of the training
process. In the sequence diagram, the training job is exe-
cuted for a model which is composed of three sub-models.
Note that some steps, such as management of exceptions and
data stream decoding, have not been included for simplicity.
At first, each job downloads every ML model contained in
the distributed chain from the back-end (steps 1-7) and then
builds the whole distributed ML model (8) to be trained.
Next, the job starts receiving control stream messages until
it receives the one it expects (12), i.e., it matches the deploy-
ment_id received. The control message also indicates where
the data streams are allocated (13) and how the data stream
are designated for training and evaluation. The training and,
optionally, the evaluation will be performed using the data
stream information received in the control stream message.
At the end and after training, the job sends each trained
model in the distributed chain and their training and evalu-
ation metrics to the back-end (17-22). This process, that can
require large computation capabilities, can be performed in
an instance of Kafka-ML in a powerful infrastructure like the
Cloud.
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Algorithm 1: Distributed Training Algorithm in Kafka-
ML
Input: models_urls, training_kwargs,
evaluation_kwargs, deployment_id, stream data
Result: Distributed trained ML models and training and
evaluation metrics
models[] <
downloadModelFromBackend(models_urls);
trained < False;
while not trained do
msg < readControlStreams();
if deployment_id == msg.deployment_id then
training_stream <— readStream(msg.topic);

if msg.validatition_rate > 0 then
training_stream <— take(data_stream,

msg.validation_rate);
evaluation_stream <— split(data_stream,

msg.validation_rate)
end

model < buildCompleteModel(models_urls);
training_res <— trainModel(model,
training_kwargs, training_stream);
if msg.validatition_rate > O then
evaluation_res < evaluateModel(model,
evaluation_kwargs, evaluation_stream);
end
uploadTrainedModel AndMetrics(models_urls,
model, training_res, evaluation_res);
trained < True;

end
end

D. INFERENCE OF DISTRIBUTED MODELS

Once a distributed ML model is trained and deployed for
inference through the Kafka-ML web UI, a replication con-
troller (a Kubernetes component that ensures that a specified
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number of replicas is running at all times) will be executed
with the replicas established along with its corresponding
Docker containers. Replicas ensure load balancing and high
availability of this component. Algorithm 2 describes the
procedure of the distributed inference in Kafka-ML and
Figure 11 the sequence diagram. In the sequence diagram,
a model composed by three sub-models are deployed in three
layers of the continuum: Edge, Fog and Cloud. In this case,
a replication controller will be executed per ML sub-model
in the distributed chain, and the Kubernetes cluster where
this model will be deployed (e.g., Edge, Fog, Cloud) can be
configured in Kafka-ML during the deployment. When this
component finishes to download the requested trained sub-
model (4-5, 7-8, 10-11), the models are loaded (6, 9, 12),
and the component starts receiving data streams to then make
predictions on them (15). Next, predictions are sent through
the Kafka output topic configured if the accuracy obtained
is higher than the threshold configured during deployment;
otherwise, the partial results are sent to the next layer in the
distributed chain to continue the distributed flow (17 and 21).
In this example, data streams are firstly received by the edge
layer, which does not provide enough accuracy. Then, data
streams are sent to the Fog layer to finally receive a response
at the Cloud by interested applications. Replication controller
is useful when having multiple Kafka brokers and partitions
because it exploits the consumer group feature of Apache
Kafka by matching replicas and partitions to provide load
balancing and higher data ingestion.

E. DATA STREAMING MANAGEMENT IN KAFKA-ML
Data stream management in Kafka-ML is provided regard-
ing its two main tasks: training and inference. A Kafka
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Algorithm 2: Distributed Inference Algorithm in Kafka-
ML
Input: model_url, input_topic, output_topic,
upper_topic, input_configuration, stream data,
limit
Result: Predictions to Apache Kafka
model <
downloadTrainedModelFromBackend(model_url);
deserializer <— getDeserializer(input_configuration);
while True do
stream <— readStreams(input_topic);
data < decode(deserializer, stream);
predictions <« predict(model, data);
if max(predictions) < limit then
‘ sendToKafka(predictions, upper_topic);
else
‘ sendToKafka(predictions, output_topic);
end

end

topic is the elementary way of connecting data sources and
Kafka-ML tasks in Kafka-ML, allocating the data stream
sent by Kafka-ML end users. Topic are independent of each
other and are uniquely identified with a defined name. Fault
tolerance and load balancing to ensure the availability of
the information sent are provided by partitions of the topics,
where each topic can be divided into multiple partitions and
each partition can have multiple replicas. Partitions allow
the log to be divided into smaller units to provide load bal-
ancing, while topic replicas enable fault tolerance through
replication. A topic can be automatically created when send-
ing a data stream in Apache Kafka, or defined using an
open-source tool such as Kafka manager.* Finally, topics
are managed by a cluster of Kafka brokers, which comprise
Kafka’s architecture and are responsible for receiving a data
stream from data sources and distributing it to subscribing
consumers (e.g., training and inference tasks). Data streams
sent through Kafka must be encoded using the AVRO and
RAW data format supported in Kafka-ML. For this purpose,
several scripts have been provided in the project repository
so that users can code and send data streams and control
messages in a simple way.

Data streams sent for training use the distributed log pro-
vided in Apache Kafka, where training tasks move along
the log and read data streams as they are indicated by con-
trol messages. Right after sending a data stream, a control
message is dispatched and it indicates where exactly (topic
and position in the distributed log) the data stream sent are
available. Note that, thanks to this, the same data stream sent
can be reused by different training tasks only by sending
some control messages, but also for a training task that fails
and needs to recover the whole data stream. In traditional
message queue systems where each message can be deleted

4https:// github.com/yahoo/CMAK
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after consumption, a datastore may be needed to ensure there
is no data loss in these situations. An example of the data
stream management for training is illustrated in Fig. 12.

Firstly, the green data stream was sent along with the con-
trol message C1 to the deployed configuration D1. A control
message C1 was sent again to allow configuration D2 to
consume the same data stream. In the current state, the green
data stream is expiring and cannot be longer reused for
another training task. Then, the blue data stream was sent for
configurations D3 and D5, whereas the orange data stream
was for configuration D4. Orange and blue data streams can
still be reused for new configurations that want to use this
data stream. Finally, the gray data stream is now entering the
distributed log, and a control message has not yet been sent
since the data stream is not complete.

Regarding inference, the process requires fewer steps since
it is not necessary to send control messages (data streams can
be processed one by one). Data streams are sent one by one by
data sources (e.g., the IoT) to an input topic according to the
chosen encoding, and the inference result will be dispatched
to an early exit output topic (if the accuracy obtained is
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higher than a defined threshold) or to the upper layer in
the Cloud-to-Things Continuum to continue the inference
process. The same data stream can be processed by multiple
inference deployments, just by configuring the same input
topic in Kafka-ML (Figure 8). Note that, in order to do this,
the inference ML models must accept the same input. Finally,
to support a higher load of data streams and data sources,
the inference module can be deployed with replication form-
ing an inference group. In this case, each member of the group
will receive a single data stream at a time and the load is
distributed across the group thanks to the consumer group
feature of Apache Kafka.

VII. EVALUATION

As discussed previously, the Kafka-ML extension presented
in this work allows users to manage and deploy Distributed
DNNs. For the evaluation of this new feature on Kafka-ML,
we have defined different scenarios. These scenarios con-
sider three possible cases according to the Cloud-to-Things
Continuum defined in Figure 1. The first scenario consists of
the exclusive use of the Cloud to make predictions, sending
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all the computational load to this layer. The other two sce-
narios consider an Edge layer and Edge-Fog layers respec-
tively. We have defined the primary ML model based on
BranchyNet [26] and AlexNet [36]. AlexNet is a well-known
deep neural network that achieved state-of-the-art results for
the ImageNet LSVRC-2010 competition. We have employed
the CIFAR10 [37] dataset for both the training and evalua-
tion processes of different model versions using Kafka-ML.
CIFARI10 consists of 6000 32 x 32 color images in 10 well
balanced classes. We have used 80% during the training step,
and the remaining 20% percent during the test phase. The ML
model versions are slightly different for each case since early
exits have been considered to adapt the model to the different
scenarios:

1) Scenario 1. This scenario considers IoT devices
sending requests to the Cloud directly. In other
terms, the Cloud fully processes all the requests (i.e.,
the model inferences), and there are no Edge and Fog
devices. Hence, we have not included any early exit,
and we have not partitioned the model into different
sub-models in this case. After introducing the ML
model in Kafka-ML, the framework will train and
deploy it into the Kubernetes cluster configured in the
Cloud. Figure 13 shows the ML model deployed for the
prediction process in the Cloud.

2) Scenario 2. Figure 14 depicts the model shown in
Figure 13 divided in two sub-models, one for the Edge
layer and a second one for the Cloud layer. After
configuring these sub-models in Kafka-ML, users can
perform their training in Kafka-ML and then deploy
them into the different clusters of the Cloud-to-Things
layers. Therefore, the IoT devices will send requests
to the Edge cluster to start the predictions for this
scenario. The Edge cluster will handle part of the pre-
diction process and provide a result by the added early
exit. If the prediction performed by the Edge early
exit is not precise enough (i.e., the returned probability
of the prediction is smaller than a specified thresh-
old), the Edge will send a request to the Cloud to
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FIGURE 13. Scenario 1: AlexNet Branchynet-based DDNN deployed at the
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Conv_block

(30

continue the inference process. To decide whether or
not we send information to superior levels of the Cloud-
to-Things Continuum, we have set a threshold value
of 0.8. We have considered this value since most of
the early exit responses higher than this value match
the class returned in the Cloud for CIFAR10. We can
increase the threshold value to provide higher preci-
sion. Otherwise, decreasing this value will result in
faster responses because the Edge layer will send fewer
requests to the Cloud layer. Therefore, this threshold is
a trade-off value between precision and response time.
3) Scenario 3. Finally, we have included an addi-
tional early exit in the last scenario and divided the
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FIGURE 14. Scenario 2: AlexNet Branchynet-based DDNN deployed at the
Edge, and the Cloud.

Edge sub-model into two sub-models. One of these
sub-models includes the layers of the neural network
for the Fog layer. The remaining neural network layers
comprise the final Edge sub-model. Consequently, this
scenario has an additional layer in the continuum in
addition to the Edge and Cloud considered in Figure 14.
For this case, Kafka-ML will deploy the models over
the Edge, Fog, and Cloud layers connecting them when
required. As in the previous case, the IoT device will
send requests to the Edge device, and the threshold
value is 0.8. However, in this case, the Edge layer will
communicate with the Fog layer instead of the Cloud
layer continuing the prediction process. Then, the Fog
layer will ask the Cloud layer to end the prediction if
the probability given by the Fog early exit is lower than
the threshold in the Fog layer (same than in the in the
Edge layer). Figure 15 represents the sub-models for
this scenario and their respective early exits.

In these three scenarios, we identify four architecture lay-
ers. All cases have the same resources on each layer. Never-
theless, we do not use some of these layers in all scenarios.
The four layers have the following configurations:

o IoT or Devices: We have configured a single PC as a
client to send information and measure the final results.
This computer has Windows 10 with 16 GB of RAM and
an 15-7400 3.00 GHz processor. The prediction requests
of an increasing number of clients have been simulated
using this PC.

o Edge: The Edge layer is built on a single computer with
62 GB of RAM and an i9-10900K CPU at 3.70 GHz.
This computer has Kubernetes v1.21.2 and Docker
20.10.7 running on Ubuntu 21.04.
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FIGURE 15. Scenario 3: AlexNet Branchynet-based DDNN deployed at the
Edge, the Fog, and the Cloud.

o Fog: A five-node Kubernetes cluster at our private
VMWare vCloud infrastructure comprises the Fog layer.
The cluster consists of a master node and four work-
ers. Each node of this cluster has a total of 4 vCPUs
and 16 GB RAM available. Each of them runs Ubuntu
16.04.7 LTS with Kubernetes v1.19.3 and Docker
19.03.13.

o Cloud: The configuration for the Cloud layer has been
set in Google Cloud Platform. We have configured a
Kubernetes cluster with 6 Nodes, 12 vCPUs and 24 GB
memory to evaluate the new feature of our framework.

Considering these scenarios and the configurations men-

tioned above, various tests were carried out. The tests aim to
evaluate the performance of Kafka-ML by increasing the data
ingestion (controlling the number of clients requesting pre-
dictions) and increasing replications and partitions of Kafka
topics. First, a simple scenario with a single Kafka broker was
deployed, and later three Kafka brokers were used to evaluate
high availability features. The latest experiments are to assess
the fault tolerance and high availability characteristics of the
new Kafka-ML feature. For the sake of clarity, we have listed
the evaluations performed for each scenario in the following
points:

« Data ingestion performance of the Kafka-ML inference
instances with one Kafka broker.

o Deployment in a higher availability scenario with three
Kafka brokers.

« Evaluation of the fault tolerance and high availability
characteristics of Distributed DNNs in Kafka-ML.
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FIGURE 16. Average inference latency response with different numbers
of clients (1 replica and 1 Kafka broker).

All analyses were conducted using a single random image
per client, all of them requesting a prediction at the same
time. To provide statistical confidence in the results shown
throughout this section, we obtained the average results after
repeating this process 25 independent times for each case.

A. TEST 1. DATA INGESTION WITH ONE KAFKA BROKER
The first evaluation performed for each scenario considers
a single Kafka broker on each layer of the Cloud-to-Things
Continuum. Mainly, we want to analyze how the increas-
ing number of clients affects the inference performance.
Therefore, the average latency and network communication
throughput on each architectural layer of each scenario were
measured. The average latency gives us the mean response
time since a sender device (e.g., IoT device) requests a pre-
diction. The network communication throughput represents
the number of bytes sent and processed per second on each
layer of the Cloud-to-Things Continuum.

Using a single replica of the model inference service,
we can evaluate how this feature behaves with the most
basic deployment. Figure 16 shows the mean values for the
inference latency response for an increasing number of clients
using one Kafka broker and a single replica. Scenario 1
corresponds to the Cloud output, Scenario 2 to the Edge-2
and Cloud-2 outputs, and finally Scenario 3, with three
layers, corresponds to Edge-3, Fog-3, and Cloud-3 respec-
tively. This will also apply to the following tests. For all the
scenarios, as the number of clients increases, the response
time also augments. For Scenario 1 (Cloud), representing
the non-partitioned model in the Cloud, we can observe
that the times obtained on average with few clients are
better than the response time in Fog (Fog-3) and Cloud
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FIGURE 17. Average throughput with different numbers of clients
(1 replica and 1 Kafka broker).

(Cloud-2 and Cloud-3) layers for the other scenarios. Nev-
ertheless, the response time offered by the Edge layers in
the remaining scenarios (Edge-2 and Edge-3) is significantly
lower than in Scenario 1. These results mean that many results
will be evaluated and returned by the Edge layer instead
of always sending requests to the Cloud layer, leading to a
faster response. The results from layers above the Edge in
Scenario 2 and Scenario 3 show that having intermediate
layers, the response time of the inferences that have to reach
these layers increases compared to the Edge layer. However,
these scenarios significantly make up for the slow responses
of Scenario 1 when we have a higher number of requests and
clients. As shown in Figure 16, as we increase the number of
clients, latency starts to increase significantly in Scenario 1,
with either of the other two scenarios being much more
efficient. Comparing the results obtained for Scenario 2 and
Scenario 3, we can see that the reduction of computational
load (fewer layers in Scenario 3 Edge sub-model) in the
Edge helps to reduce the response time and load in this
layer. Similar to the increase of latency in Scenario 1 with
the increment of clients, latency response also increases in
Scenario 2 as the requests increase. Consequently, a third
layer in the continuum (Scenario 3) is more beneficial when
there is a massive increase in the total number of requests.
In this case, the Edge layer (Edge-3) provides lower response
times, although the upper layers (Fog-3 and Cloud-3) provide
higher response times than Cloud-2. In this case, there is a
trade-off between faster response times offered by the Edge in
Scenario 3 (which are responded in most cases) and increased
latency in the upper layers.

To support these results, we have looked at the average
throughput using different numbers of clients. Figure 17
shows that Scenario 1, with a higher number of clients,
processes fewer bytes per second. In contrast, Scenario i2
and Scenario 3 can process more information per second.
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FIGURE 18. Average inference latency response with different numbers
of replicas and 1 Kafka broker.

Figure 17 also shows that the throughput of the first layers
is the highest. In other words, the Edge layers must be able
to process as much information as possible. In this way,
the upper layers of the continuum are less overloaded and can
perform much more expensive operations avoiding cases that
do not need such dedication.

Figure 18 shows the behavior with 32 clients and increas-
ing the number of replicas of the inference module in all the
layers. We can see that the number of replicas benefits the
response time significantly. However, when using more than
two replicas, we see how it tends to stabilize or even offers
worse results. This behavior is due to the fact that having
only one broker and one partition increasing the number of
replicas does not take advantage of these capabilities in a
satisfactory way and there is an overload in the system due
to the replication. We can corroborate this statement if we
look at Figure 19. This Figure represents the throughput for
a different number of replicas and 32 clients. It can be seen
that the throughput when using more than two replicas is not
significantly affected, as happens with latency.

B. TEST 2. HIGHER AVAILABILITY ENVIRONMENT WITH
THREE KAFKA BROKERS

Using a single Kafka broker to manage the responses can
suppose a bottleneck in the communications among layers.
In other words, a unique broker on each layer has to receive
and send all of the prediction messages. Therefore, it results
in an overload of work for the mediator between the layers.
For this reason, three Kafka brokers were used during this
test in order to assess the behavior of Kafka-ML in a higher
performance scenario. By increasing the number of brokers,
we can evaluate the influence of this higher performance
scenario in Kafka-ML and how this reduces the bottleneck
caused by a higher number of requests.
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FIGURE 19. Average throughput with different numbers of replicas and
1 Kafka broker.
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FIGURE 20. Average inference latency response with different numbers
of clients (1 replica and 3 Kafka brokers).

In Figure 20, the average response time obtained when
using three Kafka brokers with a different number of clients
is shown. In addition, several discontinuous lines have been
included to represent the Cloud-to-Things Continuum layer
with the worst and best results from Test 1 with a single
Kafka broker (Cloud and Edge-3 respectively). In Scenario 1,
the Cloud is still worse in most cases, while other Scenarios
improve significantly. Scenario 2 and Scenario 3 considerably
reduce the response time in all their layers, resulting in better
times than Scenario 1 and the best results obtained in Test 1
(Figure 16). We demonstrate herewith the improved perfor-
mance of Kafka-ML in this deployment with three Kafka
brokers.

These results are further supported by Figure 21. This
Figure contemplates the throughput for a different number of
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clients when using three Kafka brokers. As in the previous
test, we can see that the Edge layers process much more
information than the Cloud from the first scenario proposed.
Moreover, with three Kafka brokers, the processed informa-
tion is significantly higher, as we can verify by looking at the
dashed lines in Figure 21 from the previous test. By giving
a much faster response at the Edge level, the Fog and Cloud
are not overloaded and can focus on requests that require their
computing capacity.

o B Cloud B Fog-3

s B Edge-2 O Cloud-3

S W Cloud-2 M Edge-3-1B
B Edge-3 @ Cloud-1B

15000
|

Throughput (bytes/s)
10000
1

5000
|

0
1

Number of clients

FIGURE 21. Average inference throughput with different numbers of
clients (1 replica and 3 Kafka brokers).

As in the previous test, the increase in the number of
replicas does not seem to improve significantly. However,
as shown in Figure 22, the response times with 32 clients
and a different number of replicas reach a minimum in each
layer. This behavior ensures that the increase in replicas
benefits the response time. Therefore, a more significant
decrease could be seen with a greater number of requests and
clients. Figure 22 shows that the number of replicas does not

B Cloud B Fog-3
o | W Edge-2 @ Cloud-3
N W Cloud-2 M Edge-3-1B
B Edge-3 @ Cloud-1B

Average latency (s)

10
1

Number of replicas

FIGURE 22. Average inference latency response with different numbers
of replicas and 3 Kafka brokers.
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imply an overload for the system and improves the results
obtained in Figure 20 with a single replica. The deployment
of Kafka-ML with a larger number of brokers contributes to
favoring replication, since replicas can share brokers and thus
reduce latency.

In Figure 23, we can see that the throughput improves con-
siderably in most layers when using two replicas. Moreover,
the increment of replicas above represents a slight improve-
ment, unlike the previous test, where replication decreased
performance.
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FIGURE 23. Average inference throughput with different numbers of
replicas and 3 Kafka brokers.

The results of this second test demonstrate that the new
distributed model feature of Kafka-ML results in significant
time improvements. In addition, it is prepared to accept a
large number of requests and give a response in the shortest
possible time. Using three Kafka brokers, we have verified
that Kafka-ML performs adequately in a high-performance
scenario. Additionally, using DDNNs along the Cloud-to-
Things Continuum has proven to be much more efficient than
relying solely on Cloud platforms.

C. TEST 3. FAULT TOLERANCE AND HIGH AVAILABILITY
EVALUATION

In this last test, how the performance of Kafka-ML is
affected in the presence of failure situations was evaluated.
In particular, the fault tolerance and high availability char-
acteristics were evaluated in the presence of failures in the
deployed Kafka-ML inference replicas and the Kafka bro-
kers. For the tests, the previous high performance deployment
of Kafka-ML with three brokers was adopted, considering
eight replicas, Scenario 3 to cover the whole Cloud-to-Things
Continuum (Edge-Fog-Cloud), and the largest data ingestion
(32 clients). During the execution of the tests, the inference
components and the Kafka brokers were manually stopped to
simulate failures in these components.

Figures 24, 25, and 26 show the inference response time
when different amounts of replicas stop working at the Edge,
Fog, and Cloud respectively. The results show that, as the
number of dropped replicas increases, the response time of
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FIGURE 27. Inference latency response at the Edge with 32 clients and
different Apache Kafka brokers down.
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FIGURE 28. Inference latency response at the fog with 32 clients and
different Apache Kafka brokers down.
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FIGURE 26. Inference latency response at the Cloud with 32 clients and
different numbers of replicas down.

Kafka-ML inference also increases in the three layers studied.
This has a greater impact on the highest layers in the contin-
uum, such as the Fog and Cloud, where latency is also higher.
However, the results show how Kafka-ML can handle the
failure of up to 100% of the deployed inference modules. This
is achieved thanks to the continuous monitoring of Kaftka-ML
components offered by Kubernetes, which detects when an
inference component or server fails, and brings the inference
component back upon an available node in a very short time.

Figures 27, 28, and 29 show, on the other hand,
the response time of the Edge, Fog, and Cloud respectively
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FIGURE 29. Inference latency response at the Cloud with 32 clients and
different Apache Kafka brokers down.

when one and two Kafka nodes fail. As happens with the
inference module, the failures of the Kafka brokers are
also handled in Kafka-ML. Likewise, the response time is
increased in all cases, especially in the upper layers. However,
the failures are also detected by the continuous monitoring
performed and returned to normal operation in a short time.
The results of this test demonstrate how Kafka-ML offers
fault tolerance and high availability features during its exe-
cution. In particular, we have verified how Kafka-ML suc-
cessfully handles the failures of the inference module and
the Kafka brokers, in charge of inter-layer communication,
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with a slight increase in latency. Therefore, this demonstrates
the viability of Kafka-ML for applications that require low
latency with distributed models along the continuum and high
availability and fault tolerance.

VIIl. CONCLUSION
The allocation and management of distributed and deep
neural networks in the Cloud-to-Things Continuum is of
great interest for applications with time-sensitive require-
ments. Moreover, their harmony with data stream tech-
nologies would facilitate their integration with current and
disrupting data stream sources like the IoT. For this reason,
we have extended our open-source framework Kafka-ML,
which harmonizes data streams with ML/AI frameworks,
to support the deployment and management of distributed
DNN pipelines over the Cloud-to-Things Continuum. This
includes the pipeline of ML/AI applications: the design of
distributed ML models; their training with data streams;
and their deployment in the continuum with state-of-the-
art containerization technologies—providing fault tolerance
and high-availability—and data stream ingestion. Moreover,
thanks to Kafka-ML, model sharing, metrics evaluation,
downloading of models, and data stream management are
also possible in an open-source solution. Early exits based on
BranchyNet have been adopted to provide as fast a response
as possible when the accuracy is acceptable. As a result,
the validation of this framework in an Edge-Cloud and Edge-
Fog-Cloud deployment demonstrates the improvement of our
proposed approach regarding only a Cloud deployment.
Dynamic DDNN partitioning will be explored as future
work to adapt DDNN to the current status of the deployment
scenarios (networking + hardware) by allocating DDNN
layers at the right time at the right place in the Cloud-to-
Things Continuum. This work was also among the future
work envisaged in Kafka-ML. Therefore, we will continue
improving the Kafka-ML framework by supporting dis-
tributed training and accelerating the training phase; further-
ance for more ML/AL frameworks beyond TensorFlow; and
on-device inference management and deployment for critical
decisions.
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