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ABSTRACT This paper presents a robust fault-tolerant control scheme that provides reliable tracking
and effective disturbance rejection for a low-cost tracking system. As the controlled apparatus, a 2-axis
gimbaled mechanism is involved in a networked control system, and an unreliable sensor brings sensor
drift into the system. Besides, external disturbances heavily affect the system in practical applications.
Representation of the faulty gimbal system with its constraints and disturbances is firstly introduced. Then,
the design of the fault-tolerant controller is detailed, which consists of two components: (1) an unknown
input observer that estimates the fault and effect of disturbances and network delay simultaneously, and (2) a
robust control law, using the observer estimations, designed based on the combination of the super-twisting
algorithm, backstepping procedure, and integral sliding mode control technique. Subsequently, simulations
and experiments are conducted, in which the performance of the proposed control system is compared to
those from the previous studies. The results show the superiority and reliability of the proposed control
system.

INDEX TERMS Fault tolerant control, target tracking system, time-varying delay, unknown input observer,
sensor drift, integral sliding mode control.

I. INTRODUCTION
For tracking a target of interest from a mobile platform,
gimbaled mechanisms are usually used to control the line-
of-sight (LOS) of the tracking device [1]–[6]. These mecha-
nisms are electromechanical structures that consist of several
orthogonal rotating channels. The number of channels is two
or more depending on the degrees of freedom that need
controlling. For instance, a two-axis gimbal can control the
tilt and pan motion of the device carried by the inner channel.
The tracking device, such as camera modules, radars, or laser
sensors, is carried by the inner channel of the gimbal. How-
ever, in some configurations, the device is fixed to the vehicle
carrying the gimbal while a mirror or other optical elements
are mounted on the inner channel to reflect the sensor’s
LOS [5], [7]. In both configurations, the gimbal serves as a
stabilizing platform that isolates the LOS from the external
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motions and disturbances, and at the same time, it steers
the LOS to track accurately the desired target. The gimbal
itself is a simple structure, but its dynamics are complex
with nonlinear factors, coupling, and external disturbances,
especially the vehicle motion [5]–[9]. Therefore, popular
control schemes for the system are H∞ [10], [11], sliding
mode [12]–[14], or active disturbance rejection [15], thanks
to their robustness when facing disturbances.

The LOS orientation corresponds to the posture of the
device at the inner channel, which is measured by an inertial
measurement unit (IMU) or an attitude heading reference
system (AHRS). Both consist of three individual sensors that
measure accelerations, angular rates, and geomagnetism of
the attached object in the inertial space. The angular positions
are firstly integrated from the corresponding angular rates
measured by the gyroscopes. Imperfect hardware and non-
ideal operating conditions of the sensor, such as incorrect
calibration and long sampling time, make the integrations
cannot be trusted. Therefore, the roll and pitch angles are
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corrected with the direction of the gravitational acceleration
measured by the accelerometer. On the other hand, the yaw
angle is corrected by using the geomagnetism measured by
the magnetometer. However, the signal from the magnetome-
ter may be small enough that it is insufficient to set the angle.
Then, the yaw drift phenomenon appears [16]–[19] and leads
to incorrect measurements of the corresponding pan rotation
of the inner gimbal. This is one of the most frequent faults
occurring in a gimbal system. Existing methods compensat-
ing for this gyro drift try to correct the sensor measurement,
either by calibrating the gyroscope [19], filter measurement
error [16], or correcting the orientation measurement with
additional sensors [18]. However, they often struggle to pre-
serve their efficiency, especially in harsh operating condi-
tions. Moreover, control methods for the system having this
sensor fault are seldom tackled.

Automated systems are vulnerable to faults, which might
lead to instability or failure of performing required tasks.
Generally, faulty conditions could come from either actuator,
sensor, connection, or the system itself. Fault-tolerant con-
trol (FTC) systems are capable of maintaining the overall
system stability and acceptable performance in the event
of faults and failures. Passive FTCs rely on robust control
techniques, such as H∞ and sliding mode, to compensate
for unwanted effects of the faults on the system without
any knowledge of the faults. On the contrary, active FTCs
rely on information obtained by fault detection and isola-
tion (FDI) schemes to adjust their control laws accordingly.
Designing of FTCs and FDIs has been receiving allotted
attention in many engineering applications. Especially, with
the development of complex automated systems and smart
factories, this continues to be an active area of research
in the control community. Many aspects of the active FTC
have been covered in the overview studies [20]–[23]. For
designing the FDI, full-state observers [24], [25], unknown
input observers [26], [27], time-delay estimation [28], and
numerous approaches have been proposed. The main dif-
ficulty of designing FDIs remains at decoupling the fault
from other unknown factors, such as disturbances, perturbed
parameters, and time delay. For the FTC law, the issue is to
incorporate the fault information in the control law such that
the influence of the faults is compensated while the system
stability is still preserved. Adaptation [26], switching [29],
reconfiguration [24], and robust control laws [25] are popular
techniques that have been adopted and implemented.

On the other hand, the collaboration of low-cost devices
and advanced control algorithms is always desirable to
achieve both economical and technical objectives. Unfortu-
nately, low-cost hardware usually comes with limited per-
formance and reliability. For instance, the use of networked
control systems is currently attractive due to their sim-
plicity and cost-effectiveness. However, long sampling time
and inevitable communication delay restrict the achievable
performance of the systems [30], [31]. Additionally, the
probability that a fault occurs is obviously higher in a sys-
tem equipped with unreliable components. Hence, control

problems becomemore difficult with low-cost systems. Espe-
cially, few fault-tolerant control techniques are successfully
implemented in these systems. Therefore, there is a need
for advanced controls that overcome the limitations of the
system, compensate for the faults occurring, and ensure the
effectiveness and robustness of the system.

In this paper, we propose a robust fault-tolerant con-
troller for a tracking system with the abovementioned draw-
back. This paper extends the author’s preliminary work
in [32], which was accepted to be presented. In detail,
the system operation is highly influenced by disturbances
from the carrying vehicle, nonlinearities of the gimbaled
mechanism, time-varying delay of the networked control con-
figuration, and yaw drift fault of the AHRS. These factors are
firstly demonstrated in the mathematical representation of the
system. Secondly, an unknown input observer (UIO) is pro-
posed to identify the fault and estimate the effects of delays
and disturbances. Then, the fault-tolerant control scheme is
derived from a combination of the backstepping technique,
super-twisting algorithm, and integral sliding mode strat-
egy. Comparative simulations and experiments are conducted
to validate the efficiency of the proposed control system.
Accordingly, the contributions of this paper can be listed as
follows:

- The problem of controlling a gimbal system in the pres-
ence of delayed input and sensor drift is firstly tackled.

- The novel FTC is proposed for a system affected by input
delay, disturbances, and sensor fault simultaneously.

- The design of the UIO for nonlinear systems affected
by time delay, sensor fault, and disturbances, that is able to
estimate simultaneously the system state, fault, and the effect
of the disturbances and time delay.

- A combination of the backstepping technique, integral
sliding mode control, and the super-twisting algorithm is pro-
posed. Additionally, the boundedness of the sliding variable
with the chattering-reduced super-twisting controller is given
for the first time.

The remainder of the paper is distributed in 5 sections.
Section 2 describes the mathematical model of the faulty
target tracking system. The estimation of fault and distur-
bances is achieved with the UIO designed in Section 3.
Section 4 presents the design process of the FTC. Simulation
and experimental studies are conducted in Section 5. Finally,
conclusions are drawn in Section 6.

II. FAULTY INPUT-DELAYED GIMBAL SYSTEM
MODELING
The mathematical representation of the controlled system has
been derived in the author’s previous studies [33]. It is written
as follows:

ϕ̇ = f
(
ϕtx , ϕty

)
ω

ω̇ = Bu(t − τ )− Kω + d

f
(
ϕtx , ϕty

)
=

[
cosϕtx − sinϕtx

sinϕtx
/
cosϕty cosϕtx

/
cosϕty

]
,

K =
[
Kty 0
0 Kpz

]
, B =

[
Bty 0
0 Btz cos θ

]
(1)
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where ϕ = [ ϕty ϕtz ]T denote the controlled tilt and pan
rotation of the inner gimbal in Euler angles, and ϕtx is the
uncontrolled roll angle. ω = [ωty ωtz ]T is the corresponding
controlled angular rate. u = [ uy uz ]T is the control signal
for the actuators of the inner and outer channels, respectively.
τ is the time-varying delay at the inputs, due to the use of the
networked system. θ is the relative orientation between the
two channels. Kty, Kpz, Bty, and Btz are the system param-
eters. The effect of the vehicle’s motions, imbalance, and
constraints on the tilt and pan motions are represented by the
vector d =

[
dty dtz

]T .
The AHRS used in the system provides twelve measure-

ments, including accelerations, angular rates, geomagnetism,
and 3D orientation. However, in the control loop of the gimbal
system, only two angular rates and two Euler angles are
involved. That is, the vector of measurement considered in
this section is given by:

Y =
[
ϕty ϕtz ωty ωtz

]
(2)

Assume that the fault occurs only at the measurement of
the pan angle. Accordingly, the incorrect measurement given
by the faulty AHRS is:

Y =
[
ϕty ϕtz + fs ωty ωtz

]
(3)

where fs denotes the fault. Moreover, suppose that the sensor
fault is generated by an exogenous signal ζ such that:

ḟs = −hfs + ζ, h > 0 (4)

By treating fs as an extended state of the system,
the description of the system with sensor fault can be derived
from Eq. (1) and (4) as follows:

Ẋ = F(X)X + BXuτ + DXdX
Y = CXX (5)

where:

X =
[
ϕty ϕtz ωty ωtz fs

]T
, uτ =u (t−τ) , dX=

[
d
ζ

]
,

F(X) =

O2 f
(
ϕtx , ϕty

)
O2×1

O2 K O2×1

O1×4 − h

 , BX=

 O2

B
O1×2

 ,
CX =

 I4
0
1
0
0

 , DX =

[
O2×3

I3

]
(6)

The denotation In is used for the identity matrix size n and
Om×n is for them-by-n zero matrix. From this new represen-
tation, some features of the system are derived, as follows:

- Firstly, the rank of the matrix DX is equal to the rank of
the matrix multiplication CXDX . That is:

rank (CXDX ) = rank (DX ) = 3 (7)

- Secondly, there exists a value κ > 0 such that:

‖F(X1)X1 − F(X2)X2‖ ≤ κ ‖X1 − X2‖ (8)

III. DESIGN OF THE FAULT DETECTION AND ISOLATION
A. DESIGN OF THE ROBUST UNKNOWN INPUT OBSERVER
The objective of the UIO is to estimate the value of the system
states such that the estimation errors are decoupled from the
unknown inputs acting on the system. The UIO is proposed
for the considered system in the following form [26], [27]:

˙̂X = E
(
F(X̂)X̂ + B̂X ūτ

)
+H

(
Y − Ŷ

)
+ ZẎ

Ŷ = CX X̂ (9)

where X̂ and Ŷ are the estimated values of the system states
and outputs, respectively. ūτ = u (t − τ̄ ), the constant τ̄ is
the mean delay time. E, H , and Z are the observer’s gains to
be designed.

The estimation error vector is defined as the differ-
ence between actual system states and the estimated states
obtained by the UIO. From Eq. (5) and (9), the time derivative
of the estimation error is obtained as follows:
˙̃X = Ẋ − ˙̂X
= E

(
F(X)X − F(X̂)X̂

)
+ (I − ZCX − E)BX ūτ

+ (I − E− ZCX )F(X)X + (DX − ZCXDX ) dX
+ (I − ZCX )BX ũτ −HCX X̃ (10)

with ũτ = uτ − ūτ . As shown in this Equation, the estimated
states are not only dependent on the system states and sensor
fault but also the control signals and disturbances. Ideally, the
estimation should be independent of ūτ , dX and ũτ . However,
since there are only two variables Z and E in their three
coefficients, decoupling all of these factors simultaneously
is impossible. The best outcome for the UIO is that: (a) X̃
is decoupled from ūτ and dX , (b) X̃ converges as the time
t →∞, and (c) the influence of ũτ is minimized.

For condition (a), the gains Z and E are necessarily chosen
such that:

(I − ZCX − E) = 0
(DX − ZCXDX ) = 0 (11)

A general solution of the second equation of (11) is given
in the following form [26]:

Z = Z1 + TZ2 (12)

where:

Z1 = DX (CXDX )
∗ , Z2 = I − CXDX (CXDX )

∗ ,

(CXDX )
∗
=

[
(CXDX )

T (CXDX )
]−1

(CXDX )
T (13)

(CXDX )∗ is the left pseudo-inverse matrix of (CXDX ). Addi-
tionally, T is to be designed later.
Accordingly, the gain E satisfying the first condition of

Eq. (11) is obtained by:

E = I − Z1CX − TZ2CX (14)

Then, the dynamics of the estimation error is given in
Eq. (15) and is independent of ūτ and dX :

˙̃X = Ẋ − ˙̂X
= E

(
F(X)X − F(X̂)X̂

)
−HCX X̃ + EBX ũτ (15)
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For the convergence of the estimation error as in the condi-
tion (b), the following Lyapunov function candidate is taken
into consideration:

VUIO = X̃
T
PX̃ (16)

P is symmetric and positive definite. The time derivative of
VUIO satisfies the following inequality:

V̇UIO ≤ X̃
T
(
−CT

XH
TP − PHCX + ETPPE+ κI

+
1
γ 2 B̄

T
XE

TPPEB̄X

)
X̃ + γ 2ũTτ B

T
XBX ũτ (17)

where BX =
[
1 0
0 cos θ

]
, B̄XBX = BX , and γ is a posi-

tive constant to be minimized. The proof of the inequality is
given in Appendix A.

Now, consider another inequality given by:

V̇UIO + X̃
T
X̃ − γ 2ũTτ B

T
XBX ũτ ≤ 0 (18)

The feasibility of the inequality results in the boundedness
of the L2 gain of the system defined as [34]:

sup
‖BX ũτ‖2 6=0

∥∥∥X̃∥∥∥
2∥∥BX ũτ∥∥2 ≤ γ (19)

where γ is the upper bound on the L2 gain. Minimizing γ
results in the smallest boundedness of the estimation error.
Thus, condition (c) of the UIO is satisfied.

Following the Schur complement, Eq. (18) is equivalent to:−CT
XH

TP − PHCX + (κ + 1) I PE PEB̄X
ETP −I O

B̄
T
XE

TP O −γ 2I

 ≤ 0

(20)

This is a bilinear matrix inequality (BMI), which is hard
to solve. Therefore, let some variable changes be made as in
Eq. (21) so that the linear matrix inequality (LMI) in Eq. (22)
is obtained:

H = (I +MH )C∗X , C
∗

X = CT
X

(
CXCT

X

)−1
,

PM = PMH , PT = PT (21)−2P − PM − P
T
M+(κ+1) I J1 J2

JT1 −I O
JT2 O −γ 2I

≤0 (22)

where

J1 = P (I − Z1CX )− PTZ2CX

J2 = P (I − Z1CX ) B̄X − PTZ2CX B̄X (23)

If there exist γ , P, PM , and PT such that the feasibility of
the LMI in Eq. (22) is preserved, the designed UIO is stable.
The estimation error is bounded by the L2 gain condition
in Eq. (19).

B. FAULT DETECTION MECHANISM
Given the measurement from the AHRS and the observation
by the UIO, the fault is fully identified. The estimated value
of the fault, namely f̂s, is given by the 5th element of the esti-
mated state vector. However, the UIO can only preserve the
boundedness of the estimation error rather than the asymp-
totic stability. Thus, to reduce the false alarm rate of the fault
detection, the fault alarm is triggered by a relay mechanism
with hysteresis, as in Fig. 1, where fth_l and fth_u are the lower
and upper thresholds, respectively.When

∣∣∣f̂s∣∣∣ > fth_u, the fault
alarm is enabled, which means the sensor fault is detected.
When

∣∣∣f̂s∣∣∣ < fth_l , the fault alarm goes off, and the control
system assumes there is no fault. When the amplitude of
the estimated fault is between the two levels, the fault alarm
retains its value. Therefore, this mechanism preserves the
robust fault detection even with the noisy estimation.

FIGURE 1. Fault detection mechanism.

Accordingly, the sensor measurement cannot be trusted in
the presence of the fault alarm. Then, the pan rotation fed to
the controller should be switched to the observation ϕ̂tz by the
UIO as follows:

ϕ̄tz =

{
ϕ̂tz if Fault alarm = 1
ϕtz if Fault alarm = 0

(24)

C. DISTURBANCE ESTIMATION
For the effect of the disturbances and delay on the system, let
us propose an estimation as follows:

d̂X = (CXDX )
∗ Ẏ −W

(
F
(
X̂
)
ˆX + BX ūτ

)
(25)

with W a matrix to be designed. Substituting Ẏ from the
system model in Eq. (5) and X̂ estimated by the UIO from
Eq. (9) into Eq. (25) yields the following:

d̂X = dX + (CXDX )
∗ CXBX ũτ + (CXDX )

∗ CXF (X)X

−WF(X̂)X̂ +
(
(CXDX )

∗ CX −W
)
BX ūτ (26)

By choosingW = (CXDX )
∗ CX , we obtain:

d̂X = dX +WBX ũτ +W
(
F(X)X − F(X̂)X̂

)
(27)

Hence,
∥∥∥d̂X − dX −WBX ũτ

∥∥∥ ≤ κW
∥∥∥X̃∥∥∥. Thus, d̂X

estimates the total effect of the disturbance, dX , and the
time-varying delay, presented byWBX ũτ , with a small error.
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IV. FAULT-TOLERANT CONTROL SYSTEM DESIGN
The proposed control law is based on the integral sliding
mode method [35]. In this method, the control law u consists
of two parts: the control law u0 achieves the control objective
for the nominal system, and the robust control law ud ensures
the slidingmotion occurs on an integral type slidingmanifold.
The design of each part is respectively presented in this
section.

A. BACKSTEPPING-BASED CONTROL LAW FOR THE
NOMINAL SYSTEM MODEL
The fundamental objective of a tracking system using gim-
baledmechanisms is to stabilize the LOS and steer it to follow
the desired target. This is equivalent to the convergence of
the tracking error eϕ and the stabilization error eω, which are
defined as follows:

eϕ = ϕd − ϕ

eω = 3eϕ + ϕ̇d − f
(
ϕtx , ϕty

)
ω (28)

with 3 a diagonal positive definite matrix. Referring to the
decision of the fault detection mechanism, the feedback value
of the pan position is ϕ̄tz. The control errors can be rewritten
as:

eϕ = ēϕ − ϕ̃

eω = ēω −3ϕ̃ (29)

where

ēϕ = ϕd −
[
ϕty
ϕ̄tz

]
, ϕ̃ =

[
0

ϕtz − ϕ̄tz

]
,

ēω = 3ēϕ + ϕ̇d − f
(
ϕtx , ϕty

)
ω (30)

The nominal model of the system is obtained by removing
non-ideal factors, including the disturbances, delay, and fault,
out of the system representation. That is:

ϕ̇ = f
(
ϕtx , ϕty

)
ω

ω̇ = Bu− Kω (31)

Then, the dynamics of the control error derived for the
nominal system is given by:

ėϕ = −3eϕ + eω

ėω = ϕ̈d −3
2eϕ +3eω −

∂

∂t
f
(
ϕtx , ϕty

)
ω

− f
(
ϕtx , ϕty

)
(Bu− Kω) (32)

Consider the quadratic Lyapunov function candidate given
by Eq. (33), it is easily seen that the desired dynamics of the
error terms obtained as in Eq. (34) accomplish the control
objectives.

V = eTϕeϕ + e
T
ωeω (33)

eω = −eϕ − 0eω (34)

with 0 a diagonal positive definite matrix.
Comparing Eq. (32) to Eq. (34), the control law achiev-

ing the control objectives for the nominal system is easily

obtained. Additionally, in the fault-free system, ϕ̄tz = ϕtz,
then eϕ = ēϕ and eω = ēω. Thus, the control law is written
as follows:

Bu0 = Kω +
[
f
(
ϕtx , ϕty

)]−1 [
ϕ̈d +

(
I −32

)
ēϕ

−
∂

∂t
f
(
ϕtx , ϕty

)
ω+ (0 +3) ēω

]
(35)

with
[
f
(
ϕtx , ϕty

)]−1
=

1
cosϕty

 cosϕtx
cosϕty

−
sinϕtx
cosϕty

sinϕtx cosϕtx

.
B. ROBUST INTEGRAL SUPER-TWISTING SLIDING MODE
FAULT-TOLERANT CONTROL
Let the sliding manifold be chosen as follows:

s = ėϕ + (0 +3) ēϕ + (I + 03)

t∫
0

ēϕ (ι) dι

= ėϕ + (0 +3) eϕ + (I + 03)

t∫
0

eϕ (ι) dι

+ (0 +3) ϕ̃ + (I + 03)

t∫
0

ϕ̃ (ι) dι (36)

where ėϕ = ϕ̇d − f
(
ϕtx , ϕty

)
ω derived from Eq. (28). The

time derivative of the manifold is given by:

ṡ = ëϕ + (0 +3) ėϕ + (I + 03) eϕ + (0 +3) ˙̃ϕ

+ (I + 03)
(
ϕ̃ − ϕ̃0

)
= ϕ̈d −

∂

∂t
f
(
ϕtx , ϕty

)
ω − f

(
ϕtx , ϕty

)
(Buτ − Kω + d)

+ (0 +3) eω +
(
I −32

)
eϕ+(I+03) ϕ̃+(0+3) ˙̃ϕ

− (I + 03) ϕ̃0 (37)

with ϕ̃0 = ϕ̃ (t0). Now, the delayed control law can be
expressed by:

Buτ = Bu0 + Bud − eτ (38)

where Bu0 was designed in Eq. (35) and the network distur-
bance is eτ = Bu − Buτ . Then, the time derivative of the
manifold becomes:

ṡ = −f
(
ϕtx , ϕty

)
(Bud−eτ + d)+(0+3) ˙̃ϕ−(I+03) ϕ̃0

(39)

Applying the Super-Twisting algorithm, the robust term
ud of the control law can be proposed by the following
continuous equation:

Bud =
[
f
(
ϕtx , ϕty

)]−1 (G1

[
s1/21 sign (s1)

s1/22 sign (s2)

]

+G2

t∫
0

[
sign (s1)
sign (s2)

]
dι

− d̂ (40)
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where [ s1 s2 ]T = s. G1 and G2 are the controller matrices,
which are diagonal positive definite. d̂ are the first two ele-
ments of the estimated disturbance d̂X given in Eq. (25). With
the proposed ud , the time derivative ṡ becomes:

ṡ = −G1

[
s1/21 sign (s1)

s1/22 sign (s2)

]
− G2

t∫
0

[
sign (s1)
sign (s2)

]
dι+ε (41)

where

ε = −f
(
ϕtx , ϕty

) (
−d̂+d−eτ

)
+(0+3) ˙̃ϕ−(I + 03) ϕ̃0.

The vector ε can be considered as the remaining influ-
ence of matched and unmatched disturbances that are not
taken into account in the proposed control law. Thanks to
the UIO’s estimation, ε is a bounded vector. The conditions
for the sliding manifold in the form of Eq. (41) being stable
have been proved in previous studies, such as in [36]–[38].
In particular, Seeber and Horn ([36]) suggested the choice
of the controller gains G1 and G2 to preserve the finite-time
stability of the system. The block diagram of the fault-tolerant
control system is illustrated in Fig. 2.

FIGURE 2. Configuration of the proposed fault-tolerant control system.

On the other hand, the integral term in the control law
ensures zero steady-state errors; however, the buildup in the
integrator can lead to large overshoots and long settling times.
Then, the integral term z̄ϕ =

∫ t
0 ēϕ (ι) dι in the sliding

manifold is modified as follows [39], [40]:

˙̄zϕ ≈ (0 +3)−1
[
− (I + 03) z̄ϕ + σ sat

(
s− ėϕ
σ

)]
s = ėϕ + (0 +3) ēϕ + (I + 03) z̄ϕ (42)

sat (·) denotes the saturation function. One can easily see
that inside the boundary of the saturation function, ˙̄zϕ = ēϕ .
Above the positive boundary, each element of ˙̄zϕ is always
smaller than the corresponding one of the ēϕ . In contrast,
below the negative boundary, ˙̄zϕ > ēϕ . Thus, the modified
expression in Eq. (42) ensures that the integral action takes
place completely only inside the function’s boundary. Large
overshoots can be avoided.

In addition, chattering is well known as one of themain dis-
advantages of slidingmode controllers. It has been shown that
this effect is mainly caused by unmodelled cascade dynam-
ics which increase the system’s relative degree and perturb

the ideal sliding mode existing in the system [35]. By the
integrators, the Super-Twisting algorithm is continuous, and
the integral sliding mode control law is able to attenuate
chattering in a relative degree one system. In order to reduce
the influence of higher relative degrees, the proposed control
law is calculated from a continuous signum-like function
instead of the sign function.

sign(si) ≈
si

|si| + δi
(43)

with δi a positive constant. Unfortunately, the best out-
come for the system is only uniformly ultimate boundedness
instead of asymptotic stability. The boundedness of the con-
trol error is given in Appendix B.

V. SIMULATIONS AND EXPERIMENTAL STUDIES
In this section, simulations and experiments were conducted
for validating the proposed UIO and FTC scheme. The
parameters of the UIO were obtained by solving the LMI
(22). With γ = 0.1, κ = 200 and the system’s parame-
ters given in [33], the LMI is feasible. The solutions were
derived with the Robust Control Toolbox in Matlab, and the
observer’s gains are as in Table 1. Additionally, the lower and
upper thresholds of the UIO were set at 2[deg] and 3[deg],
respectively. The tuned controller’s gains are also introduced
in the same table. The sampling time was at 0.02[s], while
the communication delay varied from the smallest delay
equal to the sampling time and the largest value of 0.2[s].
The mean delay time was 0.06[s], as experimentally identi-
fied. The super-twisting sliding mode control (STSMC) and
the time-delay compensation backstepping (TDC-Backstep)
control from the previous study [33] were also taken into
comparison with the proposed fault-tolerant control.

A. SIMULATION STUDIES
For reliable validations, two scenarios were simulated: with-
out and with motions of the vehicle carrying the system. The
sensor fault in these simulations was assumed as follows:

fs = −

t∫
0

(aωtz (ι)+ b) dι (44)

which denoted that the faulty yaw drift phenomenon behaved
similarly to the integration of the sensitivity error and bias of
the gyroscope in the AHRS. a and b are constant values.
The simulation results of the former scenario are

depicted in Fig. 3. The time-varying delay of the network is
given in Fig. 3a, and the trajectory of the tracked target
is given in Fig. 3c. As seen in Fig. 3b, the proposed UIO
estimated accurately the fault, even in the presence of time-
varying delay. At 52[s], the amplitude of the estimated fault
became greater than the upper threshold, so the fault alarm
was set. The fault was confirmed for the rest of the time
because the estimated value was kept higher than the lower
threshold.

The actual rotations of the inner gimbal are shown
in Fig. 3c, and the corresponding tracking errors are
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TABLE 1. Control system parameters.

illustrated in Fig. 3d. For the tilt rotation, all control
systems followed the trajectory properly. The proposed
fault-tolerant control system resulted in the smallest tran-
sient and steady-state errors compared to the two others.
The TDC-Backstep gave the worst transient response and
the STSMC recorded the largest steady-state error. The
reasons were given in the previous study [33]. On the
other hand, the pan rotation performed by the STSMC and
TDC-Backstep failed to follow the desired reference, due to
the sensor fault in the measurement of this rotation. Before
the fault alarmwas on, the proposed fault-tolerant control had
relied on the sensor feedback, so that the actual rotation was
also diverse from the reference value. After the 52nd second,
the outer gimbal was controlled with the feedback from the
estimated pan angle from the UIO. The rotation was corrected
and followed the desired trajectory. Thus, the effectiveness of
the proposed system is validated.

One of the worst-case practical scenarios was considered in
the second simulation, as depicted in Fig. 4. Besides the time
delay, the controlled system was also influenced by the dis-
turbances caused by the motions of the vehicle carrying the
system. These motions are represented by multi-frequency
sinusoids, as in Fig. 4a. Fortunately, the UIO once again
estimated properly the fault, even in the presence of these sig-
nificant disturbances. Therefore, the UIO’s estimations were

FIGURE 3. Simulation results in the first scenario.

decoupled not only from the delay time but also the distur-
bances. The fault estimation was then used with the STSMC
and the TDC-Backstep to be compared to the proposed
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FIGURE 4. Simulation results in the second scenario.

integral control law. The results, shown in Fig. 4c and 4d,
imply that the faults were compensated. Comparing the
tracking errors to the amplitude of the vessel motions, both

FIGURE 5. The apparatus setup for validation. (1) Position markers;
(2) 2-axis gimbal; (3) External camera; (4) Position markers; (5) Vision
camera; (6) AHRS.

STSMC and TDC-Backstep has significantly suppressed the
disturbances. However, due to input delay, the disturbance
rejections were not excellent, and large oscillations were still
available in the responses. The proposed control law, on the
other hand, provided effective performances in both tracking
and disturbance rejection. These results came from the proper
estimation of the disturbances presented in section III.C.

B. EXPERIMENTAL STUDIES
Two experiments were conducted, one was with the nor-
mal operating condition of the apparatus, and the other was
affected by purposive input disturbances to replicate the
worst-case scenario. The configuration of the experimental
apparatus is shown in Fig. 5. The real fault of the sensor
was estimated by the UIO, as in Fig. 6a and 8b. However,
it was difficult to determine the actual rotation of the system
itself and, therefore, to confirm the fault estimation. Instead,
by considering the motion of the projection of a static point
on the image plane of the camera, which is the tracking
device mounted on the inner gimbal, the control performance
could be deduced. The idea is that in the periodic rotations of
the inner gimbal, the relative position of the camera’s LOS
and a fixed point in the reference coordinate repeats with
each period. The image tracker from [41] was used, and the
responses of the image coordinates were recorded. From the
pinhole camera model, the measurements from the image
tracker relate to the rotation of the inner gimbal as follows.[

ẋ
ẏ

]
=

1
Zc

[
x f 0
y 0 f

]ωtxωty
ωtz

 (45)

[ x y ]T is the location of the projection on the image plane.
f is the camera focal length and Zc is the distance to the
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FIGURE 6. Tracking performance in the first experiment.

target; both are constants. Hence, the projection draws the
same trajectory on the image plane in every period, if the
inner gimbal repeats its periodic rotations. These results are
given in Fig. 7, 8c, and 8d, and compared to the AHRS’s
measurements.

The tracking performances in the first experiment are
drawn in Fig. 6 and 7. The results show that the STSMC
and the TDC-Backstep controllers regulated the system such
that the measured outputs properly followed the desired tra-
jectories. The AHRS indicated that the tilt and pan rotations
at the beginning and the end of the experiments are both
0 [deg]. However, as seen in Fig. 6c, the actual positions of
the gimbal at the end of the experiment were different from
those at the beginning. The gimbal remained positive pan
angles at the end, though the measured values were zeros;
thus, the presence of the sensor fault is confirmed. In the
same manner, the corresponding trajectories of the projection

FIGURE 7. Location of the target’s projection on the image plane during
the first experiment.

initial at the corner tended to the right and slightly upward on
the image plane, as in Fig. 7. While the upward trend was
actually the result of the camera’s imaging geometry [41],
the horizontal drift of the projection revealed the AHRS yaw
drift. Thus, the measured pan rotation was smaller than the
true value, so the outer channel performed a greater rotation
than it should truly be.
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FIGURE 8. Tracking performance in the second experiment.

The estimations by the UIO also showed a similar trend
of the sensor fault. In the system controlled by the proposed
controller, the estimated value began to be greater than the
upper threshold from 70 [s], thus the fault was confirmed.

Subsequently, the response of the pan rotation operated by
the proposed fault-tolerant controller diverted from the sen-
sor measurement and followed the feedback from the UIO’s
estimation of the pan angle. The results obtained by the image
tracker show that the response returned to its true desired
value, and thus, the tracking path did not drift away. There-
fore, the efficiency of the proposed system was validated.

The experimental results conducted in the second scenario
are given in Fig. 8. The combination of the TDC-Backstep
controller and the UIO was compared to the proposed control
system. For a fair comparison, the input disturbances shown
in Fig. 8a were added to both systems. Fig. 8b shows the
estimations of the fault while the tracking routes are deduced
from Fig. 8c and 8d. As shown in these figures, the proposed
control system achieved much better performance in both
gimbal channels. Even though, the disturbances still resulted
in small oscillations on the tracking route, due to the delayed
input. For the tilt rotation, the root-mean-square error reduced
up to 84.38% compared to that of the TDC-Backstep control.
For the pan rotation, the fault alarms were set at 80 [s] and
82 [s] in the respective tests with the proposed controller and
the comparative one. The fault-tolerant performances were
validated as the projections returned to their initial locations
at the end of the experiments.

VI. CONCLUSION
This paper has solved the problem of fault isolation and
fault-tolerant control of the gimbal system affected by
time-varying delay and disturbances. The unpredicted fault
occurred at the yawmeasurement of the AHRS, which is well
known as the yaw drift phenomenon. The characteristic of
the fault was unknown, but the model of the faulty system
was able to be derived in this paper. Then, the fault-tolerant
controller was designed to ensure the tracking performance
to be tolerant to the fault and robust to the time delay and dis-
turbances. The fault and disturbances were estimated based
on the concept of the UIO and LMI. And the robust control
law was designed based on the backstepping technique and
the integral sliding mode with the super-twisting algorithm.

Simulations and experiments were performed. Their
results validated the efficiency of the proposed control sys-
tem. Compared to the controller designed in the previous
study, the superiorities of the proposed control scheme can
be summarized in two aspects:

- Fault-tolerant performances: The proposed FTC properly
estimated and effectively compensated for the sensor fault.
Thus, reliable tracking results were obtained without the need
for additional measurement devices.

- Robust performances: The combination of the distur-
bance estimation of the UIO and the robust integral slid-
ing mode control technique resulted in effective disturbance
rejection. Thus, the proposed FTC was able to maintain
adequate performance in the presence of disturbances.

Unfortunately, even the most advanced control law still
cannot surpass the primary limitation of low-spec hardware,
such as the delay. For better performance, there is a need
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for real-time control systems. In that case, the imaging mea-
surement can be used, for example through a Kalman filter,
to correct the measurement of the sensor.

APPENDIX A
With the dynamics of the estimation error’s given in
Equation (15), the time derivative of the Lyapunov function
candidate VUIO is derived as:

V̇UIO = X̃
T
P ˙̃X + ˙̃X

T
PX̃

= −X̃
T
(
CT
XH

TP + PHCX

)
X̃

+ 2X̃
T
PE

(
F (X)X − F

(
X̂
)
X̂
)

+ 2X̃
T
PEBX (uτ − ūτ ) (A.1)

Applying Young’s inequality and the inequality given in
Eq. (8) for the second term of V̇UIO yields that:

2X̃
T
PE

(
F (X)X − F

(
X̂
)
X̂
)

≤ X̃
T
ETPPEX̃

+

(
F (X)X − F

(
X̂
)
X̂
)T (

F (X)X − F
(
X̂
)
X̂
)

≤ X̃
T
(
ETPPE+ κI

)
X̃ (A.2)

Similarly, the third term of V̇UIO follows the Youngs’s
inequality resulting:

2X̃
T
PEBX (uτ − ūτ ) ≤

1
γ 2 X̃

T
B̄
T
XE

TPPEB̄X X̃

+ γ 2 (uτ − ūτ )T BTXBX (uτ − ūτ )

(A.3)

Substituting the inequalities into Eq. (A.1) results in:

V̇UIO ≤ X̃
T
(
−CT

XH
TP − PHCX + ETPPE+ κI

+
1
γ 2 B̄

T
XE

TPPEB̄X

)
X̃

+ γ 2 (uτ − ūτ )T BTXBX (uτ − ūτ ) (A.4)

APPENDIX B
Let each element of the vector ε = [ ε1 ε1 ]T be expressed as
εi = ε1i+

∫ t
0 ε2i (τ ) dτ denoting that in general, the remaining

term εi can be considered as matched disturbances ε2i and
unmatched disturbance ε1i. Assume that the unmatched dis-
turbances can be expressed as ε1i = ηi

√
|si|, and disturbances

are bounded by non-negative constants |ηi| ≤ E1i and |ε2i| ≤
E2i. With the signum-like function in Eq. (43), the modified
sliding manifold of each gimbal channel can be rewritten as
follows:

ṡi = −g1i
√
|si|sign (si)+ xi + υ1i

ẋi = −g2isign (si)+ υ2i (B.1)

where:

υ1i = ηi
√
|si| + g1i

√
|si|sign (si)

δi

|si| + δi

=

(
ηi + g1isign (si)

δi

|si| + δi

)√
|si|

= µi
√
|si|

υ2i = ε2i + g2isign (si)
δi

|si| + δi
(B.2)

Seeber and Horn [36] declared that the essential conditions
of the controller gains, such that the system presented by
Eq. (B.1) is finite-time stable, are given by:

g2i > max |υ2i|

g1i > max |µi| +
√
g2i +max |υ2i| (B.3)

In other words, they are:

g2i > E2i + g2i
δi

|si| + δi

g1i > E1i+g1i
δi

|si|+δi
+

√
g2i+E2i+g2i

δi

|si| + δi
(B.4)

The inequalities in Eq. (B.4) are respectively equivalent to
the following restriction of the sliding variable si:

|si| >
δi

g2i − E2i

|si| >
δi (2E1ig1i + g2i)+

√
g22i + 2E1ig1ig2i + 4g21iE2i

2g21i−(2E1ig1i + g2i)+
√
g22i + 2E1ig1ig2i + 4g21iE2i

(B.5)

In summary, the sliding variable si always converges to the
compact set defined by:

si ≤ max

 δi

g2i − E2i
,

δi

[
(2E1ig1i+g2i)+

√
g22i+2E1ig1ig2i+4g

2
1iE2i

]
2g21i−(2E1ig1i+g2i)+

√
g22i+2E1ig1ig2i+4g

2
1iE2i


(B.6)

This implies the ultimate boundedness of the control
system. The size of the set depends on the values of the
controller’s gains and the supremum norm of disturbances.
The higher the controller’s gains are, the smaller the size of
the set.
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