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ABSTRACT This paper investigates the observer-based dissipative control problem for a class of
discrete-time Markovian jump fuzzy systems under mismatched fuzzy basis functions. In the practical
implementation of the observer-based control scheme, the system state variable can be measured with
uncertainties and disturbances, which acts as a factor that prevents accurate measurement of the premise
variable. Thus, in this case, it is necessary to explore the phenomenon that the system premise variable cannot
be reflected in the design of the fuzzy-basis-dependent observer and controller. In response to this need, this
paper proposes a method to deal with the mismatch phenomenon in the observer-based stabilization problem
ofMJFSs by devising a two-step approach to solve the inherent decoupling problem and by providing a useful
relaxation technique for the error of mismatched fuzzy basis functions.

INDEX TERMS Markovian jump fuzzy systems, mismatched fuzzy basis functions, observer-based control,
relaxation method.

I. INTRODUCTION
In the early 2000s, the study of Markovian jump fuzzy sys-
tems (MJFSs) has received considerable interest from the
control community as it has been validated as one of the
most suitable mathematical models for describing nonlin-
ear dynamic systems with random abrupt changes due to
intrinsic and extrinsic factors (refer to [10]–[13] and the
references therein). Thus, over the past few decades, various
control synthesis problems for real application systems mod-
eled with MJFSs have been addressed through pioneering
work. As representative results, [14] addressed the problem
of designing a reliable robustH∞ fuzzy control for uncertain
nonlinear continuous-time systems with Markovian jumping
actuator faults, [15] proposed a method of designing H∞
state-feedback control forMJFSs with incomplete knowledge
of transition probabilities, and [16] studied the stability and
stabilization problem ofMarkovian chaotic systems via fuzzy
sampled-data control. Furthermore, in the 2020s, [17] dealt
with the problem of designing a dissipativity-based sampled-
data control for MJFSs with incomplete transition rates,
and [18] proposed a method of deriving less conservative
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stabilization conditions for nonhomogeneous MJFSs with
higher-level operation modes. However, it is worth pointing
out that all of the aforementioned work requires the assump-
tion that full information about the system state variables is
always available.

Indeed, from the point of view of designing a more realistic
fuzz control, it is necessary to consider cases where the
system state variables cannot be directly measured due to
the impracticality of installing sensors (see [19]–[21] and
the reference therein). For this reason, significant effort has
been made to effectively design the output-feedback control
for MJFSs (see [22]–[26]). To be specific, [22] presented a
method of designing fuzzy dynamic output feedback con-
trollers for MJFSs with interval time-varying delays, [23]
addressed the problem of delay-dependent static output-
feedback control for MJFSs with actuator faults, [24] stud-
ied the non-fragile observer-based control synthesis problem
for a class of fractional-order nonlinear systems under the
fractional-order fuzzy model with Markovian jump, and [26]
addressed the problem of observer-based control synthesis of
fuzzy degenerate jump systems with mode-dependent time-
varying delays. However, one thing to note is that the premise
variables that must be defined when generating a set of fuzzy
rules from nonlinear time-varying terms generally depend on
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the system state variables. Thus, if the state variables related
to the premise variables cannot be directly measured to the
output side, then serious problems can arise when imple-
menting the fuzzy-basis-dependent output-feedback controls
mentioned above.

To make up for this weakness, the premise variables can
be estimated based on the observer state variables, but the
estimated variables cannot perfectly match the original ones.
In other words, when designing fuzzy observer-based con-
trols for MJFSs, it is essential to consider the occurrence of
mismatched premise variables that give rise to mismatched
fuzzy basis functions. However, despite the possibility of
the appearance of mismatched fuzzy basis functions, little
progress has been made in analyzing the differences between
fuzzy basis functions and their estimated functions and in
investigating the problem of observer-based control synthesis
of MJFSs under mismatched fuzzy basis functions. Thus,
motivated by the lack of this study, this paper focuses on the
problem of designing an observer-based dissipative control
governed by themismatched fuzzy basis functions. To be spe-
cific, the main contributions of this paper can be highlighted
as follows.

• As is well known, the premise variables are usually
subject to the measurable output or immeasurable state.
Thus, if the measurable output is affected by the distur-
bance, or if the immeasurable state must be estimated,
it is impossible to accurately measure the premise vari-
able. In this context, this paper proposes a method
of dealing with this mismatch phenomenon in the
observer-based stabilization problem of MJFSs.

• The mismatched fuzzy basis functions tend to make
the observer-based stabilization problem more com-
plicated because the control target system and the
observer cannot share the same fuzzy basis functions.
Eventually, the well-known decoupling method cannot
be applied as it is. For this reason, this paper intro-
duces a simple method to solve the decoupling problem
within two steps.

• To obtain less conservative output-feedback stabiliza-
tion conditions, the error constraints on mismatched
fuzzy basis functions must be incorporated into the
control design procedure, which means that a novel
relaxation technique for the mismatched fuzzy basis
functions needs to be additionally provided. In line
with this need, this paper provides a useful relaxation
method for the error of mismatched fuzzy basis func-
tions.

A. NOTATIONS
The notations X ≥ Y and X > Y mean that X − Y is positive
semi-definite and positive definite, respectively. In symmetric
block matrices, the asterisk (∗) is used as an ellipsis for terms
induced by symmetry. E{·} denotes the mathematical expec-
tation; Pr(X ) and Pr(X |Y ) mean the probability of X and
the probability of X conditional on Y , respectively; diag(·)

stands for a block-diagonal matrix; col(v1, v2, . . . , vn) =[
vT1 v

T
2 · · · v

T
n
]T for scalars or vectors vi; He{Q} = Q+QT

for any square matrix Q; and L2[0,∞) stands for the space
of square summable sequences over [0,∞). The notations
0n, 0m,n and In stand for a zero matrix in Rn×n, a zero matrix
in Rm×n and a identity matrix Rn×n, respectively. For Np =

{1, 2, · · · , p}, it is defined that:[
Qi
]
i∈Np
=
[
Q1 Q2 · · · Qp

]
[
Qi
]d
i∈Np
= diag

(
Q1,Q2, · · · ,Qp

)
[
Qij

]
i,j∈Np

=

Q11 · · · Q1p
...

. . .
...

Qp1 · · · Qpp


where Qi and Qij denote real submatrices with appropriate
dimensions or scalar values.

II. SYSTEM DESCRIPTION AND PRELIMINARIES
For a given complete probability space (�,F ,P), let us
consider a class of Markovian jump fuzzy systems (MJFSs)
as follows:

x(k + 1) = A(θ (k), φ(k))x(k)+ B(θ (k), φ(k))u(k)
+ E(θ (k), φ(k))w(k)

y(k) = C(θ (k), φ(k))x(k)+ D(θ (k), φ(k))w(k)
z(k) = G(θ (k), φ(k))x(k)+ H (θ (k), φ(k))u(k)

(1)

with

A(θ (k), φ(k) = g) =
r∑
i=1

θi(η(k))Agi

B(θ (k), φ(k) = g) =
r∑
i=1

θi(η(k))Bgi

C(θ (k), φ(k) = g) =
r∑
i=1

θi(η(k))Cgi

D(θ (k), φ(k) = g) =
r∑
i=1

θi(η(k))Dgi

E(θ (k), φ(k) = g) =
r∑
i=1

θi(η(k))Egi

G(θ (k), φ(k) = g) =
r∑
i=1

θi(η(k))Ggi

H (θ (k), φ(k) = g) =
r∑
i=1

θi(η(k))Hgi

where x(k) ∈ Rnx , u(k) ∈ Rnu , y(k) ∈ Rny , z(k) ∈ Rnz ,
w(k) ∈ Rnw , and φ(k) ∈ Nφ = {1, 2, · · · , s} denote the
state, the control input, the measured output, the performance
output, the external disturbance belonging to L2[0,∞), and
the system operation mode, respectively; Agi, Bgi, Cgi, Dgi,
Egi, Ggi and Hgi are known system matrices with appropri-
ate dimensions; and r indicates the number of fuzzy rules.
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To be specific, θ (k) = col(θ1(η(k)), θ2(η(k)), · · · , θr (η(k)))
stands for the fuzzy basis function vector that depends on the
premise variable vector η(k) = col(η1(k), · · · , ηp(k)), where
θi(η(k)) indicates the ith normalized fuzzy-basis function that
satisfies 0 ≤ θi(η(k)) ≤ 1, for all i ∈ Nθ = {1, 2, · · · , r}, and∑r

i=1 θi(η(k)) = 1. Furthermore, the process {φ(k), k ≥ 0} is
characterized by a discrete-time Markov chain subject to the
following transition probability:

πgh = Pr
(
φ(k + 1) = h | φ(k) = g

)
, ∀g, h ∈ Nφ

which satisfies 0 ≤ πgh(k) ≤ 1 and
∑r

h=1 πgh(k) = 1.
Especially, for brevity, this paper will use the following nota-
tions: i) θ = θ (k), ii) θi = θi(η(k)), iii) θ+ = θ (k + 1), iv)
O(θ (k), φ(k) = g) = Og(θ ) for any mode-dependent and
fuzzy-basis-dependent matrix O(·).
Remark 1: In general, the premise variable vector η(k)

explicitly depends on the measurable output y(k) or the
immeasurable state x(k). Thus, if any of the following occurs:

• the measurable output associated with η(k) is affected
by the disturbance w(k),

• the immeasurable state associated with η(k) must be
estimated.

it is impossible to share the same premise variable as (1) when
designing a fuzzy observer-based control.

Thus, to deal with the actual case mentioned in Remark 1,
this paper takes into account the following observer-based
fuzzy control law: for φ(k) = g,

x̃(k + 1) = Ag(θ̃ )̃x(k)+ Bg(θ̃ )u(k)
+ Lg(θ̃ )

(
y(k)− Cg(θ̃ )̃x(k)

)
u(k) = Fg(θ̃ )̃x(k)

(2)

where x̃(k) ∈ Rnx denotes the estimated system state; θ̃ =
col(θ̃1, θ̃2, · · · , θ̃r ) denotes the mismatched fuzzy basis func-
tion vector; θ̃i = θi (̃η(k)) denotes the ith element of θ̃ ;
η̃(k) denotes the estimated premise variable vector; Lg(θ̃ ) and
Fg(θ̃ ) are the mode-dependent fuzzy observer and control
gains to be obtained later, respectively; and

Ag(θ̃ ) =
r∑
i=1

θ̃iAgi, Bg(θ̃ ) =
r∑
i=1

θ̃iBgi

Cg(θ̃ ) =
r∑
i=1

θ̃iCgi.

As a result, letting

e(k) = x(k)− x̃(k)

ζ (k) = col(̃x(k), e(k)) ∈ R2nx×2nx

the closed-loop control system with (1) and (2) is represented
as follows:

ζ (k + 1) = Ag(θ, θ̃ )ζ (k)+ Eg(θ, θ̃ )w(k) (3)

z(k) = Gg(θ, θ̃ )ζ (k) (4)

where

Ag(θ, θ̃ ) =


Ag(θ̃ )
+Bg(θ̃ )Fg(θ̃ )
+11

 Lg(θ̃ )Cg(θ )

12 −11

(
Ag(θ )
−Lg(θ̃ )Cg(θ )

)
 (5)

Eg(θ, θ̃ ) =
[

Lg(θ̃ )Dg(θ )
Eg(θ )− Lg(θ̃ )Dg(θ )

]
(6)

Gg(θ, θ̃ ) =
[
Gg(θ )+ Hg(θ )Fg(θ̃ ) Gg(θ )

]
11 = Lg(θ̃ )

(
Cg(θ )− Cg(θ̃ )

)
12 =

(
Ag(θ )− Ag(θ̃ )

)
+
(
Bg(θ )− Bg(θ̃ )

)
Fg(θ̃ ). (7)

Remark 2: If the fuzzy basis function of (2) is matched
with that of (1), it holds that θ̃ = θ , which leads to11 = 0 and
12 = 0. However, if (2) fails to share the premise variables
of (1), the following mismatched components appear in the
closed-loop system:

11 = Lg(θ̃ )Cg(ν), 12 = Ag(ν)+ Bg(ν)Fg(θ̃ )

where ν = col(ν1, ν2, · · · , νr ) and νi = θi − θ̃i (i.e.,
θi = θ̃i + νi) denotes the error of the ith mismatched fuzzy
basis function such that

∑r
i=1 νi = 0 holds. Furthermore,

the appearance of 11 and 12 causes a nonconvex problem
that prevents the stabilization condition from being expressed
in the form of linear matrix inequalities (LMIs). Thus, when
dealing with the problem of observer-based control for T-S
fuzzy systems, we need to pay more attention to handling
the nonconvex problem as well as performing a congruent
transformation that can separate the control gain and the
observer gain in the stabilization condition.

Before going ahead, this paper presents the following def-
initions that will be used to develop our main results in a
stochastic setting.
Definition 1 ( [1], [2]): For w(k) ≡ 0, system (3) is said

to be stochastically stable if for any initial condition ζ (0) =
col(̃x(0), e(0)) and φ(0), the following inequality holds:

E

{
∞∑
k=0

||ζ (k)||2
∣∣∣ ζ (0), φ(0)} <∞. (8)

Definition 2 ( [3], [4]): Let us consider a quadratic energy
supply rate of the following form:

W(z(k),w(k))

=

[
z(k)
w(k)

]T [ Q S
(∗) R

] [
z(k)
w(k)

]
=

[
ζ (k)
w(k)

]T [GT
g (θ, θ̃ )QGg(θ, θ̃ ) (∗)
STGg(θ, θ̃ ) R

] [
ζ (k)
w(k)

]
(9)

where Q = QT < 0 (i.e., −Q = QT
1Q1 ∈ Rnz×nz ), S ∈

Rnz×nw andR = RT
∈ Rnw×nw are given real matrices. Then,

for x(0) ≡ 0, system (3) is said to be strictly (Q,S,R)-β-
dissipative if for β > 0 and T > 0, the following energy
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supply function JT satisfies

JT =
T∑
k=0

E
{
W(z(k),w(k))

}
> β

T∑
k=0

||w(k)||2 (10)

where β indicates the dissipativity performance level.
Based on Definitions 1 and 2, this paper aims to design (2)

such that closed-loop system (3) is stochastically stable for
w(k) ≡ 0 and is strictly (Q,S,R)-β-dissipative for x(0) ≡ 0.
Throughout this paper, the following lemmas will be used.

Lemma 3 ( [5], [6]): For any symmetric matrix Mij,
the following condition holds:

0 >
r∑
i=1

r∑
j=1

θiθjMij

if it is satisfied that

0 > Mii, ∀i ∈ Nθ (11)

0 >
1

r − 1
Mii +

1
2

(
Mij +Mji

)
, ∀i, j(6= i) ∈ Nθ . (12)

Lemma 4 [7]: For any matrices 8 ∈ Rn×n and 0 < P =
PT ∈ Rn×n, it holds that −8P8T

≤ −He{8} + P−1.
Remark 3: As is well known, semi-Markovian jump sys-

tems [27] can cover a broad range of stochastic hybrid
systems by overcoming the limits of homogeneous Markov
process with the aid of sojourn-time-dependent transition
rates. However, to better demonstrate the relaxation technique
for the error of mismatched fuzzy basis functions, this paper
excludes the setting to include the time variability of the
transition rates in MJFSs, which is a drawback of this paper.
Instead, based on [25] and [28], the proposed method can be
extended to the problem of observer-based control for semi-
Markovian jump fuzzy systems.

III. CONTROL SYNTHESIS
Let us choose the following Lyapunov function:

V (k) = V (ζ (k), φ(k) = g) = ζ T (k)Pg(θ )ζ (k) (13)

where Pg(θ ) = PTg (θ ) > 0. Then, from (3), we can obtain

E{1V (k)}

= E
{
V (ζ (k + 1), φ(k + 1) = h | φ(k) = g)

}
−V (ζ (k), φ(k) = g)

= ζ̄ T (k)
[
AT
g (θ, θ̃ )

ETg (θ, θ̃ )

]
Pg(θ+)

[
Ag(θ, θ̃ ) Eg(θ, θ̃ )

]
ζ̄ (k)

−ζ T (k)Pg(θ )ζ (k) (14)

where θ+ = θ (η(k + 1)), ζ̄ (k) = col(ζ (k),w(k)), and

Pg(θ+) =
s∑

h=1

πgh(k)Ph(θ+).

The following lemma presents the stochastic stability and
strict (Q,S,R)-γ -dissipativity condition of (3).

Lemma 5: The closed-loop system (3) is stochastically
stable and strictly (Q,S,R)-β-dissipative if the following
condition holds:

0 > E
{
1V (k)

}
+ β||w(k)||22 − E

{
W(z(k),w(k))

}
. (15)

Proof: To begin with, let us consider the case of w(k) ≡
0. Then, by Q < 0, condition (15) reduces to

0 > E
{
1V (k)

}
− E{zT (k)Qz(k)} > E

{
1V (k)

}
. (16)

Accordingly, we can establish a sufficiently small scalar
ε > 0 such that E{1V (k)} ≤ −ε||ζ (k)||2. Hence, for w(k) ≡
0, condition (15) ensures

E{V (T + 1)} − V (0) ≤ −εE

{
T∑
k=0

||ζ (k)||2
∣∣ ζ (0), φ(0)}

that is, E
{∑T

k=0 ||ζ (k)||
2
2 | ζ (0), φ(0)

}
≤

1
ε
V (0) < ∞,

which means the closed-loop system (3) is stochastically
stable in the absence of disturbances (see Definition 1). Next,
let us consider the case where w(k) 6= 0 and ζ (0) ≡ 0 (i.e.,
V (0) ≡ 0). Then, from (15), it follows that

0 > E
{
V (T + 1)

}
+ β

T∑
k=0

||w(k)||2 − JT

> β

T∑
k=0

||w(k)||2 − JT (17)

which means the closed-loop system (3) is strictly (Q,S,R)-
γ -dissipative (see Definition 2). �
The following lemma presents the stochastic dissipativity-

based stabilization conditions for (3), dependent on θ (η(k)),
θ (̃η(k)) and θ (η(k + 1)).
Lemma 6: For given β > 0 and (Q,S,R), suppose that

there exist matrices 0 < P̄g(θ ) = P̄Tg (θ ) ∈ R2nx×2nx , 0 <
P̄h(θ+) = P̄Th (θ

+) ∈ R2nx×2nx , Z1g ∈ Rnx×nx , Z2g ∈ Rnx×nx ,
Lg(θ̃ ) ∈ Rnx×ny and F̄g(θ̃ ) ∈ Rnu×nx such that the following
conditions hold for g ∈ Nφ :

0 >


−P̄g(θ ) (∗) (∗)

−ST Ḡg(θ, θ̃ ) βI −R 0

Q1Ḡg(θ, θ̃ ) 0 −I

Āg(θ, θ̃ ) Ēg(θ, θ̃ ) 0

(∗)
(∗)

0

−He
{[

Z1g 0
0 Z2g

]}
+ P̄g(θ+)

 (18)

where

Āg(θ, θ̃ ) =

[
Ag(θ̃ )Z1g + Bg(θ̃ )F̄g(θ̃ )+11Z1g

Z2g(12 −11)Z1g
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Lg(θ̃ )Cg(θ )

Z2gAg(θ )− L̄g(θ̃ )Cg(θ )

]
(19)

Ēg(θ, θ̃ ) =

[
Lg(θ̃ )Dg(θ )

Z2gEg(θ )− L̄g(θ̃ )Dg(θ )

]
(20)

Ḡg(θ, θ̃ ) =
[
Gg(θ )Z1g + Hg(θ )F̄g(θ̃ ) Gg(θ )

]
(21)

P̄g(θ+) =
s∑

h=1

πgh(t)P̄h(θ+) (22)

in which

F̄g(θ̃ ) = Fg(θ̃ )Z1g, L̄g(θ̃ ) = Z2gLg(θ̃ ).

Then, closed-loop system (3) is stochastically stable and
strictly (Q,S,R)-β-dissipative.

Proof: Let us recall (9) as follows:

W(z(k),w(k))

= ζ̄ T (k)
[
−GT

g (θ, θ̃ )QT
1Q1Gg(θ, θ̃ ) (∗)

STGg(θ, θ̃ ) R

]
ζ̄ (k).

Then, from (14), it follows that

E
{
1V (k)

}
+ βwT (k)w(k)− E

{
W(z(k),w(k))

}
= ζ̄ T (k)9ζ̄ (k) (23)

where

9 =

[
AT
g (θ, θ̃ )

ETg (θ, θ̃ )

]
Pg(θ+)

[
Ag(θ, θ̃ ) Eg(θ, θ̃ )

]
+

[
Gg(θ, θ̃ )TQT

1
0

] [
Q1Gg(θ, θ̃ ) 0

]
+

[
−Pg(θ ) (∗)

−STGg(θ, θ̃ ) βI −R

]
. (24)

As a result, the condition 9 < 0 guarantees (15) in
Lemma 5, and be transformed by the Schur complement into

0 >


−Pg(θ ) (∗) (∗) (∗)

−STGg(θ, θ̃ ) βI −R 0 (∗)

Q1Gg(θ, θ̃ ) 0 −I 0

Ag(θ, θ̃ ) Eg(θ, θ̃ ) 0 −P−1g (θ+)

 .
(25)

Subsequently, by noting that (18) implies diag
(
He{Z1g},

He{Z2g}
)
> 0, we can establish the following nonsingular

matrices:

81 = diag(Z1g, I ), 82 = diag(I ,Z2g).

Then, based on (19), (20) and (21), it is available that

Ag(θ, θ̃ ) = 8
−1
2 Āg(θ, θ̃ )8

−1
1 , Eg(θ, θ̃ ) = 8−12 Ēg(θ, θ̃ )

Gg(θ, θ̃ ) = Ḡg(θ, θ̃ )8
−1
1 .

Further, decomposing Pg(θ ) and Pg(θ+) as follows:

Pg(θ ) = 8
−T
1 P̄g(θ )8

−1
1

Pg(θ+) =
s∑

h=1

πgh(t)8
−T
1 P̄h(θ+)8

−1
1 = 8

−T
1 P̄g(θ+)8−11

condition (25) can be represented as

0 >


−8−T1 P̄g(θ )8

−1
1 (∗) (∗)

−ST Ḡg(θ, θ̃ )8
−1
1 βI −R 0

Q1Ḡg(θ, θ̃ )8
−1
1 0 −I

8−12 Āg(θ, θ̃ )8
−1
1 8−12 Ēg(θ, θ̃ ) 0

(∗)
(∗)

0

−81P̄−1g (θ+)8T
1

 . (26)

Moreover, pre- and post-multiplying (26) by diag(81, I , I ,
82) and its transpose leads to

0 >


−P̄g(θ ) (∗) (∗)

−ST Ḡg(θ, θ̃ ) βI −R 0

Q1Ḡg(θ, θ̃ ) 0 −I

Āg(θ, θ̃ ) Ēg(θ, θ̃ ) 0

(27)

(∗)
(∗)

0

−8281P̄−1g (θ+)8T
18

T
2

 . (28)

Therefore, since it follows from Lemma 4 that

−8281P̄−1g (θ+)8T
18

T
2 ≤ −He{8281} + P̄g(θ+),

condition (28) is guaranteed by (18). �
In what follows, by partitioning P̄g(θ ) ∈ R2nx×2nx and

P̄g(θ+) ∈ R2nx×2nx into block matrices as follows:

P̄g(θ ) =

[
P̄(1)g (θ ) (∗)
P̄(2)g (θ ) P̄(3)g (θ )

]

P̄g(θ+) =

[
P̄(1)
g (θ+) (∗)

P̄(2)
g (θ+) P̄(3)

g (θ+)

]
condition (18) can be rearranged as follows:

0 >



−P̄(1)g (θ ) (∗) (∗) (∗)
−P̄(2)g (θ ) −P̄(3)g (θ ) (∗) (∗)
(3, 1) −STGg(θ ) βI −R 0

(4, 1) Q1Gg(θ ) 0 −I

(5, 1) (5, 2) (5, 3) 0
(6, 1) (6, 2) (6, 3) 0

(∗) (∗)
(∗) (∗)
(∗) (∗)

0 0(
−He{Z1g}
+P̄(1)

g (θ+)

)
(∗)

P̄(2)
g (θ+)

(
−He{Z2g}
+P̄(3)

g (θ+)

)


. (29)

where

(3, 1) = −STGg(θ )Z1g − STHg(θ )F̄g(θ̃ )
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(4, 1) = Q1 Gg(θ )Z1g +Q1 Hg(θ )F̄g(θ̃ )

(5, 1) = Ag(θ̃ )Z1g + Bg(θ̃ )F̄g(θ̃ )+ Lg(θ̃ )Cg(ν)Z1g
(5, 2) = Lg(θ̃ )Cg(θ ), (5, 3) = Lg(θ̃ )Dg(θ )

(6, 1) = Z2gAg(ν)Z1g + Z2gBg(ν)F̄g(θ̃ )

−L̄g(θ̃ )Cg(ν)Z1g
(6, 2) = Z2gAg(θ )− L̄g(θ̃ )Cg(θ )

(6, 3) = Z2gEg(θ )− L̄g(θ̃ )Dg(θ ).

However, condition (29) is still formulated in terms of
non-convex matrix inequalities with θ , θ̃ and θ+. Thus, this
paper will present a two-step approach to address the non-
convex problem based on the fact that (29) implies

0 >


−P̄(3)g (θ ) (∗)
−STGg(θ ) βI −R
Q1Gg(θ ) 0(
Z2gAg(θ )
−L̄g(θ̃ )Cg(θ )

) (
Z2gEg(θ )
−L̄g(θ̃ )Dg(θ )

)
(∗) (∗)
0 (∗)

−I 0

0 −He{Z2g} + P̄(3)
g (θ+)

 . (30)

In other words, using (29) and (30), the observer-based
control (2) will be designed according to the following steps:
(S1) For a prescribed β = β0 > 0, solve (30) and obtain

L̄g(θ̃ ) and Z2g. Then, reconstruct the fuzzy observer
gain Lg(θ̃ ) = Z−12g L̄g(θ̃ ).

(S2) Substitute Z2g and Lg(θ̃ ) (or L̄g(θ̃ )) into (29). Then,
solve (29) and obtain F̄g(θ̃ ) and Z1g. After that, recon-
struct the fuzzy control gain Fg(θ̃ ) = F̄g(θ̃ )Z

−1
1g .

Remark 4: Indeed, various approaches have been used to
deal with the noncovex terms that occur in observer-based
control design conditions. However, the reason for choosing
the two-step approach in this paper is to avoid the compli-
cated iteration process and solve the stabilization conditions
as quickly as possible. Furthermore, as the number of vari-
ables used to obtain less conservative stabilization condi-
tions increases, it is more advantageous to use this approach
because other iteration approaches can take significant time.

IV. RELAXED STABILIZATION CONDITIONS
Before dealing with the relaxation problem of (29) and (30),
let us first consider the following condition:

0 >
r∑
i=1

r∑
j=1

θ̃iθ̃j0ij +

r∑
i=1

θiHe
{
0
(1)
i �

}
(31)

+

r∑
i=1

r∑
j=1

θ̃iθjHe
{
0
(2)
ij �

}
+

r∑
i=1

r∑
`=1

θ̃iν`He
{
0
(3)
i` �

}
(32)

subject to the following error constraints:

|ν`| ≤ α` < 1, ∀` ∈ Nθ (33)

where 0i = 0Ti ∈ Rp×p, 0(1)
i , 0(2)

ij , 0(3)
i` ∈ Rp×m, and � ∈

Rm×p (m < p) with full rank.
The following lemma proposes a relaxed condition of (32)

subject to (33).
Lemma 7: Condition (32) subject to (33) holds if it is

satisfied that

0 > Mii, ∀i ∈ Nθ (34)

0 >
1

r − 1
Mij +

1
2

(
Mij +Mji

)
, ∀i, j(6= i) ∈ Nθ (35)

where Uij = UT
ij ∈ Rm×m, Wi ∈ Rp×m, and

Mij =

 [
Ui`
]d
`∈Nθ[

0
(1)
` + 0

(2)
i` + 0

(3)
i` +Wi

]
`∈Rθ

(∗)
0ij +He

{
0
(1)
i �+ 0

(2)
ij �

}
+�T

(
−

r∑
`=1

α2`Ui`

)
�



 .

Proof: Based on θi = θ̃i + νi (see Remark 2), condi-
tion (32) can be rearranged as follows:

0 >
r∑
i=1

r∑
j=1

θ̃iθ̃j

(
0ij +He

{
0
(1)
i �+ 0

(2)
ij �

} )
+

r∑
`=1

ν`He
{
T`�

}
(36)

where

T` = 0
(1)
` +

r∑
i=1

θ̃i0
(2)
i` +

r∑
i=1

θ̃i0
(3)
i` ∈ Rp×m.

Further, using

r∑
`=1

ν`He
{
T`�

}
= He

{[
T`
]
`∈Nθ · (ν ⊗�)

}
condition (36) can be converted into

0 >

[
ν ⊗�

I

]T [
0 (∗)[

T`
]
`∈Nθ (2, 2)

][
ν ⊗�

I

]
(37)

where

(2, 2) =
r∑
i=1

r∑
j=1

θ̃iθ̃j

(
0ij +He

{
0
(1)
i �+ 0

(2)
ij �

} )
.

Meanwhile, from
∑r
`=1 ν` = 0, it follows that

0 =
r∑
`=1

ν`He
{
W�

}
= He

{[
W
]
`∈Nθ · (ν ⊗�)

}
(38)

whereW =
∑r

i=1 θ̃iWi ∈ Rp×m andWi ∈ Rp×m. In addition,
since (34) implies 0 > Ui` = UT

i` ∈ Rm×m, it follows
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from (33) that

0 ≤
r∑
`=1

(
ν2` − α

2
`

)
�TU`�

=

[
ν ⊗�

I

]T 
[
U`
]d
`∈Nθ 0

0 �T

(
−

r∑
`=1

α2`U`

)
�


×

[
ν ⊗�

I

]
(39)

where U` =
∑r

i=1 θ̃iUi` ∈ Rm×m. As a result, according to
the S-procedure, combining (37) with (38) and (39) produces

0 >

[
ν ⊗�

I

]T [ [
U`
]d
`∈Nθ (∗)[

T` +W
]
`∈Nθ (2, 2)

][
ν ⊗�

I

]
(40)

where

(2, 2) =
r∑
i=1

r∑
j=1

θ̃iθ̃j

(
0ij +He

{
0
(1)
i �+ 0

(2)
ij �

} )

+�T

(
−

r∑
`=1

α2`U`

)
�.

Therefore, condition (40) is guaranteed by

0 >
r∑
i=1

r∑
j=1

θ̃iθ̃jMij (41)

and the relaxed condition of (41) is given as (34) and (35)
according to Lemma 3. �
To obtain a finite number of LMIs for (29) and (30) in (S1)

and (S2), this paper establishes the fuzzy-basis-dependent
variables as follows:

P̄(1)g (θ ) =
r∑
i=1

θiP̄
(1)
gi , P̄

(2)
g (θ ) =

r∑
i=1

θiP̄
(2)
gi

P̄(3)g (θ ) =
r∑
i=1

θiP̄
(3)
gi (42)

F̄g(θ̃ ) =
r∑
i=1

θ̃iF̄gi, L̄g(θ̃ ) =
r∑
i=1

θ̃iL̄gi. (43)

The following theorem provides the relaxed condition
of (30), formulated in terms of LMIs.
Theorem 8: For a prescribed β0 > 0, suppose that there

exist 0 < P̄(3)gi = P̄(3)Tgi ∈ Rnx×nx , Z2g ∈ Rnx×nx , L̄gi ∈

Rnx×ny , W (1)
i ∈ Rnx×nx , U (1)

g`i = U (1)T
g`i ∈ Rnx×nx , U (2)

g`i ∈

Rnw×nx and U (3)
g`i = U (3)T

g`i ∈ Rnw×nw such that the following
conditions hold for g ∈ Nφ and s ∈ Nθ :

0 > Mgiis, ∀i ∈ Nθ (44)

0 >
1

r − 1
Mgiis +

1
2

(
Mgijs +Mgjis

)
, ∀i, j(6= i) ∈ Nθ (45)

where

Mgijs =

 [
Ui`
]d
`∈Nθ[

0
(1)
g` + 0

(2)
gi` +Wi

]
`∈Rθ

(∗)
0gs +He

{
0
(1)
gi �+ 0

(2)
gij�

}
+�T

(
−

r∑
`=1

α2`Ui`

)
�




in which

0gs =


0 0 0 0
0 β0 I −R 0 0

0 0 −I 0

0 0 0
(
−He{Z2g}
+
∑nφ

h=1 πghP̄
(3)
hs

)


Wi =


W (1)
i 0
0 0

0 0

0 0

 , 0
(1)
gi =


−
1
2
P̄(3)gi 0

−STGgi 0

Q1 Ggi 0

Z2gAgi Z2gEgi



0
(2)
gij =


0 0
0 0

0 0

−L̄giCgj −L̄giDgj


� =

[
I 0 0 0
0 I 0 0

]
, Ui` =

[
U (1)
i` U (2)T

i`
U (2)
i` U (3)

i`

]
.

Then, for g ∈ Nφ , the fuzzy observer gain is given as
Lg(θ̃ ) =

∑r
i=1 θ̃iLgi, where Lgi = Z−12g L̄gi.

Proof: Using (42)–(43) and noting

P̄(3)
g (θ+) =

r∑
s=1

θ+s

nφ∑
h=1

πghP̄
(3)
hs

condition (30) can be represented as

0 >
r∑
s=1

θ̃+s 0gs +

r∑
i=1

θiHe
{
0
(1)
gi �

}
+

r∑
i=1

r∑
j=1

θ̃iθjHe
{
0
(2)
gij�

}
. (46)

Therefore, by Lemma 7, the relaxed condition of (46) is
given as (44) and (45). �
Based on Theorem 8, the following theorem provides the

relaxed condition of (29), formulated in terms of LMIs.
Theorem 9: For given Z2g, and Lgi, suppose that there exist

0 <

[
P̄(1)gi (∗)

P̄(2)gi P̄(3)gi

]
=

[
P̄(1)gi (∗)

P̄(2)gi P̄(3)gi

]T
∈ R2nx×2nx

Z1gi ∈ Rnx×nx , F̄gi ∈ Rnu×nx , W (1)
i ∈ Rnx×nx , W (2)

i ∈

Rnx×nx , W (3)
i ∈ Rnx×nx , U (1)

i` = U (1)T
i` ∈ Rnx×nx , U (2)

i` ∈
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Rnx×nx , U (3)
i` = U (3)T

i` ∈ Rnx×nx , U (4)
i` ∈ Rnw×nx , U (5)

i` ∈

Rnw×nx , U (6)
i` = U (6)T

i` ∈ Rnw×nw , and β > 0 such that the
following conditions hold for g ∈ Nφ and s ∈ Nθ :

0 > Mgiis, ∀i ∈ Nθ (47)

0 >
1

r − 1
Mgiis +

1
2

(
Mgijs +Mgjis

)
, ∀i, j( 6= i) ∈ Nθ (48)

where

Mgijs =

 [
Ui`
]d
`∈Nθ[

0
(1)
g` + 0

(2)
gi` + 0

(3)
gi` +Wi

]
`∈Rθ q

(∗)
0gijs +He

{
0
(1)
gi �+ 0

(2)
gij�

}
+�T

(
−

r∑
`=1

α2`Ui`

)
�




in which

0gijs =



0 0 0 0
0 0 0 0
0 0 βI −R 0

0 0 0 −I(
AgiZ1g
+BgiF̄gj

)
0 0 0

0 0 0 0

(∗) 0
0 0
0 0

0 0 −He{Z1g}

+

nφ∑
h=1

πghP̄
(1)
hs

 (∗)

nφ∑
h=1

πghP̄
(2)
hs

 −He{Z2g}

+

nφ∑
h=1

πghP̄
(3)
hs





0
(1)
gi =



−
1
2
P̄(1)gi 0 0

−P̄(2)gi −
1
2
P̄(3)gi 0

−STGgiZ1g −STGgi 0

Q1 GgiZ1g Q1 Ggi 0

0 0 0
0 Z2gAgi Z2gEgi


Ui` =

U
(1)
i` (∗) (∗)

U (2)
i` U (3)

i` (∗)
U (4)
i` U (5)

i` U (6)
i`



0
(2)
gij =



0 0 0
0 0 0

−STHgjF̄gi 0 0

Q1 HgjF̄gi q0 0

0 LgiCgj LgiDgj
0 −L̄giCgj −L̄giDgj



Wi =



W (1)
i W (2)

i 0
W (3)
i W (4)

i 0
0 0 0

0 0 0

0 0 0
0 0 0



0
(3)
gi` =



0 0 0
0 0 0
0 0 0

0 0 0

LgiCg`Z1g 0 0
Z2gAg`Z1g + Z2gBg`F̄gi − L̄giCg`Z1g 0 0


� =

 I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0

 .
Then, closed-loop system (3) is stochastically stable and

strictly (Q,S,R)-β-dissipative, and the fuzzy control gain is
given as Fg(θ̃ ) =

∑r
i=1 θ̃iF̄giZ

−1
1g .

Proof: Noting[
P̄(1)
g (θ+) (∗)

P̄(2)
g (θ+) P̄(3)

g (θ+)

]
=

r∑
s=1

θ+s

nφ∑
h=1

πgh

[
P̄(1)hs (∗)
P̄(1)hs P̄(2)hs

]
we can represent condition (29) as follows:

0 >
r∑
s=1

r∑
i=1

r∑
j=1

θ̃+s θ̃iθ̃j0gijs +

r∑
i=1

θiHe
{
0
(1)
gi �

}
+

r∑
i=1

r∑
j=1

θ̃iθjHe
{
0
(2)
gij�

}
+

r∑
i=1

r∑
`=1

θ̃iν`He
{
0
(3)
gi`�

}
.

(49)

Therefore, by Lemma 7, the relaxed condition of (49) is
given as (47) and (48). �
Remark 5: In order to reduce the amount of computation

generated from the relaxation variables used in Theorem 4.2,
it is possible to exclude U (2)

i` ∈ Rnx×nx , U (4)
i` ∈ Rnw×nx and

U (5)
i` ∈ Rnw×nx from (47) and (48). Then, the number of scalar

variables is reduced by r2(n2x + nxnw), but the performance
can decrease as the value of αi in (33) increases (see Table 1).
Remark 6: Although the proposed method is based on

the commonly used LMI approach, congruent transformation
technique and relaxation process, this method has more con-
tribution to answering how to use the LMI approach, how
to define the congruent transformation matrix, and how to
make the relaxation process less conservative. In particular,
this method is uniquely developed to be suitable for dealing
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with the problem of designing observer-based control for a
class of discrete-time Markovian jump fuzzy systems under
error constrains of mismatched fuzzy basis functions.

V. ILLUSTRATIVE EXAMPLE
Let us consider the following single-link robot arm model
with the system mode g ∈ Nφ = {1, 2, 3}, adopted in [6],
[8], [9]:

ϑ̈(t) = −
Mg

Jg
ḡ` sin(ϑ(t))−

R
Jg
ϑ̇(t)+

1
Jg
u(t)+ w(t) (50)

whereϑ(t) and ϑ̇(t) stand for the angular position and angular
velocity of the arm, respectively; and Mg ∈ {0.75, 1.5, 2},
Jg ∈ {1, 2, 2.5}, ` = 0.5, ḡ = 9.81 and R = 2 denote the
payload mass, the inertia moment, the arm length, the gravity
acceleration and the viscous friction coefficient, respectively.

Further, let us define x1(t) = ϑ(t) and x2(t) = ϑ̇(t),
and assume that only ϑ(t) is measurable. Then, using the
first-order Euler approximation with the sampling time Ts =
0.5, the discrete-time state-space representation of (50) is
given as

x1(k + 1) = x1(k)+ Tsx2(k)

x2(k + 1) = −
TsMg

Jg
ḡ` sin(x1(k))

+

(
1−

TsR
Jg

)
+
Ts
Jg
u(k)+ Tsw(k).

Further, as in [29] and [30], the nonlinear function
sin(x1(k)) can be represented as

sin(x1(k)) = θ1(x1(k))x1(k)+ ηθ2(x1(k))x1(k)

where η = 0.01/π , θ1(x1(k)), θ2(x1(k)) ∈ [0, 1], and
θ1(x1(k)) + θ2(x1(k)) = 1. Thus, the normalized fuzzy basis
function is given as

θ1(x1(k)) =


sin(x1(k))− ηx1(k)

(1− η)x1(k)
, x1(k) 6= 0

1, x1(k) = 0
θ2(x1(k)) = 1− θ1(x1(k)).

Accordingly, the discrete-time MJFS model of (50) is
described as follows:
Plant rule 1: IF x1(k) is ‘‘about 0’’
THEN

x(k + 1) = Ag1x(k)+ Bg1u(k)+ Eg1w(k)
y(k) = Cg1x(k)+ Dg1w(k)
z(k) = Gg1x(k)+ Hg1u(k)

(51)

Plant rule 2: IF x1(k) is ‘‘about π or −π ’’
THEN

x(k + 1) = Ag2x(k)+ Bg2u(k)+ Eg2w(k)
y(k) = Cg2x(k)+ Dg2w(k)
z(k) = Gg2x(k)+ Hg2u(k)

(52)

TABLE 1. Comparison of dissipativity performance level β according to
α1 and α2.

where x(k) =
[
xT1 (k) x

T
2 (k)

]T , and
Ag1 =

 1 Ts

−
TsMg

Jg
ḡ` 1−

TsR
Jg


Ag2 =

 1 Ts

−
ηTsMg

Jg
ḡ` 1−

TsR
Jg


Bg1 = Bg2 =

 0
Ts
Jg

 , Eg1 = Eg2 =
[
0
Ts

]
Cg1 = Cg2 =

[
1 0

]
, Dg,1 = Dg,2 = 0.1

Gg1 = Gg2 =
[
1 0

]
, Hg,1 = Hg,2 = 0.1.

As a result, using a singleton fuzzifier, product-fuzzy infer-
ence, and a center-average defuzzifier, the blended system
model of (51) and (52) can be expressed as (1). In addition,
the transition probabilities are given as

[
πgh

]
g,h∈Nφ =

 0.8 0.1 0.1
0.2 0.7 0.1
0.5 0.2 0.3

 .
Based on Theorem 8 with β0 = 1, Table 1 shows the

comparison of dissipativity performance level β for several
α1 and α2, obtained by Theorem 9, where Q = −0.01,
S = 0.2 and R = 5 are used for simulation. That is, from
Table 1, it can be seen that the lower the degree of mismatch
(i.e., the smaller the value of αi), the higher the performance
level we can obtain. In addition, Table 1 reveals that the
larger the value of αi (i.e., the more serious mismatch), the
more U (2)

i` , U (4)
i` , and U (5)

i` play important roles in achieving
better performance. Meanwhile, for (α1, α2) = (0.1, 0.1),
Theorem 8 and Theorem 9 provide the following observer
and control gains:

L11 =
[

0.9849
−1.5855

]
, L21 =

[
1.2008
−1.3345

]
L31 =

[
1.1483
−1.3830

]
, L12 =

[
1.0525
−0.1889

]
L22 =

[
1.1589
−0.0554

]
, L32 =

[
1.0567
−0.1765

]
F11 =

[
−0.0883 −1.7360

]
F21 =

[
1.1171 −4.0562

]
F31 =

[
1.5524 −5.8559

]
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FIGURE 1. State response of the closed-loop system: (a) x1(k) and x̃1(k), (b) x2(k) and x̃2(k), and (c) system operation
mode φ(k).

FIGURE 2. Simulation results: (a) control input, and (b) error between θi (k) and θ̃i (k).

F12 =
[
−3.6646 −1.8692

]
F22 =

[
−7.2478 −5.5246

]
F32 =

[
−8.9807 −7.4305

]
.

Fig. 1-(a) and Fig. 1-(b) show the state response of the
closed-loop system with x(0) = [0.2π, − 0.1]T , x̃(0) ≡ 0,
and w(t) ≡ 0; and Fig. 1-(c) shows the behavior of the
system mode φ(t). As shown in Fig. 1-(a) and Fig. 1-(b),
the estimated state x̃(t) follows x(t) well and the system state
x(t) also converges to zero as time increases, which demon-
strates the availability of the obtained observer and control

gains. In addition, Fig. 2-(a) shows the control input u(k)
generated by the mode-dependent observer-based controller;
and Fig. 2-(b) shows the error νi(k) = θi(k) − θ̃i(k), for
i = 1, 2, which arises from the state estimation error as
mentioned in Remark 1. From Fig. 2-(b), it can be seen that
the value of νi(k) never exceed the value of αi = 0.1. In what
follows, Fig. 3-(a) shows the performance output response
of the closed-loop system with x(0) ≡ 0, x̃(0) ≡ 0 and
w(k) = 0.4 exp−0.1(k−15) sin(0.3(k − 15)); Fig. 3-(b) shows
the behavior of the system mode φ(t); and Fig. 3-(c) shows
the error νi(k) = θi(k) − θ̃i(k) caused by the disturbance
w(k) as mentioned in Remark 1, which illustrates that the
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FIGURE 3. Performance output response: (a) z(k) and w(k), (b) system mode φ(k), and (c) error between θi (k) and
θ̃i (k).

value of νi(k) never exceed the value of αi = 0.1. Especially,
from Fig. 3-(a), it can be found that the dissipativity level
obtained from the performance output response z(k) and dis-
turbance w(k) meets the value given in Table 1 as follows:∑80

k=0W(z(k),w(k))/
∑80

k=0 ||w(k)||
2
= 5.1634 > β =

2.8919.
Remark 7: In the literature, to the best of our knowledge,

there are no comparable studies addressing the problem of
designing observer-based control for a class of discrete-time
Markovian jump fuzzy systems under error constrains of
mismatched fuzzy basis functions. Thus, unfortunately, this
paper cannot provide comparisons with other papers to high-
light the advantage of the proposed method. Instead, our
results can be used for comparison when more advanced con-
trol design methods are proposed for the same stabilization
problem.
Remark 8: In the numerical example, the practicality of

the proposed stabilization condition is verified using the
single-link robot arm system. However, in the end, it will
be necessary to substantiate the proposed method through
some experimental results as well as numerical results.
Although the experiments are not performed in this paper
because other auxiliary processes and techniques related
to hardware design must be added, the proposed method
will continue to evolve so that it can be extended to
experiments that even consider measurement and actuator
faults.

VI. CONCLUDING REMARKS
In this paper, we have focused on the problem of designing an
observer-based dissipative control for a class of discrete-time
Markovian jump fuzzy systems under mismatched fuzzy
basis functions. Specifically, to deal with the influence of

mismatched fuzzy basis functions in the observer-based sta-
bilization problem of MJFSs, we have proposed a simple
method to solve the decoupling problem within two steps and
provided a useful relaxation technique based on the error of
the mismatched fuzzy basis functions. In the future, we will
extend the proposed control design method to be suitable
for nonhomogeneous MJFSs and develop a more advanced
decoupling technique.
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