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ABSTRACT Live video streaming services are gaining momentum as network and terminal capabilities
improve. However, 360◦ live video streaming services pose new challenges due to its high bandwidth and
computational requirements both on the user and service provider. In this paper, a study of the impact of the
uplink of a cellular network on the performance of 360◦ live video streaming in YouTube is presented. Unlike
previous works, the analysis focuses on the upstream between the video source and the server, not on the
downstream between the server and viewers. To this end, a measurement campaign is conducted where a live
video feed is transmitted and received through YouTube 360◦ platform in a pilot Long Term Evolution (LTE)
system. During the tests, a large dataset of real traces is collected at different protocol layers, both in upstream
and downstream, to check the correlation between TCP/IP metrics and key service performance indicators
(e.g., video segment quality and end-to-end latency). Results show that uplink performance has a strong
impact on the latency perceived by the user, which is critical for the considered live services.

INDEX TERMS YouTube, live video streaming, 360-degree video, latency, Quality of Experience, uplink.

I. INTRODUCTION
The latest advances in multimedia technology have caused
the proliferation of advanced video applications [1]. By 2020,
live video streaming outpaced the growth of other types of
online video, thanks to the rise of entertainment applica-
tions, such as sports and cultural event broadcasting, video
surveillance and teleconferencing for meetings and distance
learning [2]. Besides, the lower cost of video cameras allows
users to make live transmissions in increasingly complex and
sophisticated immersive formats. A good example is 360◦

video, recorded with omnidirectional cameras and projected
in 2D using mapping techniques, allowing users to freely
change the direction of the content display using a mouse,
a phone touch screen or virtual reality headsets.

Major service platforms, such as YouTube, Instagram and
Facebook, already offer live 360◦ video streaming [3]. How-
ever, the distribution of these videos poses new challenges.

The associate editor coordinating the review of this manuscript and
approving it for publication was Wenjie Feng.

Currently, the video client downloads the entire scene, even
if the user terminal only displays a portion of the image (i.e.,
viewport). This results in inefficient use of network band-
width by downloading data never used. A solution to improve
network efficiency is adaptive 360◦ video streaming [4], [5].
On the client side, the future user display port is predicted
and segments of that area of the image are requested with a
higher quality than in the rest of the scene. On the server side,
the original video stream received is stored and transcoded
into segments of different qualities according to the set of
possible viewports. Thus, the video download is optimized
depending on network conditions and display prediction.

In parallel, technological advances have increased user
expectations, forcing operators to change the way they man-
age their networks. To this end, network operators have
moved from a network-centric approach, focused on network
performance, to a user-centric approach, focused on user
opinion [6]. In this context, understanding the factors that
affect the delivery of services is key for network operators
to provide an adequate Quality of Experience (QoE). This is
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especially true for cellular network operators about to deploy
5G systems, for which live immersive video broadcast is one
of the main use cases [7].

To date, many works have published methods for estimat-
ing the QoE of adaptive video streaming services [8]–[20].
In practice, most cellular operators currently use passive
parametric methods that rely on a few network-level metrics
collected by probes in the core domain [21]–[27]. These
methods have been adapted to also cover live video streaming
services [28]. Yet, the above methods are only focused on
downlink performance, which is the restricting link when
mobile users download information from a server. In legacy
cellular systems, most studies on video streaming focused on
the downlink, because the bulk of traffic was generated by
the download of large video files on demand. With recent
advances in mobile handsets, users can now generate appeal-
ing live content with their terminals, which is uploaded in
real time through the uplink of a cellular network to content
servers. It is well-known that time-varying wireless channel
conditions affect smooth data transmission [29]. These issues
severely affect the uplink, since effective uplink data rates
tend to be lower than downlink data rates in live systems due
to diverse factors (e.g., simpler multi-antenna configurations,
limited modulation and coding schemes, different parame-
terization of link adaptation algorithms, less agile schedul-
ing, larger interference variability. . . ) [30], [31]. Moreover,
unlike the link between server and viewer, where dynamic
adaptive streaming techniques are used, the link between
the video source and server often uses non-adaptive online
streaming protocols. Therefore, the study of factors of uplink
performance in terms of bandwidth or latency is key to
maximize end-user QoE of Live Video Streaming [31]. This
is especially true for data intensive applications like 360◦

immersive video streaming. However, in a live mobile broad-
cast, the uplink used by the video source to upload content
to the server in real time is a major contributor to service
performance. Likewise, classical video streaming QoE mod-
els conceived for offline streaming do not take latency into
account. However, in live streaming, users are also sensitive
to the end-to-end video latency. To the authors’ knowledge,
no previous work has checked the impact of the uplink of a
cellular radio access network on the latency performance in
a live broadcast through a popular over-the-top (OTT) video
streaming platform.

In this work, a study of the impact of the uplink of a cellular
network on the performance of 360◦ live video streaming in
YouTube is presented. It should be pointed out that 360◦ live
video content currently available on YouTube is handled like
a conventional video. Nonetheless, such an immersive video
requires higher data rates, making the video distribution more
challenging. Unlike previous works, the analysis is focused
on the upstream between the video source and the server,
and not on the downstream between the server and viewers.
Generally, ‘‘downlink’’ refers to a radio link for transmitting
signals from the base station to a mobile terminal, while
the ‘‘uplink’’ refers to a radio link for the transmission of

signals from the mobile terminal to the base station. To avoid
confusion, we use the term ‘‘upstream’’ to refer to the bidirec-
tional link (consisting of uplink and downlink) between video
source and server, and the term ‘‘downstream’’ to refer to
the bidirectional link (also comprising uplink and downlink)
between video server and viewer. In the case considered here,
when the user located on the upstream segment (from video
source to server) generates the 360◦ live video streaming,
the uplink is used for video ingest to the content server, using
RTMP as streaming protocol. In contrast, in the downstream
segment (from server to viewer), downlink is used for content
delivery using a dynamic adaptive streaming protocol (e.g.,
DASH). These adaptation mechanisms make the downlink
more robust against fluctuations of link conditions. In addi-
tion, uplink data rates tend to be lower than downlink data
rates. All these issues make the upstream more prone to
impairments due to poor uplink performance. In order to
study the impact of the uplink (upstream segment), a mea-
surement campaign is conducted where a live video feed is
uploaded and received through YouTube 360◦ platform in a
pilot Long Term Evolution (LTE) system. During the tests,
a large dataset of real traces is collected at different protocol
layers, both in the upstream and downstream. With this data,
it is possible to check the correlation between network-level
metrics in the uplink (e.g., average user throughput) and key
service performance indicators (e.g., image quality, stalling
ratio, and end-to-end latency) on a per-session basis. Such
a piece of information can be used by network operators to
derive simple parametric QoE models for this new service
that also take the upstream into account. Note that any uplink
or downlink throttling will affect end-to-end latency. Low
downlink throughput increases latency downstream but does
not affect video ingestion to YouTube (upstream). In con-
trast, low throughput levels on the uplink affect the whole
system. Certainly, network-layer QoE models can be derived
from both links (uplink/downlink), but only the uplink can
model the behavior from the video source to the viewers
(end-to-end). The rest of the paper is structured as follows.
Section II reviews related work. Section III outlines the rel-
evant LTE-specific aspects influencing end-to-end latency.
Section IV explains the experimental methodology. SectionV
shows the analysis of measurements. Finally, section VI
presents the conclusions of the work.

II. RELATED WORK
In the literature, several objective metrics have been proposed
as key metrics to measure the QoE in video streaming ser-
vices. The first client-side QoE models were designed for
conventional video-on-demand streaming based on HTTP
progressive download (HPD), where stalling is the most
critical factor. In [32], a simple model for non-adaptive
streaming estimates user experience directly from network-
layer metrics, such as packet loss/jitter/delay and band-
width, which is suitable for encrypted traffic. More advanced
approaches estimate user experience from application-layer
metrics. In [22], a QoE model for YouTube based on passive
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in-device measurements is proposed. In [8], [33], [34], initial
reproduction delay, stalling frequency, and stalling duration
are used to estimate the QoE of HPD. In [15], a QoE model
for the conventional YouTube service based on estimating the
client buffer level is presented. With the advent of adaptive
video streaming services [14], modern approaches add new
metrics, such as image quality and frequency of switches
between quality levels for QoE estimation of encrypted video
traffic [35], combinedwith stalling statistics [36], [17]. To cir-
cumvent the complexity of defining closed-form analytical
models, the most sophisticated schemes use machine learning
techniques to find complex dependencies between indicators
in QoE estimation [37]–[42].

A few works have evaluated user experience in 360◦ video
streaming services. Preliminary works collected subjective
quality measurements on 360◦ video [43] to build visual qual-
ity assessment (VQA) models for 360◦ video [4], [44]–[46].
Later works highlight download bitrate as the leading cause
affecting the QoE [47], [48]. More advanced studies add
other factors (e.g., stallings, resolution, . . . ) [49]–[52] and
derive their interactions with machine learning techniques
for predicting QoE specifically for 360◦ videos [53]–[56].
In [57], a deep-learning scheme for maximizing the quality of
video chunks delivered with latency constraints by small cell
base stations working in the millimeter band is proposed for
multi-user virtual reality 360◦ videos. The proposed scheme
predicts user field of view, clusters users in base stations and
schedules multicast transmission of future video chunks. The
approach is validated through simulations. Other works are
focused on the uplink bitrate management as the main ele-
ment to improve the QoE, only taking into account resolution
changes in the video segments sent to the content server due
to the changing network conditions [58]–[62].

With the recent success of live video transmissions, there
is a growing interest on latency issues [63]. Legacy tele-
vision broadcasting systems achieve video latency values
of a few seconds, mainly originated by video frame syn-
chronizers in routing and switching devices [64]. In con-
trast, OTT video streaming platforms offer latency values
ranging from 10 to 30 seconds [63]. Several strategies
have been proposed to reduce latency. On the one hand,
the average segment duration, configured by the service
provider in the planning stage, has been shortened from
the typical 10 seconds to counteract that most HTTP-based
players store a fixed number of segments before start-
ing playback for robustness [65]. In parallel, many cur-
rent browsers include real-time streaming protocols, such as
Real–Time Messaging Protocol (RTMP), low-latency HTTP
live streaming (LL-HLS), Secure Reliable Transport (SRT)
or Web Real-Time Communication (webRTC), to achieve
video latencies below 1 second [66]. The combination of
these protocols with content delivery networks can help to
improve scalability while decreasing latency. At the same
time, chunked-encoding can be used to divide a video seg-
ment intomultiple shorter video chunks (typically, 1-15 video
frames), which are then encoded, streamed and decoded in

a pipelined fashion in chunked-transfer encoding [67]. For
this purpose, standard media containers must be paired with
encoder, content delivery network and client, so that the
overall system provides low latency [68]. Alternative model
predictive control schemes perform online bitrate adaptation
to find the optimal trade-off between video quality, playback
latency, video freeze, and skip [69]–[71].

Several methodologies have been proposed to measure
video latency. The basic approach is to introduce times-
tamps into the video stream [72], [73]. At the receiver side,
an application decodes the timestamp and estimates capture-
to-display latency. For this purpose, the source and receiving
end must be synchronized to generic Network Time Proto-
col (NTP) servers available on the Internet. In [74], glass-
to-glass video delay is estimated from video round trip time.
To this end, QR codes are displayed in front of the sender
camera and the resulting image is transferred to the remote
computer, where it is captured by a second camera in front
of the display that detects the QR code and notifies it to the
sender. Alternatively, the latest YouTube Live updates include
latency between parameters that can be monitored by ‘‘Stats
for nerds’’ feature [75].

To the authors’ knowledge, no previous work has checked
the influence of the uplink in a live broadcast with a popular
over-the-top (OTT) video streaming platform when upload-
ing the content through a cellular radio access network.
Hence, the main contribution of this work is the analysis of
the impact of LTE uplink on factors affecting the experience
of end users in YouTube 360◦ live streaming service.

III. LATENCY OF LIVE VIDEO STREAMING SERVICE IN LTE
The new habits of users, who need to generate content at
any time and place to publish it on social networks, make
mobile networks the main technology for providing these
services. In live streaming, users need to reduce the time gap
between the moment the camera captures the event, and the
user displays it on their screen (end-to-end latency). Many
mechanisms are implemented today to reduce this time, but
some residual value is still present.

Fig. 1 summarizes the different components contributing to
end-to-end latency in a live videostreaming service when both
source and target user are connected to a LTE system. Trans-
port network refers to the transport system connecting the
cellular system to the public Internet. Delay values associated
to video processing at the end devices (camera and display,
in red) correspond to a video profile with 2560 x 1440 pixel
resolution at 30 fps and H.264 AVC codec. These terms are
excluded from the analysis in the following sections, since
the focus is on network-related aspects.

Fig. 2 shows the reference LTE architecture, consisting
of two main subsystems [76]. The first one, Evolved Uni-
versal Mobile Telecommunications System Terrestrial Radio
Access Network (E-UTRAN), is responsible for provid-
ing the connection between user equipment (UE) and core
equipment through base stations known as evolved-Node
B (eNB). eNB is the entity that manages radio resources
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FIGURE 1. Processes contributing to end-to-end latency for a live video streaming service in LTE.

FIGURE 2. LTE reference architecture for video streaming services.

and is, therefore, in charge of admission control, mobility
control, dynamic resource allocation, and interference con-
trol. The second subsystem is the core network, known as
Evolved Packet Core (EPC), responsible for mobility man-
agement, access control, user connection management and
interconnection with other networks. The EPC mainly con-
sists of a control plane node, known as mobility manage-
ment entity (MME), and two user plane nodes, called the
Service Gateway (S-GW) and Packet Data Network Gate-
way (P-GW). MME is in charge of processing signaling
information between users and the backbone. S-GW is the
link between E-UTRAN and EPC at user level, while P-GW
provides connectivity between the LTE system and external
networks. All the above subsystems contribute to the overall
latency of the LTE network.

In cellular networks, latency is divided into control plane
and user plane latency. Control plane latency is defined as
the time for the UE to transit from idle state to active state
by establishing a Radio Resource Control (RRC) connection.
In this work, it is assumed that the user is already active,
so that the control plane latency is neglected. Then, user plane
latency is defined as the one-way transmit time from a packet
being available in the IP layer at the UE to the availability of
this packet in the IP layer at the server. Table 1 shows typi-
cal latency values reported for the different segments in the
cellular system [77], [78]. For illustrative purposes, Table 2
breaks down the different processes introducing latency in the
air interface of E-UTRAN latency for a fixed Hybrid auto-
matic repeat request (HARQ) retransmission probabilities

TABLE 1. Typical latency values in LTE architecture [77], [78].

TABLE 2. Analysis of user-plane latency in the radio interface [78], [79].

of 10% [78], [79]. In practice, latency values might be larger
due to radio link quality issues and capacity bottlenecks at
the eNB.

IV. EXPERIMENTAL METHODOLOGY
Firstly, the platform where measurements are collected is
outlined. Then, the analysis methodology is detailed.

A. MEASUREMENT PLATFORM
Fig. 3 shows a diagram of the platform used to automate
measurement collection. It is made up of two modules: a
broadcast module (upper left part of the diagram ) responsible
for the live broadcast of a 360◦ video on the YouTube Live
platform, and a measurement module (bottom part of the
diagram) responsible for deciphering, collecting and analyz-
ing measurements. Both modules use a private (i.e., non-
commercial) pilot LTE network as their access network.

The broadcast module consists of a Dell OptiPlex Personal
Computer (PC, 790MTmodel, QuadCore i7 3.4GHz proces-
sor, 8 GB RAM, integrated Intel HD Graphics 2000 Dynamic
video card, 500 GB hard drive) and a live broadcast camera
(Samsung Gear 360◦ model) connected to the PC via a USB
3.0 interface. The Cyberlink Samsung Gear 360◦ Action
software allows the creation and broadcast of the 360◦ live
video on the YouTube platform from a computer [80] through
an event previously configured in the broadcast manager
(YouTube Studio) [81]. To connect to the LTE network,
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FIGURE 3. Experimental test platform.

a Huawei 4G LTE USB dongle is used with a SIM card
registered in the pilot network management module.

YouTube Studio allows controlling end-to-end latency by
selecting between three different modes: ultra-low, low and
normal [82]. Normal mode is the default option for no inter-
action with the audience. Low mode is designed for content
that tolerate a latency between 2 and 15 seconds (comparable
to broadcast latency), as in live sports. Ultra-lowmode is used
for highly interactive live streams, such as user-generated
content in live video games.

The pilot LTE network comprises a radio access network
consisting of 12 indoor picocells (Huawei BTS3911B) in
the 2.6 GHz band (EARFC downlink 2850, EARFC uplink
18000) with 20 MHz system bandwidth. Only 2 picocells
are used in the experiments, one for the user uploading the
video content (referred to as upload picocell) and one for
the users downloading the content (referred to as download
picocell). Cells are logically connected to a compact virtual-
ized core (Huawei eCNS600) and a computer with the net-
work management tool (Huawei RH5885). These elements
are physically interconnected through a transmission network
consisting of a switch (Huawei S5700) and a Gigabit Ethernet
local area network. The core network is connected to the
Internet by a Switch S5700.

The measurement module consists of two terminal agents,
a network emulator and a network probe. The two agents
intend to reflect two users that visualize the live video feed.
The first terminal agent runs Ericsson Network Performance
Test (NPT) software [83] on a Samsung Galaxy S9 mobile
terminal. Such an application mimics user interactions in a

live video streaming session, while registering measurements
of the main service key performance indicators (S-KPI) in a
log file (NPT report). The second terminal agent is used to
collect latency measurements not provided by NPT. It runs on
a PC (Lenovo Thinkpad T560, I5 8th Gen processor, 8 GB
RAM, Intel HD Graphics 520 video card and 500 GB hard
disk) with a LTE dongle and replicates user behavior in an
emulated Samsung Galaxy S9 handset. It is developed using a
Python script from Selenium Webdriver and Google Chrome
development tools. With the latter, a HTTP Archive (HAR)
file is generated with all HTTP messages exchanged between
server and client, which is later parsed to obtain end-to-
end latency values. These periodic measurements are saved
per session in the output report (latency report).

The network emulator is a PC running Ubuntu 19.10
(Eoan Ermine, 3 GHz i5-750 processor, 8 GB of RAM,
with two network cards linked via a routing table) with
the NetEm module [84] to modify the uplink conditions
in a controlled way (e.g., uplink throughput). It is located
between the upload picocell and the core of the pilot LTE
network, allowing throttling of the uplink of the emission
module (THRU_UP). Packet-level network measurements
are collected on the Internet-side interface of the network
emulator using a standard capturing tool (Tcpdump) [85].
Then, this data is processed with a traffic monitoring and
analysis application (Network Probe) to extract basic quality-
of-service (QoS) metrics per session, which are later used to
relate network performance metrics to S-KPIs.

Three main measurement points are enabled in the plat-
form, one on the live video output and two on the receiving
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FIGURE 4. QoE HTTP message header.

side. The former is dedicated to the collection of performance
statistics of packet transmission at network level (TCP/IP
metrics). The other two extract the S-KPIs needed to estimate
the QoE of the live 360◦ video session in a mobile device
(S-KPI metrics) and capture HTTP messages received by a
personal computer for the extraction of latencymeasurements
(latency metrics).

B. ANALYSIS METHODOLOGY
In this section, the key performance indicators for the ana-
lyzed service are defined. Then, the experimental methodol-
ogy used in the tests is detailed.

1) S-KPI DEFINITION
Four fundamental S-KPIs determine user experience in live
video streaming: the initial delay of video playback (initial
buffering time), the reproduced image quality (given by the
time period each resolution is displayed), the frequency of
interruptions (rebuffering/stalling frequency) and the dura-
tion of each stalling event [86], [87]. Table 3 presents the
image formats (itags) used in live 360◦ video sessions in
YouTube. The above indicators are obtained per session from
the NPT tool. Based on these indicators, a rough QoE mea-
sure in mean opinion score (MOS) is provided by NPT,
followingMode 0 in ITU-T P.1203.3 standard [88]. Due to the
difficulty of emulating changes in the viewport introduced by
the user, NPT assumes that the 360◦ video user visualizes the
whole frame, as in a conventional video streaming session.
Hence, user QoE in a 360◦ video session is overestimated
by NPT, since displayed image resolution would be less in
practice, as the actual viewport size is only a fraction of the
entire frame. This issue has to be corrected by scaling image
resolution data.

A fifth S-KPI representing the average end-to-end latency
per session is obtained by deciphering HTTP messages
exchanged between the server and terminals visualizing video
content. End-to-end latency is defined as the time difference
between the moment the camera captures the event and the
user displays it on his/her screen. It comprises: a) process-
ing delays at the source, destination and YouTube server
for coding, transcoding, packaging and decoding audio and
video content, b) propagation and transmission delays on the
uplink and downlink, and c) buffering times on the server and

TABLE 3. YouTube itag mapping for 360◦ live streaming [89].

client receiving sides to cope with link speed fluctuations.
Latency information is extracted from QoE HTTP messages
sent periodically by the server. Fig. 4 shows an example of
QoE message header. It contains the URL with a large list of
parameters, from which two indicators are extracted, end-to-
end latency (e2el) and buffer health (bh), the latter showing
the video sequence time stored in the client buffer. In the
example, the QoE message shows that, at 54.034 s, latency is
29.214 s and buffer health is 20.415 s. In contrast, at 60.001 s,
latency is not reported, but buffer health is 19.656 s. As stated
above, latency measurements are collected only for the termi-
nal agent in the PC for simplicity.

By analyzing HAR files, it has been observed that the
latency parameter in QoE messages is sometimes missing.
An inspection of traces has shown that, if the latency param-
eter is present, video playback is in live mode; otherwise,
the downloaded video comes from a file that YouTube server
has created from the live broadcast. Thus, it can be detected
when YouTube switches between live and traditional video-
on-demand (off-line) streaming depending on upstream net-
work conditions. From this information, a sixth S-KPI is
derived showing the ratio of time the server is delivering live
content.

2) EXPERIMENTS
To check the impact of the above S-KPIs on a YouTube Live
360◦ video streaming session, a test battery was carried out
consisting of the transmission of a 360◦ video from a live
broadcast camera from April 1st to 30th 2020.

The broadcasted scene is a laboratory environment.
A video profile of 2560 × 1280 pixels at 30 fps and
H.264 AVC encoder is selected in the camera’s management
software. Fig. 5 shows the traffic profile at the output of the
camera with unlimited transmission bandwidth. It is observed
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FIGURE 5. Evolution of source video bitrate.

that the source traffic is bursty, indicating that the codec of
the camera is set to provide a variable output bitrate, with an
average value reaching 36 Mbps.

For the distribution of live video, the YouTube platform
is used as a gateway. Unless stated otherwise, the normal
latencymode is selected, since it is default mode. The adopted
streaming protocols are RTMP for ingest and Dynamic Adap-
tive Streaming for HTTP (DASH) for delivery. Note that,
even if YouTube already supports DASH in the ingest link,
this protocol is not suitable for ultra-low latency mode [90].
This is the main reason for selecting a non-HTTP-based
protocol, like RTMP, as ingest protocol. For the delivery
link, the use of a HTTP-based protocol, like DASH, ensures
scalability by leveraging content delivery networks and native
support on mobile devices.

Once live streaming is launched, the network emulator and
the terminal agents run synchronized. Each client receives a
360◦ live video streaming session of 300 s, which is repeated
until the end of the test battery. NetEm modifies the uplink
data rate in the upstream every 60 minutes, limiting the link
bandwidth to: 4, 5, 10, 20 or 50 Mbps. Below 4 Mbps, it is
checked that streaming frequently stops, because YouTube
server does not receive enough video to maintain smooth
streaming, causing that most viewers experience rebuffering
events [91]. Likewise, 50 Mbps is high enough to emulate
ideal link conditions. The total time of a test cycle is 5 hours.
During one month, a total of 10 test cycles are executed,
resulting in 120 measurements per throttling state. It should
be pointed out that only the radio access domain is controlled
during the experiments. For this reason, a large set of mea-
surements is required to filter out undesired fluctuations in
link capacity due to domains outside the pilot LTE network.

The aim is to check the influence of TCP/IP metrics on
the uplink of the ingest link on the 5 selected S-KPIs affect-
ing user experience. As in [28], for simplicity, the analy-
sis is restricted to the impact of uplink session throughput
(THRU_UP), which ultimately reflects any problem in the
ingest link (e.g., throttling, packet delay or packet losses).
To isolate the effect of the uplink, all terminals emulating end
users are located near the base station to ensure good radio

FIGURE 6. Distribution of itag values versus uplink throughput
per session.

conditions on the downlink. It will be shown later that the
video resolution downloaded by user agents is low enough
to ensure that the ingest link is the main bottleneck of the
system.

V. RESULTS
For clarity, the analysis starts with image quality statistics,
which help to identify in which upstream conditions the link
does not work properly. Then, the analysis is focused on
the QoE statistics provided by NPT, computed as in ITU-T
P.1203.3, which does not take viewport size and latency into
account. Finally, the analysis is focused on latency statistics,
which is the main contribution of this work.

A. IMAGE QUALITY DISTRIBUTION
Fig. 6 represents a stacked bar graph with the itag distribution
received by the mobile terminal for different values of uplink
session throughput. Each column represents a different throt-
tling value. Columnwidth reflects the range of THRU_UP for
that setting. The y-axis shows the percentage of itags of each
class within each column. It is observed that only two itag
values appear (134, 135), with 135 the most frequent value,
corresponding to a 854 x 480 video resolution and a video rate
between 0.5 and 2Mbps. The behavior is similar for all throt-
tling values except for 4Mbps. Amore detailed analysis of the
4 Mbps HAR traces (not shown here) reflects stalling prob-
lems in 85% of video playback sessions. Consequently, more
sessions that use lower resolutions (itag 134) are observed.
Above 4 Mbps, uplink throttling in the ingest link does not
directly affect the client’s video image quality in terms of
resolution. This is just a consequence of the lack of adaptation
in video transmission in the ingest link with RTMP.

B. QoE
Fig. 7 shows a scatter plot of the 4 S-KPIs for the 360◦ live
video streaming sessions as a function of uplink throughput in
the ingest link (THRU_UP). Specifically, Fig. 7.(a)-(d) show
the initial buffering time (IBT), the video interruption fre-
quency (IF), the video interruption duration ratio (IDR) and
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FIGURE 7. S-KPIs versus uplink throughput per session.

the QoE estimated with ITU-T P.1203.3 model, respectively.
Each point represents a 300 s session. The segmented regres-
sion curve is obtained by computing the horizontal and verti-
cal averages for each throttling value (4/5/10/20/50 Mbps).
The error bars show the 10% and 90% confidence inter-
vals. The determination coefficient is also superimposed. For
brevity, the analysis is focused on the factors degrading the
QoE.

In Fig. 7d, it is observed that QoE decreases as THRU_UP
decreases. A closer analysis reveals that QoE for high
throughputs is limited by the initial buffering time. Specifi-
cally, a THRU_UP of 50 Mbps results in an average MOS
of 4.68, below the maximum of 4.91. An inspection of
Fig. 7 shows that THRU_UP values above 50 Mbps lead
to IBT ≈ 1.29 ms, IF ≈ 0.07, IDR ≈ 0.23%. Thus, it is
concluded that the 1.29 ms initial delay limits the maximum
QoE to 4.68 MOS. In contrast, for lower throughputs, QoE
is limited by stalling events. Specifically, for a THRU_UP
of 4 Mbps, MOS decreases to 2.25 due to an IF increase from
0.07 to 1.41.

C. LATENCY
Fig. 8 shows the percentage of QoE messages received by the
PC containing the latency parameter (CR). Again, the five

FIGURE 8. Live connection ratio versus uplink throughput per session.

center points (circles) correspond to the vertical (CR) and
horizontal (THRU_UP) averages of measurements for each
throttling value (4/5/10/20/50Mbps). The error bars show the
10% and 90% confidence intervals. As latency measurements
are periodic, the live connection ratio reflects the percentage
of time that a session has been transmitting in live mode.
It can be observed that, as uplink data rate improves, video
sessions offer a live video service close to 100%. However,
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FIGURE 9. End-to-end latency versus uplink throughput per session.

for values of 5 Mbps, this ratio decreases to 85% approxi-
mately. Below 5 Mbps, YouTube does not offer continuous
live video service.

Fig. 9 shows the end-to-end latency as a function of
uplink throughput. The five circles correspond to the aver-
age latency and THRU_UP measurements for each throttling
value (4/5/10/20/50 Mbps). The error bars for 10% and 90%
confidence intervals are superimposed on the average value.
The curve is the best piecewise regression, resulting in a
determination coefficient of R2 = 0.86. Measurements show
that, for uplink data rates between 5 Mbps and 50 Mbps,
the latency is kept below 30 s. The lowest value is reached
at 10 Mbps, increasing slightly as uplink data rate increases.
In contrast, for 4 Mbps, the latency shows extremely high
values exceeding 60 s.

To check how much latency is due to the end-user buffer,
Fig. 10 presents the playback buffer size as a function of the
uplink data rate in the upstream. Again, each circle represents
the average buffer size and THRU_UP for each throttling
value, while the error bars show the 10% and 90% confidence
intervals. The segmented regression curve that best fits the
data is superimposed, resulting in a determination coefficient
of R2 = 0.5. In the figure, as in the previous case, two dif-
ferent behaviors are observed. From 5 to 50 Mbps, the buffer
size is kept below 20 s and shows a slightly upward trend.
In contrast, for 4 Mbps, it increases dramatically to 27 s on
average. This result points out that playback buffer size not
only depends on downstream conditions, but also on those of
the upstream.

Playback buffer size increases as network conditions
degrade to allow continuous playback on the client. Fig. 11
shows the temporal evolution of latency and buffer size for
many 360◦ live video sessions for four throttling values in
the uplink of the ingest link. For consistency, the figures only
show samples obtained fromQoEmessages, where the values
of both parameters, latency and buffer health, appear. Thus,
buffer health data is subsampled, as it is also reported in other
messages.

FIGURE 10. Playback buffer size versus uplink throughput per session.

In the figure, three behaviors are distinguished:

a) The most stable pattern is observed at 50 Mbps, shown
in Fig. 11d. In all sessions, an initial transient period
of 30 seconds is observed, when buffer size rapidly
increases, followed by a steady state, when buffer size
fluctuates around 20 seconds. A closer look reveals a
sawtooth pattern in buffer health due to the periodic
reception of video segments of different sizes by the
client. The duration of video segments can be estimated
in steady state from the time difference between consec-
utive HTTP video playback requests [92]. By analyzing
many HTTP traces, it has been confirmed that, in normal
latency mode, when the buffer size is below a certain
threshold, the next HTTP video playback request is sent
after 1 s. As the buffer fills, the message is delayed 4 s,
until the buffer is above a certain threshold, when the
message is delayed 10 s. This behavior is in agreement
with Fig. 11d, where it is observed that buffer health
follows a sawtooth pattern.

b) For 10 and 20 Mbps, shown in Fig. 11b and 11c, latency
and buffer health follow the same trend, showing a
strong relationship. Initially, the client buffer fills up to
the maximum target value, around 20 seconds, and then
decreases throughout the session. Latency replicates the
same behavior.

c) For 4 Mbps, shown in Fig. 11a, fewer points appear,
clustered in the first half of the session. It is deduced that
the number of QoE messages is less than in the previous
cases, indicating that the session switches intermittently
to the offline mode. Latency and buffer health have
the same trend. After the initial buffer filling period,
both delays reach their maximum values, of 30 and
70 seconds, respectively, which are kept throughout the
session for the few moments of live transmission. Note
the large value of end-to-end latency (70 seconds) for
these extreme throttling conditions.

To further inspect the relationship between latency and
buffer size, Fig. 12 shows a scatter plot of these two variables
across multiple sessions for the different throttling settings.
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FIGURE 11. Examples of latency evolution per session for different uplink throttling settings.

A piecewise regression curve is also included, together with
the value of the determination coefficient. By observing
Fig. 11(a)-(d), it can be deduced that most buffer health values
below 10 s in Fig. 12(a)-(d) tend to occur at the beginning
of sessions, when the buffer is still filling up. In this period,
the trend line is almost flat, suggesting that latency reported
in the initial transient period does not depend on buffer state.
Thereafter, an increasing trend is observed, where latency
rises as buffer size increases. Based on the value of the deter-
mination coefficient, correlation is weaker for 4 Mbps and
stronger for cases above 10 Mbps. A closer analysis shows
that the slope of the regression curve in the latter interval is
close to 1 for 10 and 20Mbps. This fact suggests that, in those
uplink conditions, end-to-end latency increases by the same
amount as playback buffer size. However, for 50 Mbps, this
rising trend is much more attenuated, showing a slope much
lower than 1. All these results show a clear dependence
between latency and uplink capacity, which might be due to
the variable output bitrate of the video source.

With an average target video bitrate of 36 Mbps at the
source, if the uplink is throttled very aggressively (4 Mbps),
a 3 fold increase of end-to-end latency is observed at the

end of the session (from 20 to 60 seconds), causing at the
same time switches to offline mode. In this case, the latency
increase might be due to the delay imposed by the YouTube
server transcoder, possibly due to unavailable image frames
or sudden changes in service mode. As the ingest link deteri-
orates, YouTube server might increase its ingest buffer, which
would lead to an increase in the overall system latency. At the
same time, on the client size, the playback buffer size is also
increased, approaching 30 s.

In the opposite conditions, when 50 Mbps throttling is
applied on the uplink, the source bitrate is unrestricted and
transmitted as if there were no link constraints. In this case,
the latency is slightly higher than for 10 and 20 Mbps, but
remains within very narrow limits during all experiments,
as seen in the vertical error bar in Fig. 9. This constant
value of latency suggests that the higher end-to-end delay
could be due to an increased buffer length in the ingest
server to cope with the higher video bitrate and increased
computational load for generating multiple copies of the
video at different resolutions. Moreover, there is an increase
in the client buffer size compared to the lower throttling
values.
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FIGURE 12. Correlation between buffer health and latency measurements.

For intermediate conditions (5, 10, and 20 Mbps),
the source video bitrate is throttled, but a live video service
is maintained. In these cases, the video bitrate is lower,
so transcoding in the ingest server is easier. Thus, latency val-
ues strongly depend on the playback buffer time. At the begin-
ning of the connection, the buffer is filled to the maximum
value to avoid interruptions in video playback, which implies
maximum latency values. As session progresses, there is a
reduction in buffer size and, therefore, also in latency. Such
a reduction might be originated by YouTube delivery server,
which, in an attempt to reduce latency in live transmissions,
might progressively reduce the size of the playback buffer,
and, thus, the end-to-end latency.

To check the impact of latency settings, Fig. 13 shows
latency values obtained in a session without throttling for
the three latency modes offered by YouTube (normal, low
and ultra-low). Each point represents a latency measurement,
reported every 6 seconds. As expected, a significant reduction
in latency is achieved by using the low and ultra-low latency
modes (3-fold reduction for low mode, 5-fold for ultra-low
mode). More interestingly, it is observed that ultra-low mode

presents a lower number of reports. Such an intermittent
reporting indicates the switching to the offline service during
those periods without reports.

The above-described latency reduction is partly achieved
by dividing the live video stream in smaller segments. Fig. 14
shows the distribution of the size of video segments for the
three latencymodes. For a fair comparison, measurements are
segregated per itag. It is observed that video segment size is
smaller in low and ultra-low modes. Specifically, the median
values are 69, 106, 179 and 360 for ultra-low (itag 136), ultra-
low (itag 137), low (itag 137) and normal (itag 137) modes,
respectively.

In the absence of stalling events, video duration
per segment can be deduced from the time difference between
consecutive video segment requests. Fig. 15 shows the dis-
tribution of video request interarrival times for the differ-
ent latency modes and itags. In the figure, it is clear that
the normal mode behaves differently from the low/ultra-
low modes. In normal mode, the time gap between video
requests fluctuates between 1, 4 and 10 seconds, depending
on playback buffer state. In contrast, in low and ultra-low
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FIGURE 13. Latency values in a YouTube session for normal, low and
ultra-low mode.

FIGURE 14. Distribution of the size of the video segments for normal, low
and ultra-low mode.

modes, such a time gap is nearly fixed to 2 and 1 seconds,
respectively. These values are in line with the observed
decrease in segment size.

Ultimately, it is the combination of segment size and fre-
quency that controls playback buffer state. Fig. 16 depicts
the distribution of instantaneous video bitrate, estimated by
dividing video segment request size and interarrival time on
a per-segment basis. As expected, it is observed that frequent
changes in interarrival times in the normal mode cause larges
changes of bitrate. In contrast, low/ultra-low modes keep
bitrate almost constant. Likewise, the lowest median bitrate is
obtained for the lowest itag (136). More subtle is the fact that
median bitrate values slightly differ between modes for the
highest itag (137). The same holds for the overall video bitrate
(i.e., total bits/session duration), which is 557, 834, 716 and
706 kbps for ultra-low (itag 136), ultra-low (itag 137), low
(itag 137) and normal (itag137) modes, respectively. This
effect is possibly due to a larger protocol overhead for smaller
segment sizes.

D. DISCUSSION
The above results can be used to derive parametric
network-layer QoE models that estimate end-to-end video

FIGURE 15. Distribution of video segment interarrival times for normal,
low and ultra-low mode.

FIGURE 16. Distribution of instantaneous video bitrate for normal, low
and ultra-low mode.

latency from uplink throughput measurements on a per-
session basis. These methods would be suitable for encrypted
traffic, provided that the different traffic flows can be iso-
lated. The main difficulty lies in the characterization of user
sensitivity to latency, as it is application dependent. In sport
broadcast, the target latency is similar to that of the traditional
broadcast chain, which varies between 2 and 15 seconds [63].
In this context, a minimum latency is needed to ensure that
content can be censored. In contrast, interactive applications
where the streamer interacts with the audience, such as online
gambling and e-sports, require lower latency values to ensure
a fluid conversation. Likewise, in teleoperated systems with
haptic feedback, target latency is in the order of millisec-
onds [93]. Such application-dependent performance thresh-
olds can only be derived from subjective tests or massive
analysis of session traces collected in live networks [94].

VI. CONCLUSION
Low-latency video streaming has recently gained momentum
in the industry and research community. This article has
presented a study of the impact of the uplink of a Long Term
Evolution network in the ingest path of a live 360◦ video
broadcast using YouTube streaming platform. The analysis
has been performed by first introducing throttling in the

123256 VOLUME 9, 2021



L. R. Jiménez et al.: Upstream Matters: Impact of Uplink Performance on YouTube 360◦ Live Video Streaming

uplink of the upload cell and then collecting network-level
traces for TCP/IP metrics, HTTP traces for latency measure-
ments and application-level traces for MOS calculation.

Results have shown that, even if uplink performance does
not influence the image quality of the downloaded video seg-
ments, it has a strong impact on end-to-end latency. It has also
been shown that the relationship between uplink throughput
and end-to-end latency is not straight-forward, as it depends
on multiple mechanisms located in the content delivery net-
work and user terminal. These results justify the need for new
ways to estimate end-to-end latency from TCP/IP metrics.

Future work will check the impact of activating DASH
protocol in the ingest link, which might be suitable for pre-
mium content requiring higher image quality at the expense
of a slightly higher latency. Likewise, the experiments will
be repeated in a 5G system, where configuring an adequate
numerology and a network slice for ultra-reliable low-latency
services will reduce latency in the access domain. These
enhanced capabilities will pave the way to tactile Internet
applications based on immersive video.
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