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ABSTRACT Closed-circuit television (CCTV) systems are essential nowadays to prevent security threats or
dangerous situations, in which early detection is crucial. Novel deep learning-based methods have allowed
to develop automatic weapon detectors with promising results. However, these approaches are mainly based
on visual weapon appearance only. For handguns, body pose may be a useful cue, especially in cases where
the gun is barely visible. In this work, a novel method is proposed to combine, in a single architecture, both
weapon appearance and human pose information. First, pose keypoints are estimated to extract hand regions
and generate binary pose images, which are the model inputs. Then, each input is processed in different
subnetworks and combined to produce the handgun bounding box. Results obtained show that the combined
model improves the handgun detection state of the art, achieving from 4.23 to 18.9 AP points more than the
best previous approach.

INDEX TERMS CCTV surveillance, deep learning, handgun detection, human pose estimation.

I. INTRODUCTION
Video surveillance has come a long way in the past decades.
Nowadays, public or private spaces such as train stations,
airports, museums, banks or government institutional build-
ings have their own video surveillance systems. These sys-
tems are very useful for post-event investigations and also
assisting the security personnel to manage crowds, being
able to monitor different locations simultaneously. However,
the main drawback of these solutions is the need for con-
tinuous monitoring by a human operator. The increasing
number of areas controlled by video surveillance cameras,
as well as factors inherent to human condition such as fatigue
or loss of attention over time, make these systems rather
inefficient [1], [2].

Related studies in this area show that early detection of
security threats or risks is fundamental to mitigate the damage
caused as much as possible [3]. Situations involving firearms
such as handgun attacks, mass shootings, gunfire incidents on
school grounds [4] or terrorist attacks [5] are representative
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examples of this kind of threats, which unfortunately have
become rather common nowadays.

The development of intelligent systems capable of auto-
matically detecting threats or risk situations involving
firearms as soon as possible can provide important advan-
tages in terms of security. Recently, thanks to the momentum
achieved by the introduction of deep learning methodologies,
remarkable results have been obtained in visual tasks such
as image classification or object detection and segmentation.
In the particular case of firearm detection, while the results
obtained with these novel methods are promising, there are
still substantial limitations when they are applied in new sce-
narios different to those used for training, especially an unac-
ceptable number of false positives [6]. Furthermore, most of
the proposed methods for automatic detection of firearms are
based only on the appearance of the weapon in the image,
without taking into account additional information that may
help provide a more robust and accurate detection.

This work proposes the use of the human pose as comple-
mentary information to improve the performance of current
handgun detectors based on deep learning. The human pose,
defined as the relative position of the different joints and
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limbs of the human body, is quite characteristic in shootings.
On the other hand, the images obtained by CCTV cameras
are not generally of high quality, due to their low resolution,
the presence of noise or poor lighting conditions. Also, other
factors such as distance to the camera, the small visual size
of the weapon1 or a total or partial occlusion can prevent
the object from being detected [7]. Our hypothesis in this
work is that contextual body information can help improve
the robustness of the detection.

The contributions of this paper are as follows: (1) the
development of a novel method for detecting hand-held
firearms; (2) the performance evaluation of the proposed
method in comparison with well-known appearance-based
detection methods such as YOLOv3 and also other recent
alternatives that consider human pose information and (3)
assessment of the robustness of the method in environments
under poor illumination conditions, with large camera dis-
tances and with different camera perspectives.

The rest of the article is organized as follows. Section II
describes previous work related to the task of handgun detec-
tion. The datasets used in this study are detailed in Section III.
In Section IV the proposed method is explained. The exper-
iments carried out and results obtained are summarized in
Section V. Finally, conclusions and future work are presented
in Section VI.

II. RELATED WORK
X-ray scanning machines are widespread in public spaces
such as airports, train stations or museums with the objective
of finding concealed weapons in luggage. The X-ray gener-
ated images are manually analyzed by a security operator.
In this context, several approaches based on classical vision
methods were proposed to automate the detection process.
The work Nercessian et al. [8] introduced a detection system
based on image segmentation and edge-based feature vectors.
Xiao et al. [9] proposed a method based on Haar-like features
and AdaBoost classifiers to automatically detect handguns in
this kind of images. Also, 3D interest point descriptors have
been studied for object classification in 3D baggage security
computed tomography imagery [10], [11].

While X-ray imaging-based systems are useful to find
weapons in travel bags or luggage, the scope of these solu-
tions is very limited. Additionally, this kind of scanning
machines are quite expensive. Using the RGB images cap-
tured by the CCTV video surveillance cameras to detect dan-
gerous objects can be amore versatile and economical option.
In this respect, several works related to the detection of
weapons in RGB images through traditional machine learn-
ing methods have been proposed. Tiwari and Verma [12] pro-
posed amethod to detect weapons in RGB images which used
color segmentation and the k-means algorithm to remove
unrelated objects. Then, the Harris interest point detector and
Fast Retina Keypoint (FREAK) is used to locate the handgun

1Powerful weapons like rifles and shotguns, which have a larger visual
size, have not been considered in this work.

in the segmented images. Later, Halima and Hosam [13]
proposed another method to detect the presence of a handgun
in an image. In this case, SIFT features are extracted from the
collection of images and clustered by the k-means algorithm.
Then, a word vocabulary based histogram is implemented and
finally, a Support Vector Machine is used to decide whether
the new image contains a weapon.

More recent deep learning based methods have been also
applied to this task using different strategies. An important
family of them is based on sliding windows. In this case,
a large number of regions or windows of different sizes
and aspect ratios are generated within the image (on the
order of 104) and each one is classified individually by a
neural network. Several studies have applied this technique
to detect handguns in images similar to those captured by
CCTV video surveillance cameras [14], [15]. The major
drawback of this type of system is the high processing time
required to classify these windows, making it difficult to
use them in real time. Other solutions are based on region
proposals, which instead of using all possible windows in
an image select only actual candidates. The first techniques
that have used CNNs in this context are the Region-based
CNN family of methods [16], [17]. Verma and Dhillon [18]
proposed a method based on the Faster-RCNN framework
with a VGG-16 backbone as feature extractor trained with
the IMFDB dataset [19] to detect hand-held arms. Both
sliding window and Faster-RCNN methods were tested and
compared by Olmos et al. [20] for handgun detection. Faster-
RCNN pre-trained with VGG-16 architecture obtained the
best results on a custom dataset of 3000 YouTube gun images.
Finally, another common approach for detecting objects is
based on the YOLO family of methods [21]–[23]. In these
architectures a single deep neural network is applied once
to the full image instead of multiple region proposals. The
image is divided into fixed regions and probabilities and
bounding boxes are predicted for each one. Several works
have also recently applied YOLOv3 for detecting firearms
with promising results [24], [25].

Human pose information has been recently used for hand-
gun detection and threat assessment. Abruzzo et al. [26] pro-
posed a method for identifying people and handguns in
images and then evaluate the threat level of the person poses
based on the their body posture. However, the main limitation
of this work is that the handgun detection performance is lim-
ited by the handgun detector used (in this case YOLO). In the
handgun detection step, no human pose information is con-
sidered. Basit et al. [27] proposed a method for classifying
human-handgun pairs. As in the previous work, human and
handgun are separately detected. Then, each detected human
is paired with each detected handgun and, finally, a neural
network is trained to classify these paired human-handgun
bounding boxes into two classes: ‘‘carrying handgun’’ and
‘‘not carrying handgun’’. This method can be used to remove
false handgun detections, but again the detection performance
is limited by the handgun detector used and the human pose
cannot help to reduce the number of false negatives. More
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FIGURE 1. Sample images from Gun Movies Database.

recently, Salido et al. [28] analyzed how including body pose
information (skeleton keypoints and limbs retrieved by a pose
detector) in the input images, as a preprocessing step, can
improve the handgun detection performance.

In the closest work to ours, an approach to improve a hand-
gun detector through the integration with the human pose was
introduced recently in Velasco-Mata et al. [29]. This method
used a visual heatmap representation of both the pose and the
weapon location, using convolutional layers to obtain a final
grayscale image that indicates potential handgun regions on
the image.

III. MATERIALS
This section describes the datasets used for assessing the
performance of the proposed method. In order to consider
different contexts and image features, the images have been
collected from different sources, such as public handgun
datasets, YouTube clips and even synthetic images obtained
from video games.

A. PUBLIC HANDGUN DATASETS
The proposed method is intended to be applied in CCTV
surveillance systems on a wide variety of scenarios. Unfortu-
nately, most public handgun datasets contain weapon profile
images occupying the whole image and with homogeneous
background, which are quite different from the type of images
captured with surveillance cameras. Surveillance scenarios
are typically characterized by a large distance between the
subjects recorded and the camera, low image resolution or
quality, and poor lighting conditions, among others. Salazar
Gonzalez et al. [30] recently introduced a new dataset com-
posed of CCTV images from a real video surveillance system
and synthetic images generated with the Unity game engine.
However, the CCTV images in this dataset are not realistic
enough, showing unnatural poses for handgun attacks or mass
shootings. On the other hand, it is possible to find some
public datasets or parts thereof which are realistic enough.
The first dataset used in our study is composed of 665 images
of size 640× 480 extracted from videos of the Guns Movies
Database [14]. In these clips a man is holding a handgun in
a few shooting poses in an indoor room. Camera distance,
image resolution and illumination conditions are a good rep-
resentation of CCTV scenarios. In Figure 1 two example
images from this dataset are shown.

Also, 300 images of size 512 × 512 were obtained from
the publicly available Monash Guns Dataset [31] for test

FIGURE 2. Sample images from Monash Guns Dataset.

purposes. These images show different CCTV scenarios with
people holding handguns in several body poses. In Figure 2
two example images from this realistic dataset are shown.

B. YouTube VIDEOS
YouTube is another useful source to find videos of people car-
rying or holding weapons and/or shooting. As in the previous
case, it is difficult to find clips of real CCTV footage showing
handguns. Nevertheless, there are videos of shooting practice
sessions which are suitable for our purposes. This dataset is
composed of 952 images of size 1920× 1080 extracted from
12 YouTube clips. In these videos there are different camera
locations, background scenarios, shooting poses and lighting
conditions. Figure 3 shows two example images from this
dataset.

FIGURE 3. Sample images from YouTube dataset.

C. SYNTHETIC VIDEO GAME IMAGES
Video games can be also used to create new data for this task.
Through specific video games it is possible to recreate rep-
resentative situations or scenarios and then extract videos or
images. In this case, a synthetic dataset was created with the
popular shooter video game Watch Dogs 2 on a PC platform.
Using the novel NVIDIA Ansel feature,2 ingame videos can
be recorded from different camera locations, distances or
angles. In this way, 4 video sequences were recorded, per-
forming a full camera rotation around the main character with
two different heights in various shooting animations. Finally,
650 images of size 3840 × 2160 were obtained from these
video sequences. In Figure 4 two example images of this
dataset are shown.

D. DATA AUGMENTATION AND DATASET SPLIT
The use of a large and representative dataset is essential to
achieve good performance in novel object detectors based on
deep learning and CNNs. YouTube clips or synthetic video

2https://developer.nvidia.com/ansel
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FIGURE 4. Sample images from Watch Dogs 2 dataset (
2016 Ubisoft
Entertainment).

game images can be a solution, but the manual labelling
process is a time consuming task, limiting the number of
images that can be effectively generated.

Novel deep learning methods need a huge amount of data
to be correctly trained, because of the large number of param-
eters and model complexities. To deal with this problem, data
augmentation is a common practice that helps to increase
the size and variability of the dataset by applying a set of
transformations to the original data. In our case, for each
image included in the dataset, another one was generated
performing a horizontal flip. In this way, the number of
images was doubled, generating new shooting poses.

Moreover, transfer learning is another technique com-
monly used in classification or object detection tasks to cir-
cumvent the need for large training datasets. It is based on
adapting the useful features learned in a previous training
process with a large public dataset, such as COCO [32] or
ImageNet [33], to a new domain. In this way, starting the new
training with the previously learned parameters instead of
randomly initialized weights, allows us to obtain good results
for the specific task even with small specific datasets.

Finally, for this work, the dataset used for training the pro-
posed method after the data augmentation procedure is com-
posed of a total of 3000 randomly selected images, obtained
from Guns Movies Database, Watch Dogs 2 and YouTube
datasets, including a total of 3160 handguns. The validation
set is formed by a total of 300 images obtained from the
same datasets (Guns Movies Database, Watch Dogs 2 and
YouTube), including 306 handguns. For test, two different
sets have been created. The first one (test set A) is formed by a
total of 300 images of the YouTube database, including a total
of 297 handguns. The second one (test set B) is composed
of 300 images from the Monash Guns Dataset, containing
another 300 handguns. The test images were selected in this
way to evaluate the performance of the methods against the
most realistic and heterogeneous datasets available. None of
the test images was either in the training or validation set.
A summary of the dataset composition is presented in Table 1.

IV. METHODOLOGY
In this section, the different steps involved in the proposed
method are detailed, starting from the input image down to
the final handgun detections.

A. HUMAN POSE ESTIMATION
The first step consists of collecting the human pose infor-
mation found in the input image. This was done with the

OpenPose framework [34]. OpenPose is an open-source
multi-person pose estimator which is able to predict the 2D
keypoints as well as keypoint associations, keeping a high
accuracy and a low inference time. In this step, a set of 25
2D keypoints are predicted for each person in the image,
along with predicted confidence for each one of them. These
keypoints include the necessary human body position infor-
mation (neck, shoulders, elbows, wrists, etc.) to define the
pose of each person.

B. HAND REGION EXTRACTION
In the second step, using the collected pose information,
the hand regions for each detected person are inferred and
extracted. The elbow and wrist positions, as well as the
distances and directions between them are used to generate
a set of bounding boxes around all of the hand regions in the
input image (see Figure 5).
The confidence score given byOpenPose for each keypoint

is applied to filter wrong or inaccurate detections, and an
intersection over union (IoU) threshold between the predicted
bounding boxes is checked to prevent overlapping areas (e.g.,
a handgun held with both hands is considered as a single
region, since both bounding boxes are overlapping).

C. HAND REGION CLASSIFICATION
For this stage, a convolutional neural network was trained to
classify the previously generated hand regions into handgun
or no-handgun areas, based on whether there is a hand-
gun inside the region (see Figure 6). The selected network
was Darknet-53, the backbone feature extractor used in the
YOLOv3 object detector. Henceforth, this hand region clas-
sifier will be denoted as HRC (Hand Region Classifier).

The dataset used for training the hand region classifier
was composed of 6177 images, generated from the hand
areas extracted from the 3000 training images described in
Section III. These regions were automatically labelled by
comparing the hand areas and the ground truth handgun
locations. For this, instead of the IoU score, we followed the
overlap measure proposed in Velasco-Mata et al. [29]: inter-
section over minimum area (IoMin), see Equation 1. Usually,
ground truth handgun locations are smaller than hand bound-
ing boxes. This metric allows a better overlap measurement
in this particular scenario, since bounding boxes of different
sizes are not penalized. More details are given in [29].

IoMin(A,B) =
area(A ∩ B)

min(area(A), area(B))
(1)

If the regions overlap with a 0.5 IoMin threshold, the hand
area is labelled as a handgun area. On the other hand, if there
is no overlap or the treshold is below 0.5 IoMin, the hand area
is labelled as no-handgun.

Each hand region was also resized to a fixed size of
256× 256. The model was trained with a batch size of 4
in 60 epochs using the Adam optimization algorithm and the
categorical cross entropy as loss function.
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TABLE 1. Number of images for each dataset after the data agumentation process.

FIGURE 5. Pose estimation and hand region extraction.

FIGURE 6. Hand region classification step.

D. POSE COMBINATION METHOD
A further modification of the HRC method described in the
previous section was considered. In this case, the network is
modified to combine the hand region image with the human
pose information obtained with OpenPose. This was done
to help the region classifier by exploiting correlation with
the individual’s pose information. Pose data is used to create
binary images of fixed size 512 × 512 for each detected
person in the input image, drawing the keypoints and the
connections between them. A normalization procedure is also
applied to focus only on the relative position between the
keypoints, removing variable factors such as camera distance
and absolute position in the image. For this, the original neck
keypoint j0 is taken as reference and the distance between this
point and the lumbar spine keypoint j1 is used as the scale
factor for the normalization. In this way, the new keypoints
kn are calculated following Equation 2:

kn =
jn − j0

|
−→
j0j1|

(2)

where jn is the original 2D point and |
−→
j0j1| is the distance

between j0 and j1.
In Figure 7b an example of a generated pose image is

shown, along with the original image (Figure 7a). This binary
pose image along with the original hand region image are
the inputs to the new classifier. However, note that each pose
image is related to two different hand regions (the two hands
of an individual), and the pose image generated would be the
same in the two cases. The problem then is that one of these

regions could be labelled as handgun and the other as no-
handgun, and the net effect of the additional pose information
would be ignored (as the two regions have the same pose
image). To prevent this, the pose image is divided into two
parts of size 256×512 as shown in Figure 8, selecting as input
the half in which the hand region is included. Thus, for each
detected hand region there are two network inputs, the hand
region itself and the pose image half corresponding to this
hand region. For those cases in which the handgun is held
with the two hands and the bounding boxes are overlapping,
as the case shown in Figure 7, we ensure that only a single
hand region is taken into account, along with the correspond-
ing pose image half.

The whole network architecture, henceforth named as
HRC+P (Hand Region Classifier + Pose data), is divided
into two main branches. The first one is the hand region
classifier (HRC). On the other hand, the processing of the
pose image is carried out by another custom subnetwork.
The last feature vectors of the two branches are then joined
in a single feature vector connected to the final classifica-
tion layer. During the training step of the whole framework,
the HRC and pose branches are optimized simultaneously.
In this way, the model is capable of learning the optimal
combination of handgun appearance with human pose infor-
mation to improve the classification performance. The whole
architecture is shown in Figure 9.

E. BOUNDING BOX PREDICTION
The last step of the proposed method consists of generating
the handgun predictions in the image. Each hand region
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FIGURE 7. Pose classification example.

FIGURE 8. Pose processing steps, including normalization and division in halves.

of each detected person is passed through the classification
network to obtain a class label (handgun vs no-handgun).
Then, the bounding boxes of the regions classified as hand-
gun are included in the output list of predicted handguns
(see Figure 10).

V. RESULTS
This section presents the results obtained in the tests carried
out to evaluate the performance of the proposed method.
In general, object detection models are evaluated using Pre-
cision, Recall, and Average Precision (PASCAL VOC AP50)
metrics [35]. In fact, these metrics are based on True Positives
(TP), False Positives (FP) and False Negatives (FN). These
values are calculated taking into account the overlap between
the ground truth bounding boxes and those predicted by
the detector. In the same way as in the automatic labeling
process for the training of the hand region classifier (Sub-
section IV-C), the IoMin is the selected criterion to calcu-
late the overlap between the predicted bounding boxes and
the ground truth data, due to the size difference between
them.

The proposed pose-combined approach (HRC+P) has
been compared to three different handgun detectors:

• YOLOv3 [23]: YOLOv3 is one of the fastest and
most accurate deep learning-based object detectors.
The Darknet-53 CNN backbone is used as feature
extractor, which provides an interesting baseline for
comparison.

• Basit et al. [27]: This work proposes a method to clas-
sify person-handgun pairs detected in an image, between
people carrying handguns and those who do not.

• Velasco-Mata et al. [29]: This recent work, the most
similar to ours, proposes a method to improve a handgun
detector based on a visual heatmap representation of
both pose and weapon location.

• Salido et al. [28]: Thismethod overlays body pose infor-
mation retrieved by the OpenPose framework to the
input images. In this way, CNN-based detectors can
learn the association of a handgun location with the
visual patterns of the pose skeletons included in the
images.

• The proposed hand region classifier without pose infor-
mation (HRC): To check the effect of including the 2D
human pose information in the hand region classifier,
the hand region processing branch without pose com-
bination is taken for comparison.

All methods were trained and tested using the datasets
described in Section III.

A. TEST SET A - ORIGINAL DATA
The results obtained in the test set A are summarized
in Table 2. Precision and Recall values are calculated with a
0.5 prediction score threshold. Also, Precision-Recall curves
of all methods are shown in Figure 11.

The highest AP score is achievedwith theHRC+Pmethod,
the pose-combined version of the proposed approach. The AP
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FIGURE 9. Network architecture.

obtained is approximately 5% higher than the no-combined
version (HRC). HRC+P is able to detect the largest number
of handguns in the dataset. However, the least number of false
positives is obtained with the HRC approach.

To better assess the performance of the models under
different conditions, two additional versions of the test
set A were generated. The results are described in what
follows.
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FIGURE 10. Bounding box prediction step.

FIGURE 11. Precision-Recall curves obtained for test set A with the
original images.

B. TEST SET A - DARK DATA
A darkened version of the test set Awas generated to simulate
the performance of the trained models under poor illumina-
tion conditions. This scenario was obtained by modifying the
Value component in the HSV color space for all images in the
test set A. Figure 12 shows an example image.

The results obtained for these darkened images are summa-
rized in Table 3. Precision and Recall values are calculated
with a 0.5 prediction score threshold and Precision-Recall
curves of all methods are shown in Figure 13.
Again, in these modified images the HRC+P method

obtains the highest AP score, with more than 4% of improve-
ment over the second best, showing that the proposed
pose-combined method can be useful in unfavorable lighting
conditions.

C. TEST SET A - FAR DATA
Camera distance can also be a relevant factor in detecting
small objects such as handguns, especially in cases where
only the visual appearance of the object is used for detection.
To test this scenario, another version of the test set A has been
generated, reducing image size by half and filling the rest of
the image with black pixels. In Figure 14, an example of this
transformation is presented.

The results obtained for these far images are summarized
in Table 4. Precision and Recall values are calculated with a
0.5 prediction score threshold and Precision-Recall curves of
all methods are shown in Figure 15.

The HRC+P model also presents the highest AP score
in this last test scenario, improving in 6% the performance
of the HRC method. The results show that this reduction
in the size of the objects present in the image significantly
affects methods that are based exclusively on the appearance
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FIGURE 12. Test set A - Dark data.

TABLE 2. Evaluation metrics for test set A with the original images.

TABLE 3. Evaluation metrics for test set A with the dark images.

of the object, such as YOLOv3. Pose-based methods show
even higher metrics. This can be explained due to the fact
that the pose estimation is not severely affected by this larger
distance to the camera, being able to accurately detect the
pose keypoints in the image.

D. TEST SET B - MONASH DATASET
For the last experiment, the realistic Monash Guns
Dataset [31] has been used to test the methods compared
in this work. This dataset shows people holding handguns
in a variety of real-world CCTV surveillance environments.
The results obtained for these test images are summarized
in Table 5. Precision and Recall values are calculated with a
0.5 prediction score threshold and Precision-Recall curves of
all methods are shown in Figure 16.

For this test set, all methods show a significantly lower
performance. This can be explained by the differences with
respect to the training images in terms of lighting, camera
perspective and image distortions. However, the proposed
pose-combined method (HRC+P) still shows the highest
AP score, improving the no-combined version (HRC) in
approximately 10%.

FIGURE 13. Precision-Recall curves obtained for test set A with the dark
images.

E. EXAMPLE IMAGES
The two proposed approaches (HRC and HRC+P) present
the best average performance in all studied scenarios. The
pose-combined method (HRC+P) obtains better results in
terms of Recall and AP. In Figure 17 two example images
are shown to illustrate these results. In both examples the
handgun is not detected with the HRC method. In the first
example (Figure 17a and Figure 17b) the handgun is almost
completely occluded and in the second example (Figure 17c
and Figure 17d) the handgun area is blurry. Conversely,
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FIGURE 14. Test set A - Far data.

TABLE 4. Evaluation metrics for test set A with the distance-simulated images.

TABLE 5. Evaluation metrics for test set B - Monash data.

FIGURE 15. Precision-Recall curves obtained for test set A with the
distance-simulated images.

the HRC+P method is able to locate both of them thanks to
the clear shooting poses.

In terms of Precision HRC obtains better results. Figure 18
shows an example of a false positive detection in the HRC+P

FIGURE 16. Precision-Recall curves obtained for test set B with the
Monash images.

method. In this case, both right hand object and body pose of
the second subject have caused an incorrect detection. On the
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FIGURE 17. HRC and HRC+P detection examples 1.

FIGURE 18. HRC and HRC+P detection examples 2.

other hand, the HRC approach can classify all hand regions
in the image correctly.

VI. CONCLUSION
The 2D human pose is widely used in tasks such as action
or gesture recognition. However, for the detection of threats
or dangerous objects such as firearms, most of the pro-
posed methods are based only on the visual appearance of
the objects, without taking into account the human pose or
another additional information.

In this work a novel method that combines in the same
architecture the visual appearance of the handgun with the
2D human pose information is proposed. There are certain
situations in which the object cannot be viewed correctly due
to camera distance, poor lighting conditions or partial or total
occlusion. In these situations, the human body pose helps in
detecting the presence of handguns that would not be detected
without this additional information. On the other hand, as the
pose information is used to classify only the hand regions of
the people detected, it is possible to remove false positives
that may appear in other locations of the image.

The tests performed with the different datasets show that
the proposed method using the pose combination obtains
better results in all cases. Especially interesting is the fact that
metrics in the reduced size images are even higher than in the
case of the original size images.

Automatic and real time handgun detection in CCTV video
surveillance images is still an open problem and there is
room for improvement. The authors hope that the proposed
work can be used as inspiration for new approaches based on
2D human pose information to improve the overall detector
performance in this kind of application.

Finally, note that in real scenarios common hand-held
objects such as cell phones, keys or wallets may be an impor-
tant source of false positives or misclassifications. In future
work this aspect will be addressed with more specific
methods.
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