
Received July 27, 2021, accepted August 29, 2021, date of publication September 3, 2021, date of current version September 13, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3110242

Dynamic Jobshop Scheduling Algorithm Based on
Deep Q Network
YEJIAN ZHAO , YANHONG WANG , YUANYUAN TAN , JUN ZHANG , AND HONGXIA YU
Institute of Artificial Intelligence, Shenyang University of Technology, Shenyang 100870, China

Corresponding author: Yanhong Wang (wangyh_sut@163.com)

This work was supported in part by Liaoning Provincial Key Research and Development Plan of China under Grant 2020JH2/10100041,
and in part by the Youth Fund of the National Natural Science Foundation of China under Grant 62003221.

ABSTRACT Jobshop scheduling is a classic instance in the field of production scheduling. Solving and
optimizing the scheduling problem of the jobshop can greatly reduce the production cost of the workshop
and improve the processing efficiency, thereby improving the market competitiveness of the manufacturing
enterprises. In order to make decisions on the complex dynamic scheduling process more accurately and
simplify the solution process, the jobshop scheduling problem can be transformed into a reinforcement
learning problem based on the Markov decision process. The performance of the adaptive scheduling
algorithm in a dynamic manufacturing environment is improved based on the Deep Q Network (DQN).
In the proposed scheduling algorithm, five state features of continuous value ranges are designed for input
to a Deep Neural Network (DNN), as well as ten well-known heuristic dispatching rules are selected as the
action set of the DQN. In the proposed scheduling algorithm, the target network and the prediction network
are used to train the parameters. An action selection strategy based on the ‘‘softmax’’ function is designed
in DQN. It selects dispatching rules with the largest action value as the execution action, thereby solving
the problem that the suboptimal action value is greater than the optimal action Q value in the early learning
stage. Furthermore, the non-optimal action is selected with a greater probability in the later learning stage.
Ten benchmark jobshop test instances called ‘‘LA’’ used as simulation objects and operated in a simulation
environment composed of Python. The simulation results confirm that the proposed scheduling algorithm
based onDQN has better performance and universality than a single dispatching rule or traditional Q learning
algorithm.

INDEX TERMS Dynamic scheduling, deep Q network, deep reinforcement learning, dispatching rules, job
shop scheduling.

I. INTRODUCTION
The jobshop scheduling problem (JSP) is a comprehensive
expression and simplified model for real manufacturing envi-
ronments such as assembly shops, chip and semiconductor
process manufacturing plants, and mechanical parts process-
ing plants. The JSP has NP-Hard characteristics [1], it has
been extensively studied since the 1950’s. Many algorithms
based on classical mathematical programming and various
heuristic methods have been put forward to solve the JSP.
Optimization capability and convergence speed are usually
the main goals of scheduling algorithms. The jobshop is
modeled as a static manufacturing environment with known

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhiwu Li .

production and processing attributes. However, the actual
production environment is highly dynamic and rife with
uncertain events. Unforeseen emergencies occur in real work-
shops, such as machine failures, rush orders, changes in
processing start times, and shifting customer needs. There-
fore, the optimization results obtained by existing scheduling
algorithms in a certain scenario at hand cannot generally
be applied under other conditions. A scheduling algorithm
working well in a static environment is not readily applica-
ble in the dynamic environments common in today’s cus-
tomized manufacturing era. So there is urgent demand for
innovative, more effective scheduling methods that are better
suited to dynamic production environments. The goal of the
present study is to solve the dynamic jobshop scheduling
problem (DJSP) by establishing a new scheduling algorithm,

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 122995

https://orcid.org/0000-0001-8510-0710
https://orcid.org/0000-0003-4903-9494
https://orcid.org/0000-0002-3527-8155
https://orcid.org/0000-0002-4265-0082
https://orcid.org/0000-0003-1547-5503


Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

and according to the characteristics of DQN and dispatch-
ing rules, a DQN-based DJSP scheduling algorithm is
constructed.

The main contributions of this work can be summarized as
follows. (1) Five state characteristic functions that conform
to the actual production conditions are used to minimize the
delay time. (2) Ten dispatching rules are imposed under the
above performance indicators as the action group of the DQN
algorithm. (3) A reward function is defined that reflects the
current scheduling state in detail. (4) An action selection
strategy based on the ‘‘Softmax’’ function is proposed, which
has higher randomness of action selection than the traditional
‘‘Greedy Strategy’’. These four specific improvements are
integrated into the DQN-based DJSP algorithm including the
‘‘Target Network’’.

In a dynamic environment such as ‘‘the job arrives at the
workshop randomly’’, the above scheduling algorithm for
solving DJSP can quickly and accurately select the best DRs
for each scheduling time to guide the processing tasks in the
actual production situation that changes from time to time.
This algorithm can make the entire scheduling system run
stably in a dynamic environment and achieve the desired
performance indicators.

The rest of this paper is arranged as follows. Section II
gives a literature review centered on existing DJSP schedul-
ing methods. Section III introduces the basic framework of
DJSP scheduling system based onmultiple agents. Section IV
summarizes the working principles of the RL algorithm and
DQN algorithm. Section V presents the mathematical model
and constraint conditions of DJSP. Section VI details the
design process of the DQN algorithm used here to solve the
DJSP. Simulation results are provided in Section VII which
validate the proposed scheduling approach. Section VIII pro-
vides a conclusion and brief discussion on future research
directions.

II. LITERATURE REVIEW
In order to solve the scheduling problem with NP-Hard char-
acteristics, a large number of heuristic algorithms were born:
density-based clustering methods [2], heuristic algorithm
based on heterogeneous earliest completion time (HEFT)
algorithm and list for solving non-preemptive scheduling
problems [3] and the recursive algorithm to calculate themax-
imum processing time of a given task [4] and so on. Although
the abovemethod can obtain a better solution in the process of
solving the static scheduling problem, it is difficult to adapt
to the real-time changing dynamic scheduling environment
caused by the interference of external factors. Therefore,
the above methods have certain limitations in the process
of solving DJSP. Moreover, they require a longer solution
time, and at the same time greatly increase the computational
complexity of the scheduling system.

Various algorithms have been proposed to solve the DJSP.
The dispatching rule (DR) based scheduling algorithm is one
of the most effective among them. Jobs to be processed in
the next step are selected according to established rules. This

reduces the running time and complexity of the classical
Jobshop scheduling algorithm, so it is better-suited to DJSP
requirements. Many such rules have been created and applied
in real manufacturing environments.

The earliest DRs are the priority rules established by
Jackson [5] for dual flow processing machines. Iskander [6]
summarized 113DRs. Jones et al. [7] dividedDRs into simple
rules, combined rules, and ordered rule sets. Naidu [8] sum-
marized relevant rules for minimizing delay times. Durasevic
and Jakobovic [9] tested some commonly used DRs on nine
scheduling performance indicators and four types of schedul-
ing problems to find that the different conditions resulted in
various scheduling results and performance indicators.

Holthaus and Rajendran [10] proposed that no one rule can
perform well in regards to all performance indicators, rather,
one rule can only perform best on one or two indicators. The
use of a single DR neither guarantees global optimality nor
local optimality. Therefore, an effective scheduling method
allows for dynamic selection of multiple DRs to meet job task
requirements at different scheduling moments.

In the past, system simulation methods [11] was widely
used methods to select DRs dynamically. The system simula-
tion method simulates the various states that may exist in the
DJSP in the system when interference occurs, which reveals
the dispatching rule with the best performance in a specific
production state. The working mechanism of this method
is similar to a continuous ‘‘enumeration’’ process, but the
disadvantage is that it requires a lot of computer simulation
time and is difficult to meet the requirements of fast dynamic
scheduling.

When dealing with DJSP, meta-heuristic algorithms usu-
ally work by converting dynamic problems into a series of
static sub-problems, then applying classical intelligent opti-
mization methods such as the Genetic Algorithm (GA) [12],
Particle Swarm Optimization (PSO) [13], or Ant Colony
Algorithm (ACA) [14] to select DRs and reach a solution.
These methods are not flexible enough, however, to solve
problems based on a single rule or multiple DRs. Most model
information of the production and processing workshop must
be incorporated to make the algorithm return accurate results.
The actual workshop environment is highly dynamic, uncer-
tain, and constantly changing over time.When the production
environment of the workshop changes, the calculation speed,
stability, and convergence of traditional intelligent optimiza-
tion methods decrease; the algorithms are not sufficiently
adaptive to modern production environments.

In recent years, machine learning algorithms have been
increasingly applied in the DJSP field alongside advance-
ments in artificial intelligence. Machine learning is an active
approach to independently learning the patterns and models
of an underlying system independently through data [15].
The next processing position of a given job is only related to
the current processing position and has nothing to do with the
previous processing position, which conforms to the Markov
characteristic. Thus, the DJSP can be considered as a Markov
decision process (MDP).

122996 VOLUME 9, 2021



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

Reinforcement learning (RL) [16], a branch of machine
learning, is considered a powerful MDP solution method.
RL mainly uses its own knowledge in a dynamic envi-
ronment to perform appropriate intelligent operations [17].
A schedulingmethod based on RLmainly uses agents to learn
a real-time scheduling policy by continuously interacting
with the production environment. This allows the best action
at each scheduling moment to be properly allocated as the
scheduling system completes the entire job process efficiently
and accurately.

The RLmethod is an efficient policy for solving scheduling
problems. Aydin and Ztemel [18] improved the Q learning
process in traditional RL to build the Q-III RL algorithm,
which trains the agent to select the best DRs in real time
within different environments and under various conditions
in the jobshop. The algorithm has since been used to guide
various job processing tasks. Wang and Usher [19] encap-
sulated the Q learning algorithm in Agents to train a pro-
cessing machine on a single-machine scheduling problem;
they used three DRs as candidate actions of the algorithm
to minimize the average delay time. Bouazza et al. [20]
improved the Q-table in the traditional Q learning algorithm
by storing machine selection probabilities and the probability
of specific rules, which allocate the most suitable process-
ing machines and the processing sequence of the jobs in a
dynamic jobshop. Shiue et al. [21] used RL algorithms with
Multiple Dispatching Rule (MDR) mechanisms and offline
learning modules to maintain the Knowledge Base (KB) of
a Real-Time Scheduling System (RTSS) that changes with
the workshop environment. The scheduling results of their
methodwere provenmore effective than themachine learning
scheduling algorithm of a single DR or other meta-heuristic
algorithms.

Yang and Yan [22] proposed a scheduling algorithm that
combines the Basic Sequential Access (BSA) algorithm with
the Q learning algorithm for the DJSP. By clustering the
state of the manufacturing system, the learning efficiency
and generalization ability of the algorithm are improved and
a better scheduling index is obtained. Shahrabi et al. [23]
used the Q learning algorithm to find the best parameters of
the Variable Neighborhood Search (VNS), then solved the
DJSP of a job arriving at the workshop randomly. Wang [24]
proposed a dynamic greedy search strategy and a new Q
function weighted iterative update algorithm to determine
optimal DRs, which resolves the blind search problem and
has strong convergence and accuracy.

Defined state characteristics are relatively limited and dis-
crete when Q learning is applied to scheduling problems. All
Q-values of different actions in different states are usually
recorded in a table called the ‘‘Q-table’’. In many actual man-
ufacturing processes, the production state quickly becomes
large-scale and continuous. This creates a massive quantity
of state features and thus a sharp increase in the dimensions
of the Q-table. The traditional Q learning algorithm queries
the Q-table to obtain the action value. This drives down the
versatility of the scheduling algorithm. Recent researchers

developed the Deep Q Network (DQN) [25] as a combina-
tion of Q learning and neural networks to solve scheduling
problems with continuous and large-scale state characteris-
tics [26].

The DQN is an expression of the Deep Reinforce-
ment Learning (DRL) algorithm. The Deep Neural Net-
work (DNN) is used as a non-linear function fitter to estimate
the value or selection probability of candidate actions in the
action group. In existing DQN algorithms based on DJSP,
the output form of the neural network is the output action
value of an output action being selected. The output action
value form performs better and is more commonly used in
DQN algorithm designs. In DQN algorithms, all state features
are used as inputs, Q-values are approximated by a neural
network, and the action values of each action are output. The
action selection strategy can be used to select the appropriate
action to act on the scheduling process, so the Q-table does
not need to store a large number of Q-values.

Shi et al. [27] applied a DQN-based scheduling algo-
rithm to linear, parallel, and turn-back production lines in
a discrete simulation environment. The algorithm showed
more stable convergence and robustness than the traditional
heuristic scheduling algorithm. Waschneck et al. [28] built a
DQN-based scheduling algorithm for the coordinated train-
ing of multiple agents. Each agent learns the policy of
different DRs at different scheduling moments so that the
entire scheduling system reaches a globally optimal solution.
Mao et al. [29] proposed a multi-resource cluster scheduler
called DeepRM for scheduling problems, and built a system
that can learn scheduling strategies directly from previous
scheduling experience. Many resource scheduling problems
can be transformed into DRL problems by this scheduling
system, which showed fast convergence and high solution
accuracy in simulation experiments.

Hu et al. [30] transformed the real-time scheduling of
the AGV (Automatic Guided Vehicle) into an MDP for
resource handling and scheduling of the flexible jobshop of an
AGV. They developed a DQN learning scheduling algorithm
as a learning policy. By using different DRs at different
decision-making moments, the AGV scheduling task alloca-
tion problem was solved. Lin et al. [31] proposed an edge
computing system framework that integrates the DQN algo-
rithm and DRs for an intelligent manufacturing JSP, which
expands the output range of the DQN algorithm and provides
scheduling strategies for various production equipment. Their
work showed that multiple DRs perform better than a sin-
gle DR. Palombarini and Martinez [32] stores the learned
policy for rescheduling in a DQN, which continuously
learns scheduling processes from high-dimensional input
data.

In summary, the DQN algorithm can better guide the
scheduling process of jobs in the jobshop. Therefore,
it is necessary to design a dynamic scheduling algorithm
based on DQN to solve DJSP, so that the algorithm can
be more effective and superior than previous intelligent
algorithms.

VOLUME 9, 2021 122997



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

TABLE 1. Problem description parameter set.

III. PROBLEM DESCRIPTION
In the static JSP model, all jobs are considered to arrive
at the production workshop simultaneously, and the task-
scheduling process must be consistent. Before the end of
the previous scheduling task cycle, new jobs are not allowed
to enter the shop. The dynamic JSP model allows new jobs
to-be-processed to enter the production workshop continu-
ously and in time, including the production workshop where
scheduling tasks are in progress. Thus, the DJSP refers to
the classic JSP based on a variety of interference factors in
processing operations (e.g., urgent orders, machine failures).
Jobs arriving at the workshop in turn and being processing
randomly on the machine is a typical case of DJSP.

DJSP can be described as follows. There are n jobs to
be processed J = {J1, J2, . . . , Jn} on m machines M =

{M1,M2, . . . ,Mm} in a dynamic environment containing var-
ious disturbances. Each job Ji passes through ni different
processing sequences. The time taken for each process and
the processing order constraints of Ji on each machine are
known. The task goal of DJSP is to clearly select a suitable
processing machine for each process of each job under vari-
ous constraints and interference factors; its start time and the
processing sequence of the job on each processing machine
must be determined so that the scheduling result can fulfill
the expected performance indicators.

The following constraints are imposed here to simplify
the DJSP. (1) The preparation time of all machines is 0 and
all jobs can be processed immediately after they arrive at
the machine. (2) According to the processing technology
regulations, each process only occurs after the previous pro-
cess is completed. (3) Each job must be processed on the
machine in a specified order according to the process route
and different jobs have the same priority. (4) Each machine
can only process one job at a time and each job can only be
processed by one machine at a time. (5) A process cannot
be interrupted once it has begun. (6) Subsequent operations
must wait if the previous operation is not completed. (7) The
preparation time and completion time of each job are included
together in the processing time.

The parameters utilized in DJSP are listed in Table 1. Note
that the time when a process is completed or a new job arrives
is regarded as the ‘‘current scheduling time’’.

On-time delivery is one of the most important performance
indicators for production operation management as well as

TABLE 2. Mathematical description parameter set.

a key factor in customer satisfaction and optimal workshop
efficiency. The delay time T of all jobs was selected as the
performance indicator of the DJSP accordingly. Appropriate
constraints for job Ji were defined according to the character-
istics of the DJSP. The performance indicator and constraints
together form the DJSP mathematical model:

Min T = Minmax{Ci − Di, 0} (1)

ciMk ≥ tiMk (2)

ciMk − tiMk +M (1− aiMhMk ) ≥ ciMh (3)

clMk − ciMk +M (1− bilMk ) ≥ tlMk (4)

Eq. (1) is the performance indicator (smallest delay time)
function, Eq. (2) indicates that the completion time of any
process cannot be less than its processing time, Eq. (3) is the
order constraint between adjacent processes of the same job,
and Eq. (4) shows where a new processing task can only be
started after completing the previous processing task on the
same machineMk .

The mathematical parameters used in this analysis are
listed in Table 2.
Di is expressed as:

Di = Ai + f
∑ni

j=1
PT ik (5)

PT ik is the processing time of Ji on Mk at time t .

IV. DJSP SCHEDULING SYSTEM FRAMEWORK
A. INTERACTIONS BETWEEN AGENT AND ENVIRONMENT
The constant interaction between the agent and the environ-
ment is one of the foundations for solving DJSP. In order
to support the interaction between the scheduling algorithm
and the environment, three types of agents were designed in
this study: a Multi-agents Scheduling System (MSS), which
includes a Management Agent (MA), as well as a Scheduling
Agent (SA) and Resource Agent (RA). The functions of each
agent were defined to make them into information process-
ing modules with certain intelligent behavior and learning
abilities. The MA is responsible for the release and coordi-
nation of scheduling tasks, the SA encapsulates the schedul-
ing algorithm module, and the RA acts as the agent of the
target machine equipment. Communication and cooperation
between the three agents enable the MSSM to achieve job
scheduling and resource optimization by selecting appropri-
ate actions in a dynamic production environment.

122998 VOLUME 9, 2021



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

When the jobs enter the scheduling system, the MA
informs the SA to execute dynamic scheduling. And then
the SA learns strategies by interacting with the production
environment. It selects actions online and determines the
corresponding job sequence and set of available machines.
The goal of the SA is to select the most ideal actions dynam-
ically based on the real-time conditions at the job site. It then
instructs the RA to determine the allocation of different jobs
on the machine and the processing sequence to achieve the
scheduling processing index with the minimum delay time.

The working process of the MSS can be summarized as
follows. When the MA obtains the scheduling task, it pro-
vides the SA with information (e.g., the queue of jobs to
be processed, the set of available machines), then the SA
obtains the corresponding scheduling policy by interacting
with the job shop environment. The RA receives the actions
given by the SA, then selects the corresponding job for
processing.

The MSS based on MA, SA, and RA is shown in Fig. 1.

FIGURE 1. Multi-agents MSS framework.

B. SCHEDULING AGENT LEARNING MECHANISM
In the dynamic jobshop environment, job tasks continu-
ally enter the jobshop according to customer order require-
ments. The SA needs to determine the best DRs quickly and
accurately within a constantly changing production environ-
ment. RL provides an effective scheduling tool for SA. The
SA uses the RL-based encapsulated scheduling algorithm
to make specific actions according to the current situation
of the production environment during each semester cycle.
These actions are continuously modified according to their
return values. In the rule-based DJSP, the SA selection action
involves executing an ideal DR. The SA selects an action
based on the maximum sum of the expected reward value
of the action rather than maximizing an immediate return
value. Therefore, the SA performs actions repeatedly during
production activities to learn the best DRs at any certain
scheduling state.

The interaction mechanism between the SA and the
dynamic jobshop environment is shown in Fig. 2.

FIGURE 2. SA-environment interaction mechanism.

V. REINFORCEMENT LEARNING AND DEEP
REINFORCEMENT LEARNING ALGORITHM
RL is a machine learning algorithm for solving model-free
tasks. The Temporal-Difference (TD) in RL can learn an
optimal policy during algorithm training processes, while the
Monte Carlo Method (MCM) can learn the optimal policy
only after algorithm training. The TD has a wider applica-
tion scope than the MCM and is better suited to solving
decision-making problems in dynamic environments. The
DRL algorithm improves the performance of the traditional
RL algorithm and uses a neural network to fit Q-values
to manage decision-making problems with continuous state
variables and large-scale data samples.

A. REINFORCEMENT LEARNING AND Q LEARNING
Markov Properties (MPs) indicate that the feedback of the
environment and the next state of the environment are only
related to the current state, not related to the previous step or
earlier states. The DJSP conforms to Markov characteristics,
so the learningmechanism of the SA inMSS can be described
as an RL process. The MDP uses the SA to find a policy
π through continuous sampling in the environment. When
the MDP has obtained multiple strategies, it measures their
respective pros and cons. The measurement standard is to
maximize the reward value obtained by the SA in selecting a
policy π over a long period of time. The RL serves to find the
optimal policy π∗ with the largest cumulative reward value
through the MDP.

In the actual environment, most RL tasks are model-free
tasks that do not require complete environmental informa-
tion. The TD method was developed to efficiently solve RL
problems by learning to generate experience trajectories. As a
branch of TD, Q learning (QL) uses a non-fixed policy. That
is, in the process of updating the action value function, the QL
algorithm is more inclined to select actions with larger action
values. The Q-values of all actions are stored in a limited
table. Eq. (6) is the iterative update formula of the QL action
value function:

Q (s, a) = Q (st , at)

+α[rt+1 + λmax
a
Q (st+1, at)− Q (st , at)]

(6)

VOLUME 9, 2021 122999



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

where α is the learning rate, which determines the degree of
update to the old value. In order to make the algorithm tend
to converge, α is usually small (e.g., 0.08). λ is the discount
coefficient. If λ approaches 0, the agent tends to select the
immediate reward value; if λ approaches 1, the agent tends to
select the future reward value. The core of the QL algorithm
can be expressed as follows:

rt+1 + λmax
a
Q (st+1, at) (7)

B. DEEP REINFORCEMENT LEARNING AND DEEP Q
NETWORK
When using QL algorithm to solve DJSP, excessive and con-
tinuous state characteristics force the Q-table to store somany
Q-values that it grows excessively large in scale, i.e., there is
a ‘‘dimensional disaster’’. It is possible to reduce the dimen-
sions of state features. The DQN algorithm, for example,
combines QL algorithm an d DNN as a branch of DRL
algorithms. It approximatesQ(s, a) in a high-dimensional and
continuous state. When the state space of the learning task is
continuous and large, the DNN can effectively fit the value of
Q(s, a). The DQN algorithm was used as the main scheduling
tool to solve the DJSP in this study.

The DQN algorithm uses the state characteristics of the
system as the input value of the neural network’s input layer.
The Q-value of each ‘‘state-action’’ pair is the output value of
the neural network’s output layer, which is well suited to con-
tinuous, complicated decision-making problems. In the pro-
cess of training DQN algorithm samples, to preserve the
computational performance of the algorithm, the order of the
training samples is usually shuffled; the training samples are
stored in the shuffled order and a large number of continuous,
highly correlated and non-static samples are generated as the
input.

The strong correlation and non-staticity among input sam-
ples make the convergence of the DQN algorithm model
difficult. It also may result in continuous fluctuations in the
loss value. To resolve these problems, the DQN algorithm
adopts an Experience Return Visit Mechanism (ERVM), and
Min-batch Stochastic Gradient Descent (Min-batch SGD)
training samples. The DQN algorithm stores the mini-batch
experience samples after each training algorithm model into
the Experience Pool (EP), then obtains a group of mini-batch
continuous training samples in a fixed order. In this way, the
correlation between training samples can be eliminated. Each
time the DQN algorithm uses the Min-batch SGD to train
a network model, it reuses this sequence. That is, the DQN
algorithm uses training sets with variable group sizes and
updates the neural network parameters θ by using them mul-
tiple times. The return value can also be saved.

The DQN algorithm neural network parameter training
process is shown in Algorithm 1.

The Experience Reply (ER) mechanism is an important
part of the DQN algorithm. First, an EP called D is estab-
lished with a capacity of V. The DQN algorithm places the
{ϕt , at , rt , ϕt+1} obtained by the agent interacting with the

Algorithm 1 DQN Algorithm Training Process
Initialize 1. Experience pool D and its Capacity V, the weight

parameter θ of the predictive network Q
For 2. Experience trajectory, from 1 to L

3. Initialize the state input vector ϕ1 = {s1} of state
s1

For 4. Time step in experience trajectory, t = 1 ∼ T
5. Choose random action at with probability ε
6. Otherwise perform action at according to at =
maxaQ(ϕt , a, θ)
7. Perform action at , get the current rewardR(t), enter
to the next state st+1, get the input vector of state
st+1, ϕt+1 = {st+1}
8. Store experience samples {ϕt , at , rt , ϕt+1} in the
D
9. Randomly sample small batches of storage samples
{ϕt , at , rt , ϕt+1} from the EP
yj = rj, if the current state is the end state ϕj+1
yj = rj + γ max

at
Q(ϕj+1, at , θ), if the current state

is not finished
10. Update the loss function
Loss = (yj − Q(ϕj, aj, θ))2 by using SGD

End for
End for

environment into the EP at each time step. Once the capacity
of the EP is full, old experience samples are replaced with
new ones. When it is necessary to use Min-batch SGD for
network parameter training, the DQN algorithm randomly
samples small batch experience samples from the EP as
training samples.

VI. IMPROVED DQN ALGORITHM TO SOLVE DJSP
Designing a DQN-based scheduling algorithm for solving
the DJSP necessitates defining state characteristics, establish-
ing behavioral action groups, establishing a reward function,
and developing action selection strategies. The state space
and reward function affect the accuracy of the scheduling
algorithm. The action group provides the actions that the
scheduling algorithm can select. The optimal policy affects
the final convergence of the DQN algorithm in the learning
process.

In this section, some parameters used by state character-
istics are defined, and mathematical formulas are used to
describe the representation method of state characteristics at
first; several DRs that are commonly used under the per-
formance indicator were selected from the DR base as the
behavior action group of the DQN algorithm, and the reward
function used to calculate the reward value at each scheduled
time is designed. Then, an action selection strategy with
strong randomness was developed. The activation function
used by the DQN algorithm for training was selected as
well. Finally, the above supplementary points are integrated
into the DQN algorithm containing the target network, and a
complete DQN algorithm training framework is given.

A. STATE CHARACTERISTICS
The most important step in multi-stage decision-making pro-
cesses when applying DQN algorithms is where the system

123000 VOLUME 9, 2021



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

recognizes the state characteristics. The state characteris-
tics are generally defined according to (1) the main fea-
tures and changes of the scheduling environment, including
system global characteristics and local characteristics; (2)
expressions of various scheduling problems; (3) numerical
representations of state variables; and (4) how easy and
straightforward they are to calculate.

Judging the current system state is necessary to select the
actions of the scheduling system. The correct state variable
can accurately represent the current system state. In previous
research, state characteristics are frequently defined as exist-
ing parameters in the job processing process and their derived
variables, including the number of machines, the number
of jobs, the longest processing time, the shortest processing
time, the number of jobs in the waiting queue, and the number
of work in process.

The disadvantages of these state space definitions are that
the data is relatively discrete, the values are large numbers,
and the description of the production status of the system is
not comprehensive. If above state characteristics are input
to the DQN algorithm, unfavorable factors such as high-
dimensionality would emerge. The trained algorithm is not
general and the algorithm does not readily converge, resulting
in poor versatility within the industrial production process.

To solve this problem, a state variable representation
method is proposed here which describes the various produc-
tion states of the system continuously and comprehensively.
At time t , the average utilization of all machines is Uave(t),
the standard deviation of all machine utilization is Ustd (t),
the average completion rate of all jobs isCRave(t), the average
remaining process waiting rate of all jobs is RPWRave(t),
and the load rate of all machines is P(t). These variables are
input to the DQN algorithm. Their value ranges are all [0, 1].
This reflects the production state of the entire system by the
state variables and the processing situation of the scheduling
system under different production states in detail.

The main parameters reflective of relevant state character-
istics can be defined as follows.
NPM i(t) : Number of passing machines;
PCRi(t) : Processing completion rate;
CTFPi(t) : Completion time of the final process;
PT ik : Processing time;
Uk (t) : Utilization;
EAST (t) : Estimated average slack time;
EART (t) : Estimated average remaining processing time.
The specific descriptions of each parameter are given

in Table 3.
The mathematical expressions of Uk (t) ,EAST (t), and

EART (t) are:

Uk (t) =

∑n
i=1 PT ik

CTFPi(t)
(8)

EAST (t) =
1
n

∑n

i=1
(
∑ni−NPM i(t)

k=1
PT ik − (Di − t)) (9)

EART =
1
n

∑n

i=1

∑ni−NPM i(t)

k=1
PT ik (10)

TABLE 3. State space parameter set.

TABLE 4. State space set.

The detailed description and expression of the state char-
acteristics at each scheduling moment t are given in Table 4.

The five state characteristics are expressed as:

Uave (t) =
∑m

k=1
Uk (t) (11)

Dstd (t) =

√∑m
k=1 (U k (t)− Uave(t))

2

m
(12)

P (t) =
EART (t)

EAST (t)+ µ
(13)

CRave(t) =

∑n
i=1 NPM i(t)∑n

i=1 ni
(14)

RPWRave(t) =

∑n
i=1 (ni − NPM i(t))∑n

i=1 ni
(15)

B. REWARD FUNCTION
The reward function should be designed according to the
scheduling performance indicators. The design of the reward
function should (1) reflect the immediate impact and reward
of the action, (2) reflect the objective function value, and (3)
be applied to problems of different scales, (4) let the schedul-
ing algorithm converge as quickly as possible.

The selection of variables in the reward function affects
the reward value and penalty value of the scheduling system
in the current state. The reward function is generally defined
based on the pros and cons of the state space in the job
process. For instance, the reward value of a good state space
is positive, the reward value of a bad state space is negative,
and the reward value of other situations is 0.

The reward function broadly describes the actual produc-
tion situation of each state space, but is often implemented
after the formation of a certain processing state space; it does
not apply in the formation of the state space, so it cannot fully
reflect the pros and cons of the state space during the entire
process or accurately reflect the dynamic characteristics of
the DJSP.

VOLUME 9, 2021 123001



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

In order to solve this problem, a reward function with the
nature of ‘‘processing urgency’’ is proposed. Reward function
variables are established in this study around the performance
indicator of minimal delay time. When the scheduling sys-
tem is under load, the deadline assigned by the scheduling
system to the jobs to be processed will become more and
more pressing. The EAST (t) and EART (t) are set as reward
function variables. As the running time of the scheduling
system increases and the scheduling actions are executed one
by one, the EAST (t) continually increases as the EART (t)
decreases. The reward function is expressed as:

R =
EAST (t)

EART (t)+ 0.1
(16)

According to Eq. (16), as time goes by, the return value
in each state will gradually increase. This way of defining
the reward function can more accurately describe the current
situation at each scheduling moment.

C. ACTION MECHANISM SELECTION
TheDQN algorithm selects different actions at different times
and different manufacturing scenarios. The ultimate goal is
to allow the SA to maximize the return value. The maxi-
mum return value determines the optimal action selected at
each scheduling time window. The DQN algorithm seeks a
trade-off between exploration and utilization when solving
the optimal strategy.

In QL, action selection strategy is generally based on the
greedy strategy (ε−greedy). But if the trainedDQNalgorithm
is applied to actual production tasks, it should select actions
with higher Q values with a higher probability. At the same
time, the DQN algorithm cannot always select the action with
the optimal Q value during the entire training process, so as
not to fall into the local optimum.

The greedy strategy is improved to prevent these phenom-
ena in this study. An action selection strategy is developed
based on an improved ‘‘Softmax’’ function:

P (ϕt , ai) =
exp(µQ(ϕt , ai, θ))∑
a∈A exp(µQ(ϕt , a, θ))

(17)

where µ is a scalar. When the Q-value of the initial state
is 0, the probability of each action being selected is equal.
Thus, the early action selection is more random. As the
algorithm learning progresses over time, the reward value of
each action is different and the updated Q-values also differ.
The Q-value is higher when the reward value of an action is
greater, and vice versa. At the beginning of learning, each
action can be explored at random. As learning progresses,
the system is more inclined to actions with higher Q values.
This improves the rationality and effectiveness of the DQN
algorithm’s learning process.

D. ACTION GROUP
In the DJSP, the SA calculates a processing priority value
for each job to be processed according to the conditions
of the processing machine and production attributes of the

processing task (e.g., delivery date, remaining processing
time, delayed time). The jobs to be processed are sorted to
complete the scheduling tasks. DRs are powerful means for
calculating the job processing priority values.

The production process environment of the jobshop is
dynamic, so it is necessary to dynamically deploy various
DRs according to different production states. Dynamically
selecting different DRs according to the changes in the state
of the production/processing flow is better than using one DR
throughout the entire flow. Therefore, ten DRs were used in
this study as the behavior action group of the DQN algorithm.
A large number of DRs can provide more solution strategies
for DJSP.

1) MWKR (LONGEST REMAINING PROCESSING TIME RULE)
The job with the longest remaining processing time is
preferred:

Z = −
∑ni

j=j′
(PT ik ) (18)

2) LWKR (LEAST REMAINING PROCESSING TIME RULE)
The job with the least remaining processing time is preferred:

Z =
∑ni

j=j′
(PT ik ) (19)

3) SPT (SHORTEST PROCESSING TIME RULE)
The job with the shortest process time is preferred:

Z = PT ik (20)

4) LPT (LONGEST PROCESSING TIME RULE)
The job with the longest process time is preferred:

Z = −PT ik (21)

5) LOPNR (LEAST NUMBER OF REMAINING PROCESSES
RULE)
The job with the least number of remaining processes is
preferred:

Z = ni − NPM i(t) (22)

6) MOPNR (MOST REMAINING PROCESSES RULE)
The job with the highest number of remaining processes is
preferred:

Z = −(ni − NPM i (t)) (23)

7) SLACK (THE SMALLEST SLACK RULE)
The job with the smallest amount of slack is preferred, its
expression is given as Eq. (24):

Z = Di − t −
∑ni−NPM i(t)

k=1
PT ik (24)

123002 VOLUME 9, 2021



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

FIGURE 3. The DQN framework for solving DJSP.

8) S/WKR (SMALLEST RATIO OF SLACK PER WORK
REMAINING RULE)
The jobs with the smallest remaining slack rate is preferred:

Z =
Di − t −

∑ni−NPM i(t)
k=1 PT ik∑ni−NPM i(t)

k=1 PT ik
(25)

9) CR (SMALLEST CRITICAL RATIO RULE)
The job with the smallest critical ratio is preferred:

Z =
Di − t∑ni−NPM i(t)

k=1 PT ik
(26)

10) RANDOM
A job is selected at random.

E. UPDATED DQN ALGORITHM TRAINING PROCESS
In the QL algorithm, the predicted Q-values and target
Q-values use the same parameter model:

Q (s, a) = Q (st , at)

+α[rt+1 + λmax
a
Q (st+1, at)− Q (st , at)]

(27)

The target Q-values increase as the predicted Q-values
increase, which increases the possibility of oscillation and
divergence of the model to a certain extent. Therefore, when
DQN algorithm uses the predictive network Q, an additional
neural network called the target network Q̃ is used at the same
time as the predictive network Q. The predictive network Q
evaluates the current value of (s, a). The target network Q̃
generates the target value.

The DQN algorithm updates the parameter θ in the pre-
diction network Q according to the loss function and assigns
it to the parameter θ̃ of the target network after a period of
iteration. The target network Q̃ allows the target Q-values

to remain unchanged for a period of time, which reduces
the correlation between the predicted Q-values and target
Q-values to a certain extent, thus minimizing oscillation and
divergence of the loss value during training and improving
stability and versatility of the whole algorithm framework.

The scheduling flow shown in Algorithm 2 was obtained
by integrating the target network Q̃ and the various compo-
nents of the above designed DQN algorithm into the DQN
algorithm (Table 1).

Based on the above framework of DQN algorithm for
solving DJSP, the framework model of Algorithm 2 as shown
in the Fig. 3 is obtained:

F. ACTIVATION FUNCTION
In order to improve the expression and processing capabil-
ities of neuron models in DNN, a nonlinear function called
‘‘activation function’’ was added to the neuron to improve the
characterization and data-processing abilities of each neural
network in the DNN. A neuron with nonlinear modeling
ability can better process complex data, learn, and adapt in the
DNN. Commonly used DNN activation functions include the
Sigmoid, Hyperbolic Tangent function, and ReLU function.
The ReLU function was used in this study to improve the
prediction accuracy and convergence of the DNN framework:

ReLU (x) = max{0, x} (28)

G. PEFORM THE ENTIRE SCHEDULING PROCESS
ACCORDING TO THE OUTPUT VALUE OF THE DQN
ALGORITHM
In the DQN algorithm, the output layer of the DNN has 10
neurons, corresponding to the 10 candidate dispatching rules
in the action group. At each scheduling moment, the five set
state characteristics will be used as the input of DQN, which
are mapped by the hidden layer. Finally, DNN get a set of data

VOLUME 9, 2021 123003



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

Algorithm 2 DQN Algorithm Training Process With the
Target Network
Initialize 1. Experience pool D and its Capacity V, the weight

parameter θ of the predictive network Q, the weight
parameter θ̄ = θ of the predictive network Q̃

For 2. Experience trajectory, from 1 to L
3. Initialize the state input vector
ϕ1 = {Uave (1) ,Ustd (1) ,P (1) ,CRave}(1),
RPWRave(1)} of state s1

For 4. Time step in experience trajectory, t = 1 ∼ T
5. Choose random action at with ‘‘Softmax’’
6. Perform action at , get the current reward R(t),
enter to the next state st+1, get the input vector of
state st+1,

ϕt+1 = {Uave (t + 1) ,Ustd (t + 1) ,P (t+ 1) ,
CRave(t + 1),RPWRave(t + 1)}

7. Store experience samples {ϕt , at , rt , ϕt+1} in the
D
8. Randomly sample small batches of storage
samples {ϕt , at , rt , ϕt+1} from the EP
yj = rj, if the current state is the end state ϕj+1
yj = rj + γ max

at
Q(ϕj+1, at , θ̄ ), if the current state

is not finished
9. Update the loss function Loss =
(yj − Q(ϕj, aj, θ))2 by using SGD
10. Reset θ̄ = θ every C steps

End for
End for

TABLE 5. Dispatching rule base.

output from the output layer. In DJSP based on dispatching
rules, each output data of DNN represents the action value
of each dispatching rule. Then the ‘‘Softmax’’ function will
reasonably select actions based on these action values. At this
time, the production environment of the jobshop has changed;
the values of the five state features are changed iteratively
as the input layer is updated, then the relevant parameters of
the hidden layer are updated. The output value of the output
layer at the next scheduling time is obtained, and the cycle is
repeated.

After the set number of training sessions, the fitting trend
of the DQN algorithm gradually tends to converge, Thus,

TABLE 6. Parameter set used in DQN training.

the algorithm has learned the policy of the corresponding
optimal dispatching rules in each production state, and can
dynamically allocate production tasks across the entire job-
shop production process. This yields the expected the perfor-
mance indicator under various constraints.

VII. CASE STUDY
The proposed DQN algorithm was validated based on the
DJSP with a variety of conditions and parameters. First,
we calculated the performance indicator of each test instance
under the action of the DQN algorithm with different delay
factors f by comparison against the performance indicator
obtained with the 10 DRs respectively. Next, we analyzed
the convergence of each case under the action of the DQN
algorithm by modifying the delay factor f . We then analyzed
the convergence of the DQN algorithm when as number
of neurons in each of its hidden layers increased. Finally,
we explored the differences between the DQN algorithm and
traditional QL algorithm in terms of convergence.

A. EXPERIMENT ENVIRONMENT
All the simulation experiments were completed on a desktop
computer with a I7 7700K CPU, an acceleration frequency
of 4.6 GHZ, and 16 GB memory. We used Python program-
ming language. The dynamic nature of DJSP is reflected
in the property that jobs arrive at the workshop randomly.
Therefore, in the simulation process, the time for the jobs to
arrive on the machine to start processing must conform to a
certain degree of uniform distribution.

Ten classic ‘‘LA’’ test cases were selected as simulation
objects. LA01 (10 ∗ 5), LA02 (10 ∗ 5), LA06 (15 ∗ 5), LA10
(15 ∗ 5), LA11 (20 ∗ 5), LA13 (20 ∗ 5), LA21 (15 ∗ 10),
LA22 (15 ∗ 10), LA27 (20 ∗ 10), and LA37 (15 ∗ 15). X ∗ Y
denotes a X job scale with Y machines. Among the 40 test
instances in LA, these ten most comprehensively represent
the production scale of the jobshop in most cases. We can
selected one or two calculation instances from each produc-
tion scale test and compare their results. This method can
avoid accidents caused by huge differences in the solution
process and increase the accuracy of the scheduling results.
By controlling a certain variable of the production scale (such

123004 VOLUME 9, 2021



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

TABLE 7. Scheduling results of DQN and DRs.

FIGURE 4. Comparison of the performance indicator obtained by DQN and DRs in LA01.

VOLUME 9, 2021 123005



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

FIGURE 5. Comparison of the performance indicator obtained by DQN and DRs in LA06.

FIGURE 6. Comparison of the performance indicator obtained by DQN and DRs in LA11.

FIGURE 7. Comparison of the performance indicator obtained by DQN and DRs in LA21.

123006 VOLUME 9, 2021



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

FIGURE 8. Comparison of the performance indicator obtained by DQN and DRs in LA27.

FIGURE 9. Different f values affect scheduling results of DQN in LA01.

as the same number of machines or different numbers of
jobs), it is possible to specifically analyze different calcu-
lation results relevant to different variables. We can further
analyzed the iterative process of the proposed scheduling
algorithm and its convergence accordingly. The same 10 DRs
(Table 5) were used in each instance as the action group. The
parameters we used in this experiment are listed in Table 6.

B. SIMULATION ANALYSIS
1) SIMULATION SCHEME 1
The value of the delay factor f reflects the urgency of the
jobs to be processed. A smaller f value indicates higher
priority of the job to be processed. The value range of f is
[0-1.5]. We need to select some representative f values in
this range to test its impact on the scheduling performance
indicator. In this study, we used 10 test instances to determine
difference between the use of a single rule and the use of the
DQN algorithm in terms of scheduling results with different
f values. The simulation results are shown in the Table 7.
The results show that no single dispatching rule provides opti-
mal scheduling performance in all production environments.

In effect, the DQN algorithm learns the correct and most
efficient policy for selecting the appropriate DRs at different
dispatching moments. The DQN algorithm has a relatively
low delay time in almost all situations. Overall, it showed very
strong performance suggesting that is effective and readily
applicable.

The results on LA01, LA06, LA11, LA21, and LA27
were formulated as histograms for an intuitive comparison as
shown in Figs. 4-8. The DQN algorithm’s ability to dynam-
ically use 10 DRs in dealing with the DJSP was better than
using a single DR as evidenced by the f values.
In order to analyze the impact of the delay factor f on the

performance indicator more intuitively, LA01, LA06, LA11,
LA21and LA27 are taken as examples, f is set to 0.5, 1,
1.5, and the DQN iteration curves are obtained in the Fig. 9,
Fig. 10, Fig. 11, Fig. 12 and Fig. 13 respectively. It can be
known from these figures that with the gradual increase of f ,
the urgency of processing the jobs on the machine gradually
increases, and the performance indicator gradually decreases.
A larger f value can make the processing process of each
job more urgent, effectively reducing the delay time and
thereby improving the production efficiency of the workshop.
The iterative trajectory of DQN algorithm will fluctuate to
a certain extent, the fluctuation of the curve is caused by
repeated selection of different DRs by the action selection
strategy, which reflects the dynamics of DQN algorithm in
selecting dispatching rules in different states. The fluctuation
can also helpDQNalgorithm get the better scheduling results.
When the curve converges, it means that DQN algorithm has
learned the scheduling policy of selecting DRs in different
states.

2) SIMULATION SCHEME 2
LA01, LA06, and LA11were observed with the same number
of processing machines and f of 1.0. The number of jobs was
set to 10, 15, and 20. Fig. 14 shows that when the number
of machines is the same and the number of jobs gradually
increases, the performance indicators gradually increases as

VOLUME 9, 2021 123007



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

FIGURE 10. Different f values affect scheduling results of DQN in LA06.

FIGURE 11. Different f values affect scheduling results of DQN in LA11.

FIGURE 12. Different f values affect scheduling results of DQN in LA21.

well. The DQN algorithm takes longer to converge as the
number of jobs increases. The reason is that when the number
of processing machines is the same and there are more jobs
to be processed, the average processing resources of each job
decrease, which increases the delay time of the processing
system.

TABLE 8. State space of QL algorithm.

FIGURE 13. Different f values affect scheduling results of DQN in LA27.

3) SIMULATION SCHEME 3
We set f to 0.5 and tested LA01 and LA06while adjusting the
number of neurons nh in each hidden layer of the DNN from
50 to 100. As shown in Figs. 15 and 16, the DNN has better
fitting ability when there aremore neurons in the hidden layer.
Because an increase in the number of neurons in the hidden
layer gives the DNN have better fitting ability and higher-
order nonlinear function mapping ability; it can then char-
acterize high-dimensional and continuous input data, which
enhances the computing power of the DQN algorithm. Better
convergence also results in better performance indicator.

4) SIMULATION SCHEME 4
We compared the DQN algorithm with the traditional QL
algorithm without DNN in solving the DJSP. The perfor-
mance indicator of the two algorithms are set to minimize
the delay time and the action group is set to a rule base
composed of 10 DRs (Table 5). We set the state space of the
QL algorithm to the form shown in Table 8; its state variables
were all the same parameters used in the DQN algorithm. The
delay factor f was set to 0.5 for both algorithms and other
QL algorithm parameters were consistent with a previous
study [33].

In order to better control the variables, the action selection
strategies of the two algorithms to the ‘‘Softmax’’ strategy
as mentioned above to further explore their performance.
We focused on the effectiveness and superiority of DNN
within the DQN algorithm. As shown in Table 9, the per-
formance indicators of the DQN algorithm are significantly
better than those of the traditional QL algorithm. As shown
in Table 9 and Figure 17, DNN as an input state fitter has

123008 VOLUME 9, 2021



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

FIGURE 14. Number of jobs affect the performance indicator with same
number of machines.

FIGURE 15. Number of neurons affects hidden layer of DQN on LA01.

FIGURE 16. Number of neurons affects hidden layer of DQN on LA06.

a stronger ability to fit large-scale continuous state input
data. The DQN algorithm can manage high-dimensional and
continuous input states, can describe the production state of
the production system at variousmoments in a comprehensive
and detailed manner, and effectively avoids the ‘‘dimensional
disaster’’ that often occurs in QL algorithms. As opposed to

FIGURE 17. Comparison of the performance indicator obtained by DQN
and QL respectively.

TABLE 9. Comparison of performance indicators obtained by DQN
and QL.

TABLE 10. Comparison of performance indicators obtained by DQN and
other baseline algorithms.

the traditional QL algorithm, only a few state variables are
necessary to describe the relatively limited state space. The
ERVM in the DQN algorithm effectively solves the strong
correlation between the training samples, which allows the
DQN algorithm to gradually converge during training.

5) SIMULATION SCHEME 5
This experiment also tested the proposed DQN algorithm in
comparison to other representative intelligent optimization
methods: theHIA [13] algorithm that combines PSO andAIS,
the GA algorithm [34], the Tabu algorithm [35], and the IPSO
algorithm [36]. Each was operated on LA01, LA06, LA11,
LA21, and LA27 as test instances. The relevant parameters of
the DQN algorithm were the values mentioned above; f was
set to 0.5 and other algorithms were programmed with the
same parameters of their original references. Table 10 and
Figure 18 show that the performance of the DQN algorithm
improved by an average of 44.59%, 42.94%, 46.25%, and
45.56% compared to HIA, GA, Tabu, and IPSO, respectively.
This generally reflects the problem of DNN in dealing with
complex state input data. The strong non-linear fitting ability
of the DQN algorithm highlights its superior ability to solve
DJSP.

VOLUME 9, 2021 123009



Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

FIGURE 18. Comparison of the performance indicator obtained by DQN
and other baseline algorithms.

VIII. CONCLUSION
The real-time dynamic manufacturing environment is highly
challenging to manage. Intelligent jobshop techniques have
been developed to meet today’s needs. A dynamic scheduling
algorithm for solving the DJSP based on the DQN algorithm
was established in this study. We used n state characteristic
functions with continuous values between [0, 1] to describe
the input state at each scheduling moment. We designed a
two-layer DQN algorithm containing the target network and
prediction network as themain learning strategy. A new selec-
tion strategy based on the ‘‘Softmax’’ function was used to
enhance the randomness of the algorithm in selecting actions
at the early stage of the learning strategy. The results of
our experiment show that the DQN algorithm, by selecting
different DRs at different scheduling times, has stronger per-
formance indicators than those obtained by using a single DR.
The proposed method also outperformed the QL algorithm
using Q-tables to store data.

The proposed scheduling approach still has some short-
comings. Other unpredictable interference factors that may
appear in the actual production process should be considered
in the future. It is also likely possible improve the function of
the DQN algorithm to output Q-values of each action equal
to the number of candidate actions for each machine at each
schedulingmoment. An action selection strategymay be used
to select an action to act on each machine as well. This could
guide each machine to complete production and processing
tasks autonomously, thereby enhancing the production effi-
ciency of the entire workshop.

REFERENCES
[1] D. Applegate and W. Cook, ‘‘A computational study of the job-shop

scheduling problem,’’ ORSA J. Comput., vol. 3, no. 2, pp. 149–156, 1991.
[2] J. Chen, C. Du, Y. Zhang, P. Han, and W. Wei, ‘‘A clustering-based

coverage path planning method for autonomous heterogeneous UAVs,’’
IEEE Trans. Intell. Transp. Syst., early access, Mar. 24, 2021, doi:
10.1109/TITS.2021.3066240.

[3] J. Chen, C. Du, P. Han, and X. Du, ‘‘Work-in-progress: Non-preemptive
scheduling of periodic tasks with data dependency upon heterogeneous
multiprocessor platforms,’’ in Proc. IEEE 40th Real-Time Syst. Symp.
(RTSS), Dec. 2019, pp. 540–543, doi: 10.1109/RTSS46320.2019.00059.

[4] J. Chen, C. Du, F. Xie, and B. Lin, ‘‘Scheduling non-preemptive tasks with
strict periods in multi-core real-time systems,’’ J. Syst. Archit., vol. 90,
pp. 72–84, Oct. 2018, doi: 10.1016/j.sysarc.2018.09.002.

[5] J. R. Jackson, ‘‘Scheduling a production line to minimize maximum tardi-
ness,’’Manage. Sci. Res. Projects, vol. 43, 1955.

[6] S. S. Panwalkar and W. Iskander, ‘‘A survey of scheduling rules,’’ Oper.
Res., vol. 25, no. 1, pp. 45–61, 1977.

[7] A. Jones, L. C. Rabelo, and A. T. Sharawi, ‘‘Survey of job shop scheduling
techniques,’’ in Wiley Encyclopedia of Electrical and Electronics Engi-
neering. Hoboken, NJ, USA: Wiley, 1999, pp. 1–12.

[8] J. T. Naidu, ‘‘A note on a well-known dispatching rule to minimize
total tardiness,’’ Omega, vol. 31, no. 2, pp. 137–140, Apr. 2003, doi:
10.1016/S0305-0483(03)00020-3.

[9] M. Durasević and D. Jakobović, ‘‘A survey of dispatching rules for the
dynamic unrelated machines environment,’’ Expert Syst. Appl., vol. 113,
pp. 555–569, Dec. 2018, doi: 10.1016/j.eswa.2018.06.053.

[10] O. Holthaus and C. Rajendran, ‘‘Efficient dispatching rules for scheduling
in a job shop,’’ Int. J. Prod. Econ., vol. 48, no. 1, pp. 87–105, Jan. 1997.

[11] M. Jahangirian, T. Eldabi, A. Naseer, L. K. Stergioulas, and T. Young,
‘‘Simulation in manufacturing and business: A review,’’ Eur. J. Oper. Res.,
vol. 203, no. 1, pp. 1–13, May 2010, doi: 10.1016/j.ejor.2009.06.004.

[12] R. Qing-Dao-Er-Ji and Y. Wang, ‘‘A new hybrid genetic algorithm for
job shop scheduling problem,’’ Comput. Oper. Res., vol. 39, no. 10,
pp. 2291–2299, Oct. 2012, doi: 10.1016/j.cor.2011.12.005.

[13] H.-W. Ge, L. Sun, Y.-C. Liang, and F. Qian, ‘‘An effective PSO and
AIS-based hybrid intelligent algorithm for job-shop scheduling,’’ IEEE
Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 38, no. 2, pp. 358–368,
Mar. 2008, doi: 10.1109/TSMCA.2007.914753.

[14] M. A. Tawfeek, A. El-Sisi, A. E. Keshk, and F. A. Torkey, ‘‘Cloud task
scheduling based on ant colony optimization,’’ in Proc. Int. Conf. Comput.
Eng. Syst., Nov. 2013, pp. 64–69.

[15] D. L. Poole and A. K. Mackworth, Artificial Intelligence: Foundations of
Computational Agents. Cambridge, U.K.: Cambridge Univ. Press, 2010.

[16] R. S. Sutton and A. G. Barto, ‘‘Reinforcement learning: An introduction,’’
Robotica, vol. 17, no. 2, pp. 229–235, 1999.

[17] M. Dorigo and M. Colombetti, ‘‘Robot shaping: Developing autonomous
agents through learning,’’ Artif. Intell., vol. 71, no. 2, pp. 321–370,
Dec. 1994.

[18] M. E. Aydin and E. Öztemel, ‘‘Dynamic job-shop scheduling using
reinforcement learning agents,’’ Robot. Auton. Syst., vol. 33, nos. 2–3,
pp. 169–178, Nov. 2000.

[19] Y.-C. Wang and J. M. Usher, ‘‘Learning policies for single machine job
dispatching,’’ Robot. Comput.-Integr. Manuf., vol. 20, no. 6, pp. 553–562,
Dec. 2004.

[20] W. Bouazza, Y. Sallez, and B. Beldjilali, ‘‘A distributed approach solving
partially flexible job-shop scheduling problem with a Q-learning effect,’’
IFAC-PapersOnLine, vol. 50, no. 1, pp. 15890–15895, Jul. 2017.

[21] Y.-R. Shiue, K.-C. Lee, and C.-T. Su, ‘‘Real-time scheduling for a smart
factory using a reinforcement learning approach,’’ Comput. Ind. Eng.,
vol. 125, pp. 604–614, Nov. 2018.

[22] H.-B. Yang and H.-S. Yan, ‘‘An adaptive approach to dynamic scheduling
in knowledgeablemanufacturing cell,’’ Int. J. Adv.Manuf. Technol., vol. 42,
nos. 3–4, pp. 312–320, May 2009, doi: 10.1007/s00170-008-1588-0.

[23] J. Shahrabi, M. A. Adibi, and M. Mahootchi, ‘‘A reinforcement learn-
ing approach to parameter estimation in dynamic job shop schedul-
ing,’’ Comput. Ind. Eng., vol. 110, pp. 75–82, Aug. 2017, doi:
10.1016/j.cie.2017.05.026.

[24] Y.-F. Wang, ‘‘Adaptive job shop scheduling strategy based on weighted
Q-learning algorithm,’’ J. Intell. Manuf., vol. 31, no. 2, pp. 417–432,
Feb. 2020, doi: 10.1007/s10845-018-1454-3.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, ‘‘Human-level control through
deep reinforcement learning,’’ Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015, doi: 10.1038/nature14236.

[26] Y. Wei, L. Pan, S. Liu, L. Wu, and X. Meng, ‘‘DRL-scheduling:
An intelligent QoS-aware job scheduling framework for applica-
tions in clouds,’’ IEEE Access, vol. 6, pp. 55112–55125, 2018, doi:
10.1109/ACCESS.2018.2872674.

[27] D. Shi, W. Fan, Y. Xiao, T. Lin, and C. Xing, ‘‘Intelligent schedul-
ing of discrete automated production line via deep reinforcement learn-
ing,’’ Int. J. Prod. Res., vol. 58, no. 11, pp. 3362–3380, Jan. 2020, doi:
10.1080/00207543.2020.1717008.

123010 VOLUME 9, 2021

http://dx.doi.org/10.1109/TITS.2021.3066240
http://dx.doi.org/10.1109/RTSS46320.2019.00059
http://dx.doi.org/10.1016/j.sysarc.2018.09.002
http://dx.doi.org/10.1016/S0305-0483(03)00020-3
http://dx.doi.org/10.1016/j.eswa.2018.06.053
http://dx.doi.org/10.1016/j.ejor.2009.06.004
http://dx.doi.org/10.1016/j.cor.2011.12.005
http://dx.doi.org/10.1109/TSMCA.2007.914753
http://dx.doi.org/10.1007/s00170-008-1588-0
http://dx.doi.org/10.1016/j.cie.2017.05.026
http://dx.doi.org/10.1007/s10845-018-1454-3
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1109/ACCESS.2018.2872674
http://dx.doi.org/10.1080/00207543.2020.1717008


Y. Zhao et al.: Dynamic Jobshop Scheduling Algorithm Based on DQN

[28] B.Waschneck, A. Reichstaller, L. Belzner, T. Altenmüller, T. Bauernhansl,
A. Knapp, and A. Kyek, ‘‘Optimization of global production schedul-
ing with deep reinforcement learning,’’ Procedia CIRP, vol. 72,
pp. 1264–1269, Jan. 2018.

[29] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, ‘‘Resource manage-
ment with deep reinforcement learning,’’ in Proc. 15th ACM Workshop,
Nov. 2016, pp. 50–56.

[30] H. Hu, X. Jia, Q. He, S. Fu, and K. Liu, ‘‘Deep reinforcement learning
based AGVs real-time scheduling with mixed rule for flexible shop floor
in industry 4.0,’’ Comput. Ind. Eng., vol. 149, Nov. 2020, Art. no. 106749,
doi: 10.1016/j.cie.2020.106749.

[31] C.-C. Lin, D.-J. Deng, Y.-L. Chih, and H.-T. Chiu, ‘‘Smart manufacturing
scheduling with edge computing using multiclass deep Q network,’’ IEEE
Trans. Ind. Informat., vol. 15, no. 7, pp. 4276–4284, Jul. 2019.

[32] J. A. Palombarini and E. C. Martinez, ‘‘Automatic generation of reschedul-
ing knowledge in socio-technical manufacturing systems using deep rein-
forcement learning,’’ in Proc. Biennial Congr. Argentina, New York, NY,
USA, 2018, pp. 1–5.

[33] Y. Z. Wei and M. Y. Zhao, ‘‘Reinforcement learning-based approach
to dynamic job-shop scheduling,’’ Acta Autom. Sinica, vol. 31, no. 5,
pp. 765–771, 2005, doi: CNKI:SUN:MOTO.0.2005-05-016.

[34] F. D. Croce, R. Tadei, and G. Volta, ‘‘A genetic algorithm for the job shop
problem,’’ Comput. Oper. Res., vol. 22, no. 1, pp. 15–24, Jan. 1995.

[35] E. Nowicki and C. Smutnicki, ‘‘A fast taboo search algorithm for the job
shop problem,’’Manage. Sci., vol. 42, no. 6, pp. 797–813, Jun. 1996.

[36] H. Yang, ‘‘Optimization of job shop scheduling based on improved particle
swarm algorithm,’’ Mech. Des. Manuf. Eng., vol. 48, no. 2, pp. 77–80,
2019, doi: CNKI:SUN:JXZZ.0.2019-02-019.

YEJIAN ZHAO was born in Liaoyang, Liaoning,
China, in 1995. He received the bachelor’s
degree from the School of Physics and Electronic
Engineering, Hainan Normal University, Hainan,
in 2017. He is currently pursuing the master’s
degree with Shenyang University of Technology.
His research direction in postgraduate stage is
workshop scheduling. His main research inter-
ests include jobshop scheduling, machine learning
algorithms, and enterprise integrated automation.

YANHONG WANG received the B.S. and M.S.
degrees in electrical engineering and automa-
tion from Shenyang University of Technology,
Shenyang, China, in 1989 and 1992, respectively,
and the Ph.D. degree in control theory and con-
trol engineering from Jilin University, Changchun,
China, in 2003. She is currently a Professor with
the School of Information Science and Engi-
neering, Shenyang University of Technology. Her
research interests include production planning and

scheduling in manufacturing enterprises, and intelligent factory and applica-
tion of artificial intelligence in manufacturing enterprises.

YUANYUAN TAN received the B.S. degree in
information and computing science from Bohai
University, Jinzhou, China, in 2007, and the M.S.
and Ph.D. degrees from the College of Information
Science and Engineering, Northeastern University,
Shenyang, China, in 2009 and 2013, respectively.
She is currently an Associate Professor with the
School of Information Science and Engineering,
Shenyang University of Technology. Her research
interests include scheduling and production plan in

steelmaking, continuous casting and hot rolling, and intelligent optimization
algorithm. She has published over several journal articles and conference
proceedings papers in the above research areas.

JUN ZHANG was born in Shenyang, Liaoning,
China, in 1986. He received the B.S. degree in
automation from Shenyang University of Technol-
ogy, Shenyang, in 2008, and the M.S. and Ph.D.
degrees in control theory and control engineering
from Northeastern University, Shenyang, China,
in 2010 and 2015, respectively. He is currently an
Associate Professor with the School of Artificial
Intelligence, Shenyang University of Technology.
His current research interest includes modeling,

optimization, and control of complicated industrial production processes.

HONGXIA YU received the Ph.D. degree from
Shenyang Institute of Automation, Chinese
Academy of Sciences, in 2012. She is currently
a Master Supervisor in control science and control
engineering with Shenyang University of Technol-
ogy. Her current research interests include intelli-
gent optimization, and state monitor and control of
induction motor.

VOLUME 9, 2021 123011

http://dx.doi.org/10.1016/j.cie.2020.106749
http://dx.doi.org/CNKI:SUN:MOTO.0.2005-05-016
http://dx.doi.org/CNKI:SUN:JXZZ.0.2019-02-019

