
Received August 9, 2021, accepted August 30, 2021, date of publication September 3, 2021, date of current version September 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3110255

A Cooperative Multi-Agent Reinforcement
Learning Method Based on Coordination Degree
HAOYAN CUI AND ZHEN ZHANG
Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao 266071, China

Corresponding author: Zhen Zhang (tbsunshine8@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61903209, in part by Qingdao
Postdoctoral Applied Research Project with Name (AGV Road Network Design and Path Planning Method Based on Multi-Agent
Reinforcement Learning), and in part by the Science and Technology Support Plan for Youth Innovation of Universities in Shandong
Province under Grant 2019KJN033.

ABSTRACT Multi-agent reinforcement learning (MARL) has become a prevalent method for solving
cooperative problems owing to its tractable implementation and task distribution. The goal of the MARL
algorithms for fully cooperative scenarios is to obtain the optimal joint strategy that maximizes the expected
common cumulative reward for all agents. However, to date, the analysis of MARL dynamics has focused on
repeated games with few agents and actions. To this end, we propose a cooperative MARL algorithm based
on the coordination degree (CMARL-CD) and analyze its dynamics in more general cases in which repeated
games with more agents and actions are considered. Theoretical analysis shows that if the component action
of every optimal joint action is unique, all optimal joint actions are asymptotically stable critical points. The
CMARL-CD algorithm realizes coordination among agents without the need to estimate the global Q-value
function. Each agent estimates the coordination degree of its own action, which represents the potential of
being the optimal action. The efficacy of the CMARL-CD algorithm is studied through repeated games and
stochastic games.

INDEX TERMS Multi-agent reinforcement learning, multi-agent system, reinforcement learning, indepen-
dent learner.

I. INTRODUCTION
Reinforcement learning [1] (RL) is a prevalent method for
optimizing an agent’s behavior so that the best response from
the environment can be obtained. Typically, RL is used to
solve aMarkov decision process (MDP). In anMDP, the state
transition depends on a single agent’s action. An agent can
perceive states, execute an action, and receive a numerical
reward from the environment. The goal is to obtain the maxi-
mum expected cumulative reward. However, some problems
in the real world are naturally modeled as multi-agent sys-
tems (MASs), such as urban traffic signal control for multi-
ple intersections [2], multiple automatic guided vehicle path
planning [3], and mobile traffic for wireless networks [4].
In multi-agent settings, the state transition is determined by
joint actions. The Markov property does not hold for any
single agent in such settings, which is one of the major con-
cerns when designing new multi-agent reinforcement learn-
ing (MARL) algorithms [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Valentina E. Balas .

The goal of MARL is determined by the type of task.
The goal in a general-sum game is to converge to some
type of equilibrium [7] or socially optimal outcomes [8], [9].
This type of learning is known as equilibrium-based MARL
(EMARL). The goal in a cooperative game is to maximize
the expected common cumulative reward of all agents [10].
We name this type of learning cooperativeMARL (CMARL).
The goal in a zero-sum game is to maximize the expected
reward of each agent [11], [12].

Non-stationarity and the rapidly growing joint action space
are the two main challenges for MARL. First, for an inde-
pendent learner, the individual Q-function of each agent
is influenced by the other agents’actions. The analysis of
independent learners focuses on repeated games with few
agents and actions [13]–[18]. Second, to alleviate the non-
stationarity problem, centralized learning is employed to esti-
mate the global Q-function. In this framework, the joint action
space grows exponentially with the number of agents, which
affects the scalability of the JALs.

To this end, we propose a new CMARL algorithm known
as CMARL based on the coordination degree (CMARL-CD).
The CMARL-CD algorithm does not need to learn the global

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 123805

https://orcid.org/0000-0001-6102-6341
https://orcid.org/0000-0002-6615-629X
https://orcid.org/0000-0003-0885-1283

H. Cui, Z. Zhang: Cooperative Multi-Agent Reinforcement Learning Method

Q-value function of the joint actions. Each agent records the
maximal reward obtained in history and updates the coordi-
nation degree of its own action during the learning stage. The
main contribution is the analysis of the CMARL-CDmodel in
repeated games with more than two agents and actions. It has
been proven that all optimal joint actions are asymptotically
stable critical points if the component action of every optimal
joint action is unique.

The remainder of this paper is organized as follows.
Section II briefly reviews the different types of MARL algo-
rithms. Section III presents the preliminaries. Section IV
elaborates on the CMARL-CD algorithm, and provides theo-
retical analysis in repeated games. Section V studies the effi-
cacy of CMARL-CD in two stochastic games: the distributed
sensor network (DSN) task and the blood battlefield task.
Finally, Section VI draws the conclusions.

II. RELATED WORK
Two characteristics of MARL algorithms are considered in
this section. The first is whether theMARL algorithm belongs
to JALs or independent learners. A JAL requires estimating
the global Q-function of joint actions, while an indepen-
dent learner requires each agent to estimate the individual
Q-function of its own actions. The second characteristic,
which is used to categorize the MARL algorithms reviewed
in this paper, is whether the MARL algorithm belongs to
CMARL or EMARL.

CMARL aims to optimize some performance index in a
cooperative task. FMRQ [19], EAQR [20], andWRFMR [21]
use the frequency of receiving the maximum reward.
SOoN [22] utilizes the farsighted frequency together with
the frequency used in FMRQ and EAQR. LA-OCA [23] is
a learning automata-based algorithm that introduces a vari-
able to indicate whether the maximum reward is achieved.
LA-OCA has demonstrated excellent performance in some
cooperative tasks. All of the above CMARL algorithms are
independent learners.

Recently, deep learning has been incorporated into
CMARL [24], [25]. One of the prevalent paradigms is cen-
tralized training with decentralized execution (CTDE), which
attenuates both the problems of non-stationarity and the
exponentially growing joint action space. MADDPG [26]
uses decentralized critic networks for each agent, but the
selected joint action is still required in centralized learn-
ing. COMA [27] uses a central critic network to estimate
the global Q-function and uses distributed actor networks
to select actions for each agent. COMA requires on-policy
learning, which could be inefficient. To this end, a vari-
ety of Q-function decomposition methods have sprung up.
Value decomposition networks (VDNs) [28] approximate the
Q-function of joint actions by the sum of Q-functions of
individual actions. Furthermore, QMIX [29] uses the mixing
network to realize the individual-global-max (IGM) principle
and account for the influence of the global state. To overcome
the restriction on the structure of the critic used in QMIX,
Qatten [30], QTRAN [31], and Q-value path decomposition

(QPD) [32] have been proposed. Qatten uses multi-head
attention to formulate the decomposition with theoretical
foundations. QTRAN employs a gap function to satisfy the
IGM and uses a fully centralized critic to guide the training
of the individual Q-functions. QPD decomposes the Q-value
function of joint actions along the state transition trajectories
for credit assignments among agents and uses integrated gra-
dients to approximate the Q-values.

The goal of most EMARL algorithms is to converge to an
NE. Some EMARL algorithms attempt to accomplish this
goal by employing the gradient method. These algorithms
include but are not limited to infinitesimal gradient ascent
(IGA) [33], WoLF-PHC [34], WPL [35], and PGA-APP [36].
Other EMARL algorithms have their own strategy updat-
ing rules. Nash-Q [37] searches for an NE in each state
using quadratic programming. LRI [38], [39] is a learning
automata-based algorithm. It has been proven that LRI con-
verges to a pure NE in general-sum repeated games. Of the
aforementioned EMARL algorithms, Nash-Q is a JAL, and
the other EMARL algorithms are independent learners.

CMARL-CD distinguishes between the aforementioned
cooperative independent learners as follows: First, compared
with FMRQ, EAQR, and WRFMR, CMARL-CD does not
use the frequency information that could influence the perfor-
mance because of the estimation error introduced by it. Sec-
ond, compared with LA-OCA, the analysis of the dynamics
of CMARL-CD considers the normalization operation on the
action probability.

III. PRELIMINARIES OF STOCHASTIC GAMES AND
REPEATED GAMES
A. STOCHASTIC GAMES
In a stochastic game [40], [41], the state transition depends
on the joint action. Let S represent the set of valid states,
Ai(s) represent the action set of agent i at state s ∈ S for
i = 1, 2, . . . , n, and A(s) = A1(s) ×A2(s), . . . ,× An(s)
represent the set of the joint actions at state s ∈ S. The
probability of being at state s′ if the joint action a ∈ A is
performed at state s is determined by the state transition T :
S× A1(s)×A2(s), . . . ,×An(s)×S → [0,1]. The reward func-
tion ri: S × A1(s)× A2(s), . . . ,×An(s)× S → R determines
the immediate reward received by agent i. In a cooperative
stochastic game, the global immediate reward is r =

∑n
i=1 ri,

and the goal is to maximize the global discounted cumulative
reward, defined as follows:

R (t) = r (t + 1)+ γ r (t + 2)+ γ 2r (t + 3)+ · · ·

=

K∑
k=0

γ kr (t + k + 1) (1)

where γ ∈ (0, 1) is the discount factor and K is the ending
time of an episode.

B. REPEATED GAMES
A repeated game [42], [43] is a one-stage game repeated by
finite agents with finite actions. This study focuses on fully

123806 VOLUME 9, 2021

H. Cui, Z. Zhang: Cooperative Multi-Agent Reinforcement Learning Method

FIGURE 1. The payoff matrix of a fully cooperative game.

cooperative games. The payoff matrix determines the reward
received by each agent. The payoff matrix of a two-agent-
two-action cooperative game is shown in Fig. 1. If agent
1 chooses the first action (the first row) and agent 2 chooses
the second action (the second column), both agents obtain a
reward of 2. A strategy is the probability distribution on action
selection. For a pure strategy, some action is always selected.
For a mixed strategy, each action is assigned a probability.

Algorithm 1 CMARL-CD for Repeated Games
1: Initialize the coordination degree of each agent and

action, initialize T with a positive value, and initialize
the learning rate δ with a small positive value.

2: Repeat for each game
3: For each agent i, do
4: Choose an action using pi.
5: End for each agent
6: For each agent i, do
7: Observe the reward ri.
8: If ri ≥ ri_max
9: ri_max = ri

10: Update ci according to (2)-(4).
11: Update pi according to (5).
12: End if
13: End for each agent
14: Until the strategy of each agent becomes pure.
15: Return ci for each agent.

IV. COOPERATIVE MULTI-AGENT REINFORCEMENT
LEARNING BASED ON COORDINATION DEGREE
A. FORMULATION OF THE ALGORITHM
To facilitate cooperation among agents, we propose the con-
cept of coordination degree to evaluate the optimality of an
action. In a fully cooperative repeated game, if the maximum
global reward is obtained, the coordination degree of the
selected action of each agent is increased, while the coordi-
nation degrees of the other actions are decreased. Otherwise,
no updates are required. After the learning stage, each agent
selects the action with the maximum coordination degree.

The pseudocode of CMARL-CD is shown in Algo-
rithm 1. Each agent i updates its coordination degree ci =
(ci1, . . . , c

i
|Ai|

) according to:

cig(k + 1) = cig(k)+ δIi(k),

× if aig is selected in the k-th game (2)

cij(k + 1) = cij(k)− δIi(k),

× for all aij 6= aig (3)

where aij denotes the j-th action of agent i, c
i
j denotes the coor-

dination degree of aij, Ii ∈ {0, 1} is an indicator variable, and
δ ∈ (0, 1) is the learning rate. The value of Ii is determined
by

Ii(k) =

{
1 if ri(k) ≥ ri_max(k)
0 otherwise

(4)

where ri (k) is the global immediate reward received by
agent i in the k-th game, and ri_max(k) is the maximal global
immediate reward received by agent i by the k-th game. The
learning rate δ should be set to a small positive value.
Then agent i’s strategy pi = (pi1, p

i
2, . . . , p

i
|Ai|

) is updated
as follows:

pij(k) =
e
cij(k)

T

|Ai|∑
h=1

e
cih(k)
T

(5)

where pij is the probability of selecting the j-th action of
agent i, and T is the temperature parameter that balances
exploration and exploitation.

B. ANALYSIS OF CMARL-CD IN REPEATED GAMES
The updating rule of the coordination degrees is as follows:

cij(k + 1) = cij(k)+ δ1c
i
j(P(k), a(k), r(k)),

× i = 1, 2, . . . , n, j = 1, 2, . . . |Ai| (6)

where P(k) = (p1(k), p2(k) . . . , pn(k)) is the joint strategy,
a(k) is the joint action, r(k) is the global immediate reward,
and 1cij(. . . , . . . , . . .) represents the updating term of (2)
and (3). According to Theorem 3.1 in [38], if δ is infinitely
small, the CMARL-CD model in repeated games can be
represented by

dcij
dt
= E[1cij(P(k), a(k), r(k)|P(k) = P],

× i = 1, 2, . . . , n, j = 1, 2, . . . |Ai|. (7)

The following theorem presents the characteristics of
CMARL-CD in repeated games.
Theorem 1: Each agent uses the CMARL-CD algorithm to

play a cooperative repeated game with n (n ≥ 2) agents and
m (m ≥ 2) optimal joint actions. If the component action
of every optimal joint action is unique, all the optimal joint
actions are asymptotically stable critical points.
Proof: (i) Let aij be agent i’s component action of the j-th

optimal joint action, pij be the probability of selecting aij, and
cij be the coordination degree of aij for i = 1, 2, . . . , n, j =
1, 2, . . . ,m. Because the component action of every optimal
joint action is unique, (7) can be written as:

dcij
dt
= E[1cij(P(k), a(k), r(k)|P(k) = P]

= E[Ii|P, ai = aij, ri = ri_max]
n∏
i=1

pij

VOLUME 9, 2021 123807

H. Cui, Z. Zhang: Cooperative Multi-Agent Reinforcement Learning Method

TABLE 1. Success rate in case 1.

+E[Ii|P, ai = aij, ri 6= ri_max]pij(1−
n∏

h=1(h6=i)

phj)

+

∑
w6=j

E[Ii|P, ai = aiw, ri = ri_max]
n∏
i=1

piw(−1)

+

∑
w6=j

E[Ii|P, ai = aiw, ri 6= ri_max]piw

× (1−
n∏

h=1(h6=i)

phw)

=

n∏
i=1

pij + 0+
m∑

w=1(w6=j)

(
n∏
i=1

piw(−1))+ 0

=

n∏
i=1

pij −
m∑

w=1(w6=j)

n∏
i=1

piw, i = 1, 2, . . . , n,

× j = 1, 2, . . .m. (8)

The coordination degree of the component action that does
not constitute any optimal joint action decreases over time.
According to (5), the probabilities of such actions decrease
to zero over time. According to (5) and (8), we have:

dpij
dt
=

m∑
h=1

∂pij
∂cih

dcih
dt

=

m∑
h=1

 1
T e

cy
T
∑m

k=1 e
ck
T − e

cy
T 1
T e

cy
T(∑m

k=1 e
cik
T

)2
×

 n∏
i=1

pih −
m∑

w=1(v6=h)

n∏
i=1

piv




=

1
T e

cj
T
∑m

k=1 e
ck
T(∑m

k=1 e
ci
T

)2
 n∏
i=1

pij −
m∑

n=1(w6=j)

n∏
i=1

piw



+

m∑
h=1(h6=j)

 −e cyT · 1T e chT(∑m
k=1 e

cik
T

)2
×

 n∏
i=1

pih −
m∑

w=1(w6=h)

n∏
i=1

piw




=
2
T
pij

(n∏
i=1

pij

) (
1− pij

)

−

m∑
h=1(h6=j)

p2ih n∏
l=1(l 6=i)

plh

 (9)

Any critical point of (9) must satisfy

2
T
pij[(

n∏
i=1

pij)(1− pij)−
m∑

h=1(h6=j)

(p2ih

n∏
l=1(l 6=i)

plh)] = 0.

(10)

It is clear that all joint actions are critical points. It is noted

that
m∑
j=1

pij = 1, i = 1, 2, . . . , n when the probabilities of

the actions that do not constitute any optimal joint actions
decrease to zero. Thus, we perform the transformation as
follows:

pij =


p̄ij if j 6= m

1−
m−1∑
h=1

p̄ih if j = m
. (11)

Then we can get

2
T
p̄ij[(

n∏
i=1

p̄ij)(1− p̄ij)−
m−1∑

h=1(h6=j)

(p̄2ih

n∏
l=1(l 6=i)

p̄lh)

− (1−
m−1∑
h=1

p̄ih)2
n∏

l=1(l 6=i)

(1−
m−1∑
h=1

p̄lh)] = 0,

× i = 1, 2, . . . , n, j = 1, 2, . . .m− 1. (12)

The stability of each of them optimal joint actions is deter-
mined by the eigenvalues of the following Jacobin matrix
J ∈ R(m−1)n×(m−1)n:

J =



−
2
T

0 0 · · · 0

0 −
2
T

0 · · · 0

0 0 −
2
T
· · · 0

...
...

...
. . .

...

0 0 0 · · · −
2
T


. (13)

123808 VOLUME 9, 2021

H. Cui, Z. Zhang: Cooperative Multi-Agent Reinforcement Learning Method

FIGURE 2. The framework of the CMARL-CD algorithm for fully cooperative
stochastic games (The arrows with solid lines indicate the execution process and the
arrows with dotted lines indicate the training process).

TABLE 2. Success rate in case 2.

This shows that each eigenvalue of J is − 2
T . Thus all the

optimal joint actions are asymptotically stable critical points
of (9). �

C. EMPIRICAL STUDIES IN REPEATED GAMES
The efficacy of CMARL-CD in repeated games with n agents
and m actions is investigated by empirical studies. Two situ-
ations are considered.

Case 1: The component action of every optimal joint action
is unique.

Case 2: The component action of at least one optimal joint
is not unique.

The simulation is performed for 50 runs. A game with a
random payoff matrix is played repeatedly in each run. If the
strategy of each agent becomes pure, and the joint action can
obtain themaximum reward, a successful run is achieved. The
learning ends if for each agent, the probability of selecting
some action is greater than 0.999. The temperature T is 1.0,
and δ is 0.04.
In case 1, each game contains m optimal joint actions. It is

shown in Tab. 1 that the success rate is 98%when n = 7,m =
4, and 100% otherwise. The reason for failure to obtain 100%
when n = 7, m = 4 is that the maximal global reward has
never been obtained during the learning stage, and the joint
strategy converges to the local optimum.

In case 2, each game contains [0.1mn] optimal joint actions,
where [] returns a round integer. It is shown in Tab. 2 that a
success rate of 100% is obtained in all games.

The empirical results show that the CMARL-CD algorithm
can converge to one of the optimal joint actions in cooperative
repeated games.

D. CMARL-CD FOR STOCHASTIC GAMES
CMARL-CD can be applied to stochastic games. The frame-
work is illustrated in Fig. 2. Each agent receives the global
state as input, evaluates the coordination degree of each of
its actions, and executes an action, which is indicated by the
arrows with solid lines. Each agent independently updates
the coordination degree using each trajectory, as indicated by
the arrows with dotted lines. The pseudocode is presented
in Algorithm 2. The coordination degree of agent ici =
(ci1(s), . . . , c

i
|Ai|

(s)) is updated according to

cig(s) = cig(s)+ δIi(s),

× if aig is selected at state s (14)

cij(s) = cij(s)− δIi(s),

× for all aij 6= aig (15)

where cij(s) denotes the coordination degree of aij at state s,
and Ii(s) ∈ {0, 1} is an indicator variable. The value of Ii(s) is
determined by

Ii(s) =

{
1 if Ri(s) ≥ Ri_max(s)
0 otherwise

. (16)

where Ri(s) is the global cumulative reward obtained by agent
i from state s, and Ri_max(s) is the maximal global cumulative
reward in history. To maintain exploration, we confine the
value of cij(s) within [cmin, cmax], where cmin is positive.

VOLUME 9, 2021 123809

H. Cui, Z. Zhang: Cooperative Multi-Agent Reinforcement Learning Method

The probability of selecting action aij at state s is updated as
follows.

pij(s) =
e
cij(s)

T

|Ai|∑
h=1

e
cih(s)
T

. (17)

V. EMPIRICAL STUDIES FOR STOCHASTIC GAMES
The efficacy of CMARL-CD in stochastic games is studied
empirically through the DSN task and the blood battlefield
task. The states and the actions of both the tasks take discrete
values. The tasks differ in that the first task is fully coopera-
tive, while the second task involves competition between two
teams of cooperative agents. CMARL-CD is compared with
LA-OCA, VDN, and QMIX to demonstrate its efficacy. For
fairness, global state information is used during the learning
stage for all the algorithms.

Algorithm 2 CMARL-CD for Stochastic Games
1: Initialize the coordination degree of each agent and
action, and initialize the learning rate δ to a small positive
number.
2: Repeat
3: Repeat
4: For each agent i, do
5: Observe state s.
6: Choose an action ai using pi (s).
7: End for each agent
8: For each agent i, do
9: Observe s’ and r .

10: Record the tuple < s, ai, s’, r >.
11: End for each agent
12: Until the episode is over
13: For each agent i, do
14: For each state s visited in the previous episode
15: Update Ri(s) according to (1) and the recorded

tuples.
16: If Ri(s) ≥ Ri_max(s)
17: Ri_max(s) = Ri(s)
18: Update ci (s) according to (14)-(16).
19: Update pi (s) according to (17).
20: End if
21: End for each visited state
22: End for each agent
23: Until the specified number of episodes have elapsed
24: Return ci(s) for each agent i.

A. TASK 1: DISTRIBUTED SENSOR NETWORK
The DSN task [44] requires the sensors (agents) to cooperate
to capture the targets. As shown in Fig. 3, 12 sensors are
distributed within a grid. The two targets walk randomly
within the six cells. Both the targets’ number and positions
can be sensed by all the sensors. The sensors must cooperate
at each of the 42 states (excluding one absorbing state). Each

FIGURE 3. A distributed sensor network with 12 sensors and two targets.

TABLE 3. Success rate for the DSN task.

TABLE 4. Average cumulative reward for the DSN task.

TABLE 5. Average steps for the DSN task.

sensor can choose to do nothing or focus on one of its adja-
cent cells. The joint action space contains 291,600 elements.
All the sensors execute their actions simultaneously. Then,
the targets move sequentially at each time step. If a target
moves to a cell that is not empty, it fails to move. If three
or four sensors focus on a target, a hit is made. If a target
receives three hits, it is captured. The captured target does
not occupy any cells. An episode lasts 40 time steps unless
both the targets are captured.

The reward assignment obeys the following rules. If a tar-
get is captured, a reward of 10 is obtained by each sensor that
involves the capture. If the target is captured by four sensors,

123810 VOLUME 9, 2021

H. Cui, Z. Zhang: Cooperative Multi-Agent Reinforcement Learning Method

TABLE 6. Minimum cumulative reward for the DSN task.

only the sensors with the top three indices are rewarded.
Focusing on one cell is rewarded by−1, and doing nothing is
rewarded by 0. Each sensor shares its immediate reward with
the other agents at each step. The optimal joint strategy can
obtain a cumulative reward of 42 in three steps.

The simulation is performed for 50 runs, each of which
contains L episodes for learning and 50,000 episodes for
evaluation. In the learning stage, all agents’ strategies are
updated. In the evaluation stage, all agents’ strategies are
fixed.

The CMARL-CD algorithm uses the parameters δ = 0.05,
T = 1.0, cmin = 0.5, cmax = 3.0, γ = 0.9, and the initial
values of the coordination degrees of all state-action pairs
cij(s) = 1.5. To increase exploration near the local optima,
the CMARL-CD algorithm resets the coordination degrees of
all actions at state s to 1.5, and sets δ to 0.5 when the obtained
cumulative reward from state s is larger than the maximum
cumulative reward in history. The LA-OCA algorithm uses
the parameters in [23].

The parameter settings for QMIX and VDN are as fol-
lows. Each agent network is an MLP with one hidden layer
of 49 neurons. The size of the replay buffer is 40000, and
the size of each batch is 400. Parameter updating begins after
one batch of tuples is available. The estimation networks are
updated after every 200 time steps using the Adam optimizer
with an initial learning rate of 0.001. The target networks are
cloned from the estimation networks after every 2000 time
steps. The ε-greedy policy is used to select an action during
the learning stage. The exploration rate ε follows

ε =

 εini −
(εini − εfin)

0.8L
n 1 ≤ n ≤ 0.8L

0.01 0.8L < n ≤ L
(18)

where εini = 1.0 and εfin = 0 are two constants, and n is the
number of elapsed episodes. For QMIX, the mixing network
contains one hidden layer of 70 neurons with exponential
linear unit (ELU).

The success rate, cumulative reward, and the number of
steps are selected as performance indices. If a cumulative
reward of 42 is obtained in three steps in an evaluation
episode, success is obtained. The success rate in a run is
defined as the number of successful evaluation episodes
divided by the total number of evaluation episodes (50,000).

The success rates are listed in Tab. 3. It can be seen
that CMARL-CD achieves the highest learning speed and
highest success rate. Both QMIX and VDN achieve a suc-

TABLE 7. Maximum steps for the DSN task.

cess rate of less than 8% for all values of L. After L =
100,000 learning episodes, LA-OCA achieves a success rate
of 46.57%, while CMARL-CD achieves a success rate of
90.90%. Although LA-OCA, QMIX, and VDN perform bet-
ter given more learning episodes, they obtain a lower suc-
cess rate when CMARL-CD has already obtained a 100%
success rate after 300,000 learning episodes. These results
indicate that CMARL-CD learns much faster than the other
algorithms.

The average cumulative reward and steps are listed
in Tab. 4 and Tab. 5 respectively. Taking the item of
CMARL-CD with L = 100,000 in Tab. 4 as an example,
‘41.90|0.10’ represents an average cumulative reward of
41.90 and a standard deviation of 0.10. CMARL-CD obtains
the maximum cumulative reward and uses fewer time steps
than any of the other algorithms for each value of L. Both
QMIX and VDN obtain high cumulative rewards with L =
500,000. However, most of the time, they fail to capture the
targets in three steps, which leads to a low success rate. The
worst case is shown in Tab. 6 and Tab. 7. It can be seen that
CMARL-CD is more reliable than the others.

To verify the effectiveness of CMARL-CD, we visualize
the joint strategy obtained by CMARL-CDwith L = 500,000,
as shown in Fig. 4. Each sensor selects an actionwith themax-
imal coordination degree. It can be seen that the optimal joint
action is selected under each of the 42 states (not including
the absorbing state).

B. TASK 2: BLOOD BATTLEFIELD
Blood battlefield, which is developed by us, is a strategy
game. The player needs to command a troop to fight against
its opponent who owns a troop.

Each side has four marines and two gunners. The property
values are presented in Fig. 5. All units cannot move, just
like the units in Hearthstone that have been deployed on the
battlefield. Unlike most turn-based strategy games, the units
on both sides take actions at the same time in each turn. Every
live unit must attack a live opponent unit in each turn and take
damage afterward. The true damage depends on the attacker’s
attack damage (AD) and hit rate (HR). For example, a gunner
with 2 HP (hit point) was attacked by a gunner and a marine
on the other side. The marine was missed and the gunner
hit successfully. The true damage received by the target was
0 + 2 = 2. The HP became 2 − 2 = 0. A dead unit will
never become a target. A game ends with one side beating

VOLUME 9, 2021 123811

H. Cui, Z. Zhang: Cooperative Multi-Agent Reinforcement Learning Method

FIGURE 4. The obtained optimal joint strategy for the DSN task by using the CMARL-CD algorithm (after 500,000 learning episodes).

the other side or a tie. A tie appears if no side wins the game
in 100 turns.

The state vector is s = [hp1, . . . hp6, s1, . . . s6]T

where hpi is the HP value of opponent i, and sj ∈
{ALIVE,DESTROYED} is the state of its j-th teammate
(including itself). The state space contains 44 × 72 × 25 =
401, 408 elements. Each unit can select only a live opponent
unit as its target. The reward assignment obeys the following
rules: if one opponent unit is destroyed, all units of the other
side (alive or not) are rewarded with 2; the winner obtains a
reward of 10 and the loser obtains a reward of −10, and a tie
brings a reward of 0 with both sides.

The game involves both coordination and competition.
The units of each side need to coordinate to eliminate the
opponent units to survive the war. Because the game is not
a sequential decision problem, each player needs to consider
only its own fire deployment. Four algorithms including
CMARL-CD, LA-OCA, QMIX, and VDN are compared in a
tournament.

The CMARL-CD algorithm uses the parameters cmax =

2.5 and T = 0.8. The other parameters are the same as
those used in the DSN task. The LA-OCA algorithm uses
the same parameters as those used in the DSN task. The
parameter settings for QMIX and VDN are as follows: Each
agent network is anMLPwith one hidden layer of 49 neurons.
The size of the replay buffer is 100000, and the size of each

FIGURE 5. Two kinds of units in blood battlefield: Marine and gunner.

batch is 720. Parameters updating begins after one batch
of tuples is available. The estimation networks are updated
after every 240 time steps using the Adam optimizer with an
initial learning rate of 0.001. The target networks are cloned
from the estimation networks after every 2400 time steps.
The ε-greedy policy is used during the learning stage. The
exploration rate ε is annealed from 1.0 to 0.0 with L increases.
For QMIX, the mixing network contains one hidden layer
of 64 neurons with ELUs.

The tournament has 30 rounds. Each round includes
4 + 4 × (4 − 1)/2 = 10 matches. In each match, one

123812 VOLUME 9, 2021

H. Cui, Z. Zhang: Cooperative Multi-Agent Reinforcement Learning Method

FIGURE 6. The win rate of each algorithm.

FIGURE 7. The win steps of each algorithm.

algorithm plays against another algorithm (which could be
itself) for 500,000 episodes in the learning stage, and then
plays another 500,000 episodes in the evaluation stage. Fixed
learned strategies are used in the evaluation stage. All results
are averaged over 30 rounds.

Fig. 6 shows the win rate of each algorithm (a tie does not
count in the win rate, which explains that the sum of the win
rates of the two opponents is not 100%). CMARL-CD has
a higher win rate against any of the other algorithms. Both
QMIX and VDN have a great advantage over LA-OCA, but
they have a win rate of less than 40% against CMARL-CD.

Fig. 7 shows the win steps of each algorithm. The win-step
of an algorithm is the average number of steps used in each
winning episode. Fewer win-steps indicate that the algorithm
learns a better strategy to defeat its opponent. It can be seen
that CMARL-CD has fewer win-steps compared to the other
algorithms.

VI. CONCLUSION
This paper proposes an MARL algorithm known as
CMARL-CD for fully cooperative scenarios. Empirical stud-
ies support the theoretical analysis of repeated games. The

simulation results on the DSN task and blood battlefield
empirically demonstrate that the CMARL-CD algorithm can
converge to the optimal joint strategy for stochastic games.
In the future, we will study the dynamics of the CMARL-CD
algorithm in stochastic games, and incorporate deep learning
into CMARL-CD to improve scalability.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 1998.
[2] H. Ge, Y. Song, C. Wu, J. Ren, and G. Tan, ‘‘Cooperative deep Q-learning

with Q-value transfer for multi-intersection signal control,’’ IEEE Access,
vol. 7, pp. 40797–40809, 2019.

[3] V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, ‘‘Ensemble coordina-
tion approach in multi-AGV systems applied to industrial warehouses,’’
IEEE Trans. Autom. Sci. Eng., vol. 12, no. 3, pp. 922–934, Jul. 2015.

[4] M. Yan, G. Feng, J. Zhou, and S. Qin, ‘‘Smart multi-RAT access based on
multiagent reinforcement learning,’’ IEEE Trans. Veh. Technol., vol. 67,
no. 5, pp. 4539–4551, May 2018.

[5] H. M. Schwartz, ‘‘Learning in muitiplayer stochastic games,’’ in Multi-
Agent Machine Learning: A Reinforcement Approach. Hoboken, NJ, USA:
Wiley, 2014, pp. 73–143.

[6] L. Busoniu, R. Babuska, and B. De Schutter, ‘‘A comprehensive survey
of multi-agent reinforcement learning,’’ IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 38, no. 2, pp. 156–172, Mar. 2008.

[7] V. Conitzer and T. Sandholm, ‘‘AWESOME: A general multiagent learning
algorithm that converges in self-play and learns a best response against sta-
tionary opponents,’’Mach. Learn., vol. 67, nos. 1–2, pp. 23–43,May 2007.

[8] C. Zhang, X. Li, J. Hao, S. Chen, K. Tuyls,W. Xue, and Z. Feng, ‘‘SA-IGA:
A multiagent reinforcement learning method towards socially optimal
outcomes,’’ Auto. Agents Multi-Agent Syst., vol. 33, no. 4, pp. 403–429,
Jul. 2019.

[9] J. Jiang and Z. Lu, ‘‘Learning fairness in multi-agent systems,’’ 2019,
arXiv:1910.14472. [Online]. Available: http://arxiv.org/abs/1910.14472

[10] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, ‘‘Independent reinforce-
ment learners in cooperative Markov games: A survey regarding coordina-
tion problems,’’ Knowl. Eng. Rev., vol. 27, no. 1, pp. 1–31, Feb. 2012.

[11] Y. Zhu and D. Zhao, ‘‘Online minimax Q network learning for two-player
zero-sum Markov games,’’ IEEE Trans. Neural Netw. Learn. Syst., early
access, Dec. 14, 2020, doi: 10.1109/TNNLS.2020.3041469.

[12] M. L. Littman, ‘‘Markov games as a framework for multi-agent reinforce-
ment learning,’’ in Proc. ICML, New Brunswick, NJ, USA, vol. 157, 1994,
pp. 157–163.

[13] K. Tuyls and A. Nowé, ‘‘Evolutionary game theory and multi-agent
reinforcement learning,’’ Knowl. Eng. Rev., vol. 20, no. 1, pp. 63–90,
Mar. 2005.

[14] K. Tuyls and S. Parsons, ‘‘What evolutionary game theory tells us about
multiagent learning,’’ Artif. Intell., vol. 171, no. 7, pp. 406–416,May 2007.

[15] D. Bloembergen, K. Tuyls, D. Hennes, and M. Kaisers, ‘‘Evolutionary
dynamics of multi-agent learning: A survey,’’ J. Artif. Intell. Res., vol. 53,
pp. 659–697, Aug. 2015.

[16] M. M. Kaisers and K. Tuyls, ‘‘Frequency adjusted multi-agent
Q-learning,’’ in Proc. AAMAS, Toronto, ON, Canada, 2010, pp. 309–316.

[17] A. Kianercy and A. Galstyan, ‘‘Dynamics of Boltzmann Q-learning in two-
agent two-action games,’’ Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 85, no. 4, pp. 1145–1154, 2012.

[18] M. Babes, M. Wunder, and M. L. Littman, ‘‘Q-learning in two-player two-
action games,’’ in Proc. AAMAS, Budapest, Hungary, 2009, pp. 1–6.

[19] Z. Zhang, D. Zhao, J. Gao, D. Wang, and Y. Dai, ‘‘FMRQ—A multiagent
reinforcement learning algorithm for fully cooperative tasks,’’ IEEE Trans.
Cybern., vol. 47, no. 6, pp. 1367–1379, Jun. 2017.

[20] Z. Zhang and D. Wang, ‘‘EAQR: A multiagent Q-learning algorithm
for coordination of multiple agents,’’ Complexity, vol. 2018, Aug. 2018,
Art. no. 7172614.

[21] H. Liu, Z. Zhang, and D. Wang, ‘‘WRFMR: A multi-agent reinforce-
ment learning method for cooperative tasks,’’ IEEE Access, vol. 8,
pp. 216320–216331, 2020.

[22] L. Matignon, G. J. Laurent, and N. L. Fort-Piat. (2009). Coordination of
Independent Learners in Cooperative Markov Games. [Online]. Available:
http://hal.archives-ouvertes.fr/docs/00/37/08/89/PDF/Rapport-1.pdf

VOLUME 9, 2021 123813

http://dx.doi.org/10.1109/TNNLS.2020.3041469

H. Cui, Z. Zhang: Cooperative Multi-Agent Reinforcement Learning Method

[23] Z. Zhang, D. Wang, and J. Gao, ‘‘Learning automata-based multi-
agent reinforcement learning for optimization of cooperative tasks,’’
IEEE Trans. Neural Netw. Learn. Syst., early access, Oct. 7, 2020, doi:
10.1109/TNNLS.2020.3025711.

[24] T. Thi Nguyen, N. Duy Nguyen, and S. Nahavandi, ‘‘Deep reinforce-
ment learning for multi-agent systems: A review of challenges, solu-
tions and applications,’’ 2018, arXiv:1812.11794. [Online]. Available:
http://arxiv.org/abs/1812.11794

[25] P. Hernandez-Leal, B. Kartal, and E. Taylor, ‘‘A survey and critique of
multiagent deep reinforcement learning,’’ Auto. Agents Multi-Agent Syst.,
vol. 33, pp. 750–797, Oct. 2019.

[26] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, ‘‘Coun-
terfactual multi-agent policy gradients,’’ in Proc. 32nd AAAI Conf. Artif.
Intell., 2018, pp. 2974–2982.

[27] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatc, ‘‘Multi-
agent actor-critic for mixed cooperative-competitive environments,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6379–6390.

[28] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, ‘‘Value-decomposition networks for cooperative multi-agent
learning based on team reward,’’ in Proc. ICAAMS, Stockholm, Sweden,
2018, pp. 2085–2087.

[29] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and
S. Whiteson, ‘‘QMIX: Monotonic value function factorisation for deep
multi-agent reinforcement learning,’’ in Proc. ICML, Stockholm, Sweden,
2018, pp. 4292–4301.

[30] Y. Yang, J. Hao, B. Liao, K. Shao, G. Chen, W. Liu, and
H. Tang, ‘‘Qatten: A general framework for cooperative multiagent
reinforcement learning,’’ 2020, arXiv:2002.03939. [Online]. Available:
http://arxiv.org/abs/2002.03939

[31] K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi, ‘‘QTRAN:
Learning to factorize with transformation for cooperative multi-agent
reinforcement learning,’’ in Proc. ICML, Long Beach, CA, USA, 2019,
pp. 5887–5896.

[32] Y. Yang, J. Hao, G. Chen, H. Tang, Y. Chen, Y. Hu, C. Fan, and Z. Wei,
‘‘Q-value path decomposition for deep multiagent reinforcement learn-
ing,’’ in Proc. ICML, 2020, pp. 10706–10715.

[33] S. P. Singh, M. J. Kearns, and Y. Mansour, ‘‘Nash convergence of gradient
dynamics in general-sum games,’’ in Proc. UAI, Stanford, CA, USA, 2000,
pp. 541–548.

[34] M. Bowling andM. Veloso, ‘‘Multiagent learning using a variable learning
rate,’’ Artif. Intell., vol. 136, no. 2, pp. 215–250, Apr. 2002.

[35] S. Abdallah andV. Lesser, ‘‘Amultiagent reinforcement learning algorithm
with non-linear dynamics,’’ J. Artif. Intell. Res., vol. 33, pp. 521–549,
Dec. 2008.

[36] C. Zhang and V. R. Lesser, ‘‘Multi-agent learning with policy prediction,’’
in Proc. AAAI, Atlanta, GA, USA, 2010, pp. 927–934.

[37] J. Hu and M. P. Wellman, ‘‘Nash Q-learning for general-sum stochas-
ticgames,’’ J. Mach. Learn. Res., vol. 4, pp. 1039–1069, Nov. 2003.

[38] P. S. Sastry, V. V. Phansalkar, and M. A. L. Thathachar, ‘‘Decentral-
ized learning of Nash equilibria in multi-person stochastic games with
incomplete information,’’ IEEE Trans. Syst., Man Cybern., vol. 24, no. 5,
pp. 769–777, May 1994.

[39] P. Vrancx, K. Verbeeck, and A. Nowe, ‘‘Decentralized learning in Markov
games,’’ IEEE Trans. Syst., Man, Cybern. B. Cybern., vol. 38, no. 4,
pp. 976–981, Aug. 2008.

[40] T. E. S. Raghavan, ‘‘Stochastic games—An overview,’’ in Stochas-
tic Games and Related Topics, T. E. S. Raghavan, T. S. Ferguson,
T. Parthasarathy, O. J. Vrieze, Eds. Springer, 1991, pp. 1–9.

[41] O. J. Vrieze, ‘‘Stochastic games and stationary strategies,’’ in Stochas-
tic Games Application, A. Neyman and S. Sorin, Eds. Springer, 2003,
pp. 37–50.

[42] H. Peters, ‘‘Repeated games,’’ in Game Theory. Springer, 2008,
pp. 101–110.

[43] S. N. Durlauf and L. E. Blume, ‘‘Repeated games,’’ in Game Theory.
Basingstoke, U.K.: Macmillan, 2010, pp. 286–299.

[44] A. Syed, S. Koenig, and M. Tambe, ‘‘Preprocessing techniques for accel-
erating the DCOP algorithm ADOPT,’’ in Proc. AAMAS, Utrecht, The
Netherlands, 2005, pp. 1041–1048.

HAOYAN CUI received the B.S. degree from
Qingdao University, Qingdao, China, in 2020.
Since 2020, he has been a Graduate Student with
Shandong Key Laboratory of Industrial Control
Technology, Department of Automation, School
of Automation, Qingdao University. His current
research interests include reinforcement learning
and deep learning.

ZHEN ZHANG received the B.S. degree from
China University of Petroleum, Dongying, China,
in 2006, theM.S. degree in control theory and con-
trol engineering from Dalian University of Tech-
nology, Dalian, China, in 2009, and the Ph.D.
degree from the Institute of Automation, Chinese
Academy of Sciences, Beijing, in 2013.

He has been with Shandong Key Laboratory of
Industrial Control Technology, School of Automa-
tion, Qingdao University, Qingdao, China, since

2013. He was a Visiting Scholar with the School of Computer Sci-
ence and Engineering, Nanyang Technological University, Singapore, from
August 2018 to February 2019. He has been an Associate Professor with
the School of Automation, Qingdao University, since November 2019. His
current research interests include reinforcement learning and intelligent
optimization methods.

123814 VOLUME 9, 2021

http://dx.doi.org/10.1109/TNNLS.2020.3025711

